CONTENTS

LIST OF ACRONYMS AND ABBREVIATIONS .. Aiv

A1.0 PROJECT SCOPE ... A1

A2.0 PROJECT DESCRIPTION ... A2

A3.0 SAMPLING PROCEDURES .. A3

A4.0 QUALITY CONTROL ACTIVITIES ... A4

<table>
<thead>
<tr>
<th>A4.1 Laboratory Quality Control</th>
<th>A5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4.1.1 Volatile Organic Compounds (EPA Test Method 8260B)</td>
<td>A5</td>
</tr>
<tr>
<td>A4.1.1.1 Sample Preservation and Holding Time</td>
<td>A5</td>
</tr>
<tr>
<td>A4.1.1.2 Instrument Calibration</td>
<td>A5</td>
</tr>
<tr>
<td>A4.1.1.3 Blanks</td>
<td>A5</td>
</tr>
<tr>
<td>A4.1.1.4 Surrogates and Internal Standards</td>
<td>A5</td>
</tr>
<tr>
<td>A4.1.1.5 Matrix Spike/Matrix Spike Duplicates</td>
<td>A5</td>
</tr>
<tr>
<td>A4.1.1.6 Laboratory Control Samples</td>
<td>A6</td>
</tr>
<tr>
<td>A4.1.1.7 Performance Evaluation Samples</td>
<td>A6</td>
</tr>
<tr>
<td>A4.1.1.8 Target Compound Identification</td>
<td>A6</td>
</tr>
<tr>
<td>A4.1.1.9 Analytical Sensitivity</td>
<td>A6</td>
</tr>
<tr>
<td>A4.1.2 Volatiles (EPA Test Method 524.2)</td>
<td>A6</td>
</tr>
<tr>
<td>A4.1.2.1 Sample Preservation and Holding Time</td>
<td>A6</td>
</tr>
<tr>
<td>A4.1.2.2 Instrument Calibration</td>
<td>A7</td>
</tr>
<tr>
<td>A4.1.2.3 Blanks</td>
<td>A7</td>
</tr>
<tr>
<td>A4.1.2.4 Surrogates and Internal Standards</td>
<td>A7</td>
</tr>
<tr>
<td>A4.1.2.5 Matrix Spike/Matrix Spike Duplicates</td>
<td>A7</td>
</tr>
<tr>
<td>A4.1.2.6 Laboratory Control Samples</td>
<td>A7</td>
</tr>
<tr>
<td>A4.1.2.7 Target Compound Identification</td>
<td>A7</td>
</tr>
<tr>
<td>A4.1.2.8 Analytical Sensitivity</td>
<td>A7</td>
</tr>
<tr>
<td>A4.1.3 Wet Chemistry</td>
<td>A8</td>
</tr>
<tr>
<td>A4.1.3.1 Sample Preservation and Holding Time</td>
<td>A8</td>
</tr>
<tr>
<td>A4.1.3.2 Instrument Calibration</td>
<td>A8</td>
</tr>
<tr>
<td>A4.1.3.3 Blanks</td>
<td>A8</td>
</tr>
<tr>
<td>A4.1.3.4 Matrix Spikes and Duplicate Samples</td>
<td>A8</td>
</tr>
<tr>
<td>A4.1.3.5 Laboratory Control Samples</td>
<td>A8</td>
</tr>
<tr>
<td>A4.1.3.6 Target Analyte Identification</td>
<td>A8</td>
</tr>
<tr>
<td>A4.1.3.7 Analytical Sensitivity</td>
<td>A8</td>
</tr>
<tr>
<td>A4.2 Field Quality Control Samples</td>
<td>A9</td>
</tr>
<tr>
<td>A4.2.1 Volatiles (EPA Test Method 8260B)</td>
<td>A9</td>
</tr>
<tr>
<td>A4.2.1.1 Field Duplicates</td>
<td>A9</td>
</tr>
<tr>
<td>A4.2.1.2 Trip Blanks</td>
<td>A9</td>
</tr>
<tr>
<td>A4.2.1.3 Field Blanks</td>
<td>A9</td>
</tr>
<tr>
<td>A4.2.2 Volatiles (EPA Test Method 524.2)</td>
<td>A9</td>
</tr>
<tr>
<td>A4.2.2.1 Field Duplicates</td>
<td>A9</td>
</tr>
<tr>
<td>A4.2.2.2 Trip Blanks</td>
<td>A9</td>
</tr>
<tr>
<td>A4.2.2.3 Field Blanks</td>
<td>A10</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS AND ABBREVIATIONS

°C Degrees Centigrade
CCA Comprehensive Certificate of Analysis
COC Chemicals of Concern
CTO Contract Task Order
DQO Data Quality Objective
LCS Laboratory Control Sample
NFG National Functional Guidelines
µg/L Micrograms per Liter
MCL Maximum Contaminant Level
MDL Method Detection Limit
MS Matrix Spike
MSD Matrix Spike Duplicate
OU Operable Unit
PQL Practical Quantitation Limit
QA Quality Assurance
QAPP Quality Assurance Project Plan
QC Quality Control
QCSR Quality Control Summary Report
RPD Relative Percent Difference
TR Result detected between the MDL and PQL
WAD Work Authorization Document
USACE U.S. Army Corps of Engineers
USEPA U.S. Environmental Protection Agency
VOC Volatile Organic Compound
A1.0 PROJECT SCOPE

This Quality Control Summary Report (QCSR) presents Level III and Level IV data validation results for samples collected during the January through March 2002 Fort Ord Basewide groundwater monitoring sampling period. Data review was performed in accordance with the procedures specified in the Draft Final Chemical Data Quality Management Plan (CDQMP), Former Fort Ord Complex, Monterey County, California (HLA, 1997), as well as the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (October 1999) and USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review (February 1994). Laboratory Data Consultants (LDC), an independent subcontractor to Harding ESE, Inc. (Harding ESE), performed the data validation task.

Analytical results from the sampling period were subjected to Level III review, which comprises an evaluation of QC summary results for sample holding times, initial and continuing calibrations, surrogates, matrix spike/matrix spike duplicates (MS/MSD), laboratory control samples (LCS), method blanks, field blanks, and field duplicate samples.

To confirm sample quantitation and identification, a Level IV evaluation of the QC summary forms as well as the raw data was performed on a minimum of 10 percent of the sample results from each test method. The sample identification and level of review performed on each sample is presented in Table 1. The numbers of primary and field QC samples collected are presented in Table 2. The qualified results are presented in Table 3.
A2.0 PROJECT DESCRIPTION

A total of 386 primary groundwater samples were collected and analyzed by one or more of the following test methods; volatile organic compounds (VOCs) by EPA Test Method 8260B and EPA Test Method 524.2, total dissolved solids (TDS) by EPA Test Method 160.1, and chloride by EPA Test Method 300.0. Not all samples were analyzed for all parameters. Additionally, 40 field quality assurance samples (trip blanks, field blanks, and field duplicates) were collected and analyzed as part of the sampling program. A discussion of the site background and investigative strategies employed for the program is provided in the Draft Annual Report of Quarterly Monitoring, October 2000 through September 2001, Former Fort Ord (Harding ESE, February 2002).
A3.0 SAMPLING PROCEDURES

Sampling procedures were conducted in accordance with project plans and the CDQMP.
A4.0 QUALITY CONTROL ACTIVITIES

The majority of the sample analyses were performed by Sequoia Analytical Laboratory in Petaluma, California. The laboratory was last validated by the U.S. Army Corps of Engineers (USACE) on April 17, 2001, and maintains accreditation under the State of California Environmental Laboratory Accreditation Program (ELAP). Sequoia Analytical Laboratory in San Carlos, California has been designated as a secondary analytical laboratory to Sequoia Petaluma, to assist with sample over flow on an “as needed” basis. Sequoia San Carlos maintains USACE approval through the quarterly analysis of performance evaluation (PE) samples. The results of the March 2002 PE samples are included in Section 4.1.1.7. Sequoia San Carlos maintains ELAP certification. Method detection limits (MDLs) were reviewed for both laboratories, and were determined to be acceptable for this activity.

Level III review was performed on the volatile organic and inorganic methods using the USACE Sacramento District’s Automated Data Review (ADR) software program. Flagging conventions specified in the CDQMP were incorporated with the program’s reference library to assess compliance with project requirements.

The ADR program was used as an electronic validation tool for the following QC checks with the exception of the inorganic calibration, which was validated manually, due to the laboratory’s inability to deliver electronic calibration files:

- Holding Times
- Instrument Performance Checks
- Initial and Continuing Calibrations
- Method Blank Contamination
- Surrogates
- Matrix Spike/Matrix Spike Duplicates
- Laboratory Control Samples
- Field Blank Contamination
- Field Duplicates

For the sampling period, Level IV review was performed on 13 percent of the VOC results by EPA Test Method 8260B, 100 percent of the VOC results by EPA Test Method 524.2, 12 percent of the chloride results by EPA Test Method 300.0 and 11 percent of the TDS results by EPA Test Method 160.1. The manual validation incorporated QC criteria from the CDQMP and National Functional Guidelines. Where specific guidance was not available, the data was evaluated in a conservative manner consistent with industry standards using professional experience.

Field quality assurance (QA) samples (trip blank, field blanks and field duplicates) were collected at the required frequency and were considered acceptable as described in Section 4.2. The frequency of these field QA samples is summarized in Table 2.
A4.1 Laboratory Quality Control

A4.1.1 Volatile Organic Compounds (EPA Test Method 8260B)

A4.1.1.1 Sample Preservation and Holding Time

Samples were properly stored in glass containers with Teflon® septum caps without bubbles or headspace. Samples were preserved with hydrochloric acid (HCl) to a pH of less than 2 and stored at 4±2 degrees Celsius (°C).

Samples met the 14-day holding time criteria for preserved waters.

A4.1.1.2 Instrument Calibration

Initial and continuing calibrations were performed at the required frequencies. Initial calibration percent relative standard deviations (%RSD) were less than or equal to 15.0% for each individual compound and less than or equal to 30.0% for calibration check compounds (CCCs).

Continuing calibration percent differences (%D) between the initial calibration relative response factor (RRF) and the continuing calibration RRF were within the method criteria of less than or equal to 20.0% for CCCs.

Initial and continuing calibrations were within validation criteria of 30%RSD and 25%D for the target compounds with the exception of the following:

- Initial and continuing calibration verification %D exceeded acceptance criteria for 2-butanone, chloromethane, chloroethane, vinyl chloride, and Freon 113. Thirty-seven non-detect results for vinyl chloride and chloromethane were qualified unusable (R) due to %Ds > 50%. Additionally, 24 chloromethane, 50 chloroethane and vinyl chloride, 72 Freon 113, and 112 2-butanone results were qualified as detected estimated (J-) or non-detected estimated (UJ) due to low responses resulting in high %Ds in the initial and continuing calibration verification standards.

Average RRFs for target compounds and system performance check compounds (SPCCs) were within method criteria of 0.10 for chloromethane, 1,1-dichloroethane, and bromoform and 0.30 for chlorobenzene and 1,1,2,2-tetrachloroethane. The 0.05 RRF acceptance criteria was met for other target compounds.

A4.1.1.3 Blanks

Method blanks were performed at the required frequencies. No target compounds were detected in the method blanks.

A4.1.1.4 Surrogates and Internal Standards

Surrogates and internal standards were added to field and QC samples as required. Recoveries were within the acceptance limits.

A4.1.1.5 Matrix Spike/Matrix Spike Duplicates

Matrix spike and matrix spike duplicates (MS/MSD) were performed at the required frequency of one per 20 samples as described in the CDQMP.
Percent recoveries and relative percent differences (RPD) were within the acceptance limits with the exception of the following.

- One MS/MSD pair exceeded RPD acceptance criteria for 1,1-dichloroethene. Seven non-detected 1,1-dichloroethene results were qualified as estimated (UJ) due to high MS/MSD RPDs.

A4.1.1.6 Laboratory Control Samples

Laboratory control samples (LCS) were performed at the required frequency of one per analytical batch as described in the CDQMP. Percent recoveries were within the acceptance limits.

A4.1.1.7 Performance Evaluation Samples

Samples 0211KOBW044F, 0211KOBW045F, and 0211KOBW046F were identified as performance evaluation (PE) samples, which were submitted blind to the Sequoia San Carlos laboratory for analysis. The results reported by the laboratory were compared against the true values, supplied by the USACE Omaha Laboratory as follows:

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Compound</th>
<th>True Value (ug/L)</th>
<th>Reported Result (ug/L)</th>
<th>Percent Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>0211KOBW044F</td>
<td>Trichloroethene</td>
<td>0.72</td>
<td>0.76</td>
<td>+6</td>
</tr>
<tr>
<td></td>
<td>Carbon Tetrachloride</td>
<td>0.72</td>
<td>0.81</td>
<td>+12</td>
</tr>
<tr>
<td>0211KOBW045F</td>
<td>Trichloroethene</td>
<td>12</td>
<td>14</td>
<td>+17</td>
</tr>
<tr>
<td></td>
<td>Carbon Tetrachloride</td>
<td>12</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>0211KOBW046F</td>
<td>Trichloroethene</td>
<td>24</td>
<td>28</td>
<td>+17</td>
</tr>
<tr>
<td></td>
<td>Carbon Tetrachloride</td>
<td>32</td>
<td>32</td>
<td>0</td>
</tr>
</tbody>
</table>

Although no statistical acceptance limits were provided by the USACE, the results appear to be acceptable, based on the calculated %D for all compounds.

A4.1.1.8 Target Compound Identification

During the Level IV review, chromatograms and mass spectra from the raw data were evaluated. Target compound identifications were acceptable.

A4.1.1.9 Analytical Sensitivity

During the Level IV review, the raw data were evaluated for instrument sensitivity. The instrument sensitivity was determined to be sufficient to support project reporting requirements. Laboratory reporting limits met the specified requirements described in the CDQMP.

A4.1.2 Volatiles (EPA Test Method 524.2)

A4.1.2.1 Sample Preservation and Holding Time

Samples were properly stored in glass containers with Teflon® septum caps without bubbles or headspace. Samples were preserved with HCl to a pH of less than 2 and stored at 4±2 °C.

The 14 day holding time criteria for preserved waters was met.
A4.1.2.2 Instrument Calibration

Initial and continuing calibrations were performed at the required frequencies. Initial and continuing calibration factors were within method and validation criteria of 20%RSD and 30%D for target compounds with the exception of the following.

- Continuing calibration verification (CCV) %D exceeded acceptance criteria for bromomethane. Six non-detected bromomethane results were qualified as estimated (UJ) due to low responses in the CCVs, resulting in high %Ds.

Average RRFs for target compounds met the 0.05 RRF acceptance criteria with the exception of the following.

- Initial and continuing RRFs exceeded acceptance criteria for 1,2-dibromo-3-chloropropane. Six non-detected 1,2-dibromo-3-chloropropane results were qualified unusable (R) based on these exceedances.

A4.1.2.3 Blanks

Method blanks were performed at the required frequencies. No target compounds were detected in the blanks.

A4.1.2.4 Surrogates and Internal Standards

Surrogates and internal standards were added to the field and QC samples as required. Recoveries were within the acceptance limits listed in the analytical method reference.

A4.1.2.5 Matrix Spike/Matrix Spike Duplicates

MS/MSDs are not required by EPA Test Method 524.2.

A4.1.2.6 Laboratory Control Samples

LCS were performed at the required frequency of one per analytical batch as described in the method. The percent recoveries were within the acceptance limits listed in the method.

A4.1.2.7 Target Compound Identification

During the Level IV review, chromatograms and mass spectra from the raw data were evaluated. Target compound identifications were acceptable.

A4.1.2.8 Analytical Sensitivity

During the Level IV review, the raw data was evaluated for instrument sensitivity. The instrument sensitivity was determined to be sufficient to support project reporting requirements. Laboratory reporting limits met the specified requirements described in the analytical method.
A4.1.3 Wet Chemistry

A4.1.3.1 Sample Preservation and Holding Time

Samples were properly stored in polypropylene containers. Samples were analyzed for TDS by EPA Test Method 160.1 and chloride by EPA Test Method 300.0. Samples were stored at 4±2°C. Chemical preservation is not required for either of these analytical methods.

The 7 day holding time criteria for EPA Test Method 160.1 and the 28 day holding time for EPA Test Method 300.0 were met for the investigative samples.

A4.1.3.2 Instrument Calibration

Initial and continuing calibrations were performed at the required frequencies. Initial and continuing calibration factors were within acceptance limits of ≥ 0.995 for the correlation coefficient and 90-110 percent recovery for target analytes.

A4.1.3.3 Blanks

Method blanks and calibration blanks were performed at the required frequencies. No target analytes were detected in the method blanks.

A4.1.3.4 Matrix Spikes and Duplicate Samples

MS/MSDs and laboratory duplicates were performed at the required frequency of one per 20 samples as described in the CDQMP. Percent recoveries and relative percent differences were within the acceptance limits listed in the CDQMP.

A4.1.3.5 Laboratory Control Samples

LCSs were performed at the required frequency of one per analytical batch as described in the CDQMP. LCS recoveries were within the acceptance limits as listed in the CDQMP with the exception of the following:

- One LCS recovery exceeded the acceptance criteria for TDS. Two detected TDS results were qualified as estimated (J+) due to high spike recoveries.

A4.1.3.6 Target Analyte Identification

During the Level IV review, absorbance readings, chromatography printouts, and raw data from logbooks were evaluated. Target analyte identifications were acceptable.

A4.1.3.7 Analytical Sensitivity

During the Level IV review, the raw data was evaluated for instrument sensitivity. The instrument sensitivity was determined to be sufficient to support project reporting requirements. Laboratory reporting limits met the specified requirements described in the CDQMP.
A4.2 Field Quality Control Samples

Field QC samples were collected to identify possible sampling artifacts originating from storage, shipping, site conditions, sampling equipment or laboratory handling. A summary of the number of field QC samples collected is presented in Table 2.

A4.2.1 Volatiles (EPA Test Method 8260B)

A4.2.1.1 Field Duplicates

A total of 22 field duplicate pairs were collected and analyzed by EPA Test Method 8260B. The RPD between the primary sample and its duplicate were evaluated. The RPDs were below the 50 percent criteria for water samples with the exception of the following:

- Seven results in five field duplicate pairs had reported RPDs above the 50 percent criteria. In these five duplicate pairs, detected results were reported in one sample at levels below the reporting limit and as non-detected in the duplicate sample. Since the detected values reported in the primary or duplicate samples are considered to be estimates, the high RPDs in these duplicate pairs do not suggest a significant impact on the data quality, and the overall precision is considered acceptable. The field duplicate outlier reports are presented as Attachment 1. The following equation was used to determine the RPD:

\[
\text{RPD} = \frac{(D_1-D_2)}{\frac{1}{2}(D_1+D_2)} \times 100
\]

Where:

- \(D_1 \) = primary sample result
- \(D_2 \) = duplicate sample result

A4.2.1.2 Trip Blanks

Ten trip blanks were collected and analyzed by EPA Test Method 8260B. No target compounds were detected in the trip blanks.

A4.2.1.3 Field Blanks

Eight field blanks were collected and analyzed by EPA Test Method 8260B. No target compounds were detected in the field blanks.

A4.2.2 Volatiles (EPA Test Method 524.2)

A4.2.2.1 Field Duplicates

One field duplicate pair was collected and analyzed by EPA Test Method 524.2. The RPD between the primary sample and its duplicate were evaluated. The RPDs were below the 50 percent criteria for water samples.

A4.2.2.2 Trip Blanks

Trip blanks were not collected for EPA Test Method 524.2.
A4.2.2.3 **Field Blanks**

Field blanks were not collected for EPA Test Method 524.2.

A4.2.3 **Wet Chemistry**

A4.2.3.1 **Field Duplicates**

Three field duplicate pairs were collected and analyzed by EPA Test Methods 160.1 and 300.0. The RPD between the primary sample and its duplicate were evaluated. The RPDs were below the 50 percent criteria for water samples.

A4.2.3.2 **Field Blanks**

Field blanks were not collected for the wet chemistry analyses.
A5.0 ANALYTICAL PROCEDURES

A5.1 Volatiles (EPA Test Method 8260B)

Four hundred twenty six (426) samples were collected and analyzed by EPA Test Method 5030B/8260B. Method criteria and reporting limits are described in the CDQMP. The laboratory reporting limits were evaluated to verify that analytical DQOs were met. The laboratory reporting limits met the analytical requirements specified in the CDQMP.

A5.2 Volatiles (EPA Test Method 524.2)

Six samples were collected and analyzed by EPA Test Method 524.2. Method criteria and reporting limits are described in the method. The laboratory reporting limits were evaluated to verify that analytical DQOs were met. The laboratory reporting limits met the specified requirements described in the method.

A5.3 Wet Chemistry

Forty-four (44) samples were collected and analyzed for total dissolved solids by EPA Test Method 160.1 and chloride by EPA Test Method 300.0.

Method criteria and reporting limits are described in the CDQMP. The laboratory reporting limits were evaluated to verify that analytical DQOs were met. The laboratory reporting limits met the analytical requirements specified in the CDQMP.
A6.0 OVERSIGHT ACTIVITIES

A6.1 Field

A field audit was conducted by the Harding ESE Project Chemist on March 13, 2002. A summary of the audit findings will be sent to the USACE under separate cover.

A6.2 Laboratory

A project kick-off meeting was held with the laboratory prior to the start of sampling activities on February 28, 2002. A summary of the meeting has been sent to the USACE under separate cover.
A7.0 CHEMICAL DATA QUALITY

This section provides a quantitative and qualitative assessment of the data and identifies potential sources of error, uncertainty, and bias that may affect the overall usability. A summary of the data qualifier definitions is provided as Attachment 2. The graphical presentation of the completeness summaries is provided as Attachment 3.

A7.1 Summary Data Quality Assessment

The overall quality of the data was acceptable. Analytical DQOs were met as described in the CDQMP. Due to calibration %D and RRF exceedances, 37 vinyl chloride and bromomethane non-detect results and six 1,2-dibromo-3-chloropropane non-detect results were qualified unusable (R) as described in Sections 4.1.1.2 and 4.1.2.2. Holding times were met. Instrument performance checks and calibrations were performed as required. Calibration factors met the acceptance criteria with the exceptions described in Sections 4.1.1.2 and 4.1.2.2. Surrogate, internal standard, MS/MSD, and LCS were performed at the required frequency and percent recoveries were within acceptance criteria with the exceptions described in Sections 4.1.1.5 and 4.1.3.5. Method blanks and field blanks were collected and analyzed at the required frequency and no detections were reported. Field duplicates were collected at the required frequency and the precision was considered acceptable.

A7.2 Completeness Summary

Four types of completeness were calculated for this project: contract, analytical, technical, and field sampling as defined in the CDQMP. As specified in the analytical DQOs, the goal for completeness for target analytes in each analytical fraction is 90 percent. Results indicated as not reportable by the laboratory are not included in the completeness calculations. The following equations are used to calculate the four types of completeness.

\[
\%\text{Contract Completeness} = \left(\frac{\text{Number of contract compliant results}}{\text{Number of reported results}}\right) \times 100
\]

\[
\%\text{Analytical Completeness} = \left(\frac{\text{Number of unqualified results}}{\text{Number of reported results}}\right) \times 100
\]

\[
\%\text{Technical Completeness} = \left(\frac{\text{Number of usable results}}{\text{Number of reported results}}\right) \times 100
\]

\[
\%\text{Field Sampling Completeness} = \left(\frac{\text{Number of samples collected}}{\text{Number of planned samples}}\right) \times 100
\]

The contract completeness, which included the evaluation of the protocol and contract deviations for holding times, calibrations, MS/MSDs, and LCSs, attained for the field samples was 97.0 percent. Due to quality control exceedances, 387 out of 12,876 results were qualified as estimated (J).

The analytical completeness, which included QC parameters, attained for the field samples was 96.9 percent. Due to quality control exceedances, 394 out of 12,876 results were qualified as estimated (J), rejected (R) or non-detected.

The technical completeness, which included QC parameters, attained for the field samples was 99.4 percent. Due to quality control exceedances, 80 out of 12,876 results were rejected (R).

The field sampling completeness level attained for the field samples was 100 percent. The results for completeness calculations are provided as Attachment 3.
Since none of the rejected points were critical target analytes of concern and the estimated values were considered usable for the intended purpose, the overall data quality is sufficient to support project requirements.
A8.0 CONCLUSIONS AND RECOMMENDATIONS

The analytical data quality assessment for the sample results generated during the January through March 2002 groundwater monitoring sampling period established that the overall project requirements and completeness levels were met. The data are considered usable for the intended purpose with the exception of the 80 rejected results.
A9.0 REFERENCES

United States Army Corps of Engineers (USACE). Environmental Data Quality Management Program Specifications, United States Army Corps of Engineers (USACE)-Sacramento District, Version 1.05.

