2020 ANNUAL REPORT WETLAND VEGETATION AND WILDLIFE MONITORING CONTRACT NO. W91238-18-D-0007

FORMER FORT ORD

Prepared for: US Army Corps of Engineers Sacramento District 1325 J Street Sacramento, CA 95814-2922

Prepared by: Burleson Consulting Inc. 1900 Garden Road, Suite 210 Monterey, CA 93940

March 2021

This page intentionally left blank

CONTENTS

Section

Page

1		INTR	RODU	JCTION	1
2		MET	HOD)S	7
	2.	1	Vege	etation Monitoring	8
	2.	2	Wild	dlife Monitoring	9
		2.2.2	L	California Tiger Salamander	9
		2.2.2	2	California Fairy Shrimp	10
	2.	3	Eval	luation for Data Quality Objectives and Success Criteria	10
3		RESI	JLTS.		12
	3.	1	Pond	d 5	14
		3.1.1	L	Vegetation Monitoring	14
		3.1.2	2	Wildlife Monitoring	16
	3.	2	Pond	d 101 East (East)	17
		3.2.2	L	Vegetation Monitoring	17
		3.2.2	2	Wildlife Monitoring	19
	3.	3	Pond	d 997	20
		3.3.1	L	Vegetation Monitoring	20
		3.3.2	2	Wildlife Monitoring	23
	3.	4	Pond	d 101 East (West)	23
		3.4.1	L	Vegetation Monitoring	23
		3.4.2	2	Wildlife Monitoring	26
	3.	5	Pond	d 41	26
		3.5.1	L	Vegetation Monitoring	26
		3.5.2	2	Wildlife Monitoring	28
	3.	6	Pond	d 3 North	28
		3.6.1	L	Vegetation Monitoring	29
		3.6.2	2	Wildlife Monitoring	31
	3.	7	Pond	d 3 South	32
		3.7.2	L	Vegetation Monitoring	32
		3.7.2	2	Wildlife Monitoring	35
	3.	8	Pond	d 39	
		3.8.1	L	Vegetation Monitoring	

3.8.	2	Wildlife Monitoring
3.9	Pon	d 40 North
3.9.	1	Vegetation Monitoring
3.9.	2	Wildlife Monitoring
3.10	Pon	d 40 South40
3.10	D.1	Vegetation Monitoring40
3.10	0.2	Wildlife Monitoring
3.11	Pon	d 4342
3.12	1.1	Vegetation Monitoring42
3.12	1.2	Wildlife Monitoring
3.12	Pon	d 3545
3.12	2.1	Vegetation Monitoring45
3.12	2.2	Wildlife Monitoring
3.13	Pon	d 42
3.13	3.1	Vegetation Monitoring47
3.13	3.2	Wildlife Monitoring
3.14	Pon	d 4450
3.14	4.1	Vegetation Monitoring
3.14	4.2	Wildlife Monitoring
3.15	Pon	d 56
3.15	5.1	Vegetation Monitoring53
3.15	5.2	Wildlife Monitoring
3.16	Pon	d 6055
3.16	5.1	Vegetation Monitoring55
3.16	5.2	Wildlife Monitoring
3.17	Pon	d 6157
3.17	7.1	Vegetation Monitoring57
3.17	7.2	Wildlife Monitoring
3.18	Pon	d 7361
3.18	3.1	Vegetation Monitoring61
3.18	3.2	Wildlife Monitoring
3.19	Mad	chine Gun Flats63
3.19	ə.1	Vegetation Monitoring
3.19	ə.2	Wildlife Monitoring
3.20	Pon	d 16

3.20.1	Vegetation Monitoring	67
3.20.2	Wildlife Monitoring	68
4 DISCUS	5ION	70
4.1 Po	nd 5 – Reference	70
4.1.1	Vegetation Monitoring	71
4.1.2	Wildlife Monitoring	76
4.1.3	Conclusion	76
4.2 Po	nd 101 East (East) – Reference	77
4.2.1	Vegetation Monitoring	77
4.2.2	Wildlife Monitoring	83
4.2.3	Conclusion	83
4.3 Po	nd 997 – Reference	84
4.3.1	Vegetation Monitoring	85
4.3.2	Wildlife Monitoring	91
4.3.3	Conclusion	
4.4 Po	nd 101 East (West) – Year 2	91
4.4.1	Vegetation Monitoring	92
4.4.2	Wildlife Monitoring	
4.4.3	Conclusion	
4.5 Po	nd 41 – Year 2	
4.5.1	Vegetation Monitoring	
4.5.2	Wildlife Monitoring	
4.5.3	Conclusion	
4.6 Po	nd 3 North – Year 3 and Year 2	
4.6.1	Vegetation Monitoring	
4.6.2	Wildlife Monitoring	116
4.6.3	Conclusion	
4.7 Po	nd 3 South – Year 3 and Year 2	
4.7.1	Vegetation Monitoring	
4.7.2	Wildlife Monitoring	
4.7.3	Conclusion	126
4.8 Po	nd 39 – Year 3 and Year 2	
4.8.1	Vegetation Monitoring	
4.8.2	Wildlife Monitoring	
4.8.3	Conclusion	

4.9	Pon	d 40 North – Year 3	
4.9.	1	Vegetation Monitoring	135
4.9.	2	Wildlife Monitoring	141
4.9.	3	Conclusion	141
4.10	Pon	d 40 South – Year 3 and Year 2	142
4.10	0.1	Vegetation Monitoring	
4.10	0.2	Wildlife Monitoring	149
4.10	0.3	Conclusion	150
4.11	Pon	d 43 – Year 3 and Year 2	150
4.1	1.1	Vegetation Monitoring	151
4.1	1.2	Wildlife Monitoring	157
4.1	1.3	Conclusion	157
4.12	Pon	d 35 – Year 3 and Year 2	158
4.12	2.1	Vegetation Monitoring	159
4.12	2.2	Wildlife Monitoring	165
4.12	2.3	Conclusion	
4.13	Pon	d 42 – Year 3 and Year 2	
4.13	3.1	Vegetation Monitoring	167
4.13	3.2	Wildlife Monitoring	
4.13	3.3	Conclusion	
4.14	Pon	d 44 – Year 3 and Year 2	
4.14	4.1	Vegetation Monitoring	
4.14	4.2	Wildlife Monitoring	
4.14	4.3	Conclusion	
4.15	Pon	d 56 – Year 3	
4.1	5.1	Vegetation Monitoring	
4.1	5.2	Wildlife Monitoring	
4.1	5.3	Conclusion	
4.16	Pon	d 60 – Year 3 and Year 2	
4.10	5.1	Vegetation Monitoring	
4.10	5.2	Wildlife Monitoring	
4.10	6.3	Conclusion	
4.17	Pon	d 61 – Year 3 and Year 2	
4.1	7.1	Vegetation Monitoring	
4.1	7.2	Wildlife Monitoring	

	4.17.3	Conclusion	
4.	18 Pon	d 73 – Year 3 and Year 2	
	4.18.1	Vegetation Monitoring	210
	4.18.2	Wildlife Monitoring	
	4.18.3	Conclusion	
4.	19 Mac	hine Gun Flats – Year 3	
	4.19.1	Vegetation Monitoring	
	4.19.2	Wildlife Monitoring	
	4.19.3	Conclusion	
4.	20 Pone	d 16 –Year 2	
	4.20.1	Vegetation Monitoring	
	4.20.2	Wildlife Monitoring	
	4.20.3	Conclusion	
5	CONCLUS	5ION	
6	REFEREN	CES	239

FIGURES

Figure 1-1. Location Map of Vernal Pools on Former Fort Ord2
Figure 1-2. Location Map of Ponds 5, 101 East (East), 997, 101 East (West), 41, 3 North, 3 South, 39,3
Figure 1-3. Location Map of Pond 164
Figure 1-4. Cumulative Monthly Precipitation for the 2019-2020 Water-Year compared to the 305
Figure 1-5. Monthly Precipitation, Maximum and Minimum Temperatures for the 2019-2020 Water5
Figure 3-1. Pond 5 (Reference) Vegetation Strata and Transects on Former Fort Ord, 202015
Figure 3-2. Pond 101 East (East) (Reference) Vegetation Strata and Transects on Former Fort Ord18
Figure 3-3. Pond 997 (Reference) Vegetation Strata and Transects on Former Fort Ord, 202021
Figure 3-4. Contra Costa Goldfields Populations at Pond 997 (Reference), 202022
Figure 3-5. Pond 101 East (West) (Year 2 Post-Mastication) Vegetation Strata and Transects on Form24
Figure 3-6. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects.27
Figure 3-7. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg29
Figure 3-8. Contra Costa Goldfields Populations at Pond 3 North (Year 3 Post-Burn, Year 2 Post-Sub31
Figure 3-9. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg
Figure 3-10. Contra Costa Goldfield Occurrence at Pond 3 South (Year 3 Post-Burn, Year 2 Post
Figure 3-11. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg
Figure 3-12. Pond 40 North (Year 3 Post-Burn) Vegetation Strata and Transects on Former Fort Ord 39
Figure 3-13. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)
Figure 3-14. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation43
Figure 3-15. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)
Figure 3-16. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions
Figure 3-17. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)
Figure 3-18. Pond 56 (Year 3 Post-Mastication) Vegetation Strata and Transects on Former Fort Ord 53
Figure 3-19. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation

Figure 3-21. Contra Costa Goldfields Populations at Pond 61 (Year 3 Post-Mastication, Year 2 Post 60 Figure 3-23. Machine Gun Flats (Year 3 Post-Mastication) Vegetation Strata and Transects on Former.. 64 Figure 4-1. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond ... 70 Figure 4-2. Pond 5 (Reference) Vegetation Strata and Transects for 2016 and 2020......72 Figure 4-3. Percent Cover of Dominant Species at Pond 5 (Reference)74 Figure 4-4. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond ... 77 Figure 4-7. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond...84 Figure 4-11. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond.92 Figure 4-12. Pond 101 East (West) (Year 2 Post-Mastication) Vegetation Strata and Transects for94 Figure 4-13. Percent Cover of Dominant Species at Pond 101 East (West) (Year 2 Post-Mastication)......96 Figure 4-14. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 101 Figure 4-17. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 109 Figure 4-18. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg 110 Figure 4-19. Percent Cover of Dominant Species at Pond 3 North (Year 3 Post-Burn, Year 2 Post112 Figure 4-20. Contra Costa Goldfields Populations at Pond 3 North (Year 3 Post-Burn, Year 2 Post 115 Figure 4-21. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 118 Figure 4-22. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg 119 Figure 4-23. Percent Cover of Dominant Species at Pond 3 South (Year 3 Post-Burn, Year 2 Post 121 Figure 4-24. Contra Costa Goldfields Populations at Pond 3 South (Year 3 Post-Burn, Year 2 Post 124 Figure 4-25. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 127 Figure 4-26. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation.. 128 Figure 4-29. Pond 40 North (Year 3 Post-Burn) Vegetation Strata and Transects for 2015 and 2020.....136 Figure 4-31. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 143 Figure 4-32. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg... 144 Figure 4-33. Percent Cover of Dominant Species at Pond 40 South (Year 3 Post-Burn, Year 2 Post 146 Figure 4-34. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 151 Figure 4-37. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 158 Figure 4-38. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 160 Figure 4-39. Percent Cover of Dominant Species at Pond 35 (Year 3 Post-Mastication, Year 2 Post 162 Figure 4-40. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 167 Figure 4-41. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 169 Figure 4-42. Percent Cover of Dominant Species at Pond 42 (Year 3 Post-Mastication and Post-Burn .. 171 Figure 4-43. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 176

Figure 4-44. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Veg. 178 Figure 4-45. Percent Cover of Dominant Species at Pond 44 (Year 3 Post-Mastication, Year 2 Post 180 Figure 4-46. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 185 Figure 4-47. Pond 56 (Year 3 Post-Mastication) Vegetation Strata and Transects for 2016 and 2020.... 186 Figure 4-49. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 193 Figure 4-50. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Veg. 194 Figure 4-51. Percent Cover of Dominant Species at Pond 60 (Year 3 Post-Mastication, Year 2 Post 196 Figure 4-52. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 200 Figure 4-53. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Veg. 202 Figure 4-54. Percent Cover of Dominant Species at Pond 61 (Year 3 Post-Mastication, Year 2 Post 204 Figure 4-55. Contra Costa Goldfields Populations at Pond 61 (Year 3 Post-Mastication, Year 2 Post 207 Figure 4-56. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at210 Figure 4-57. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)211 Figure 4-58. Percent Cover of Dominant Species at Pond 73 (Year 3 Post-Mastication, Year 2 Post 213 Figure 4-59. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 217 Figure 4-60. Machine Gun Flats (Year 3 Post-Mastication) Vegetation Strata and Transects for 2019...219 Figure 4-61. Percent Cover of Dominant Species at Machine Gun Flats (Year 3 Post-Mastication) 221 Figure 4-62. Contra Costa Goldfields Populations at Machine Gun Flats (Year 3 Post-Mastication) 226 Figure 4-63. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 229

TABLES

Table 1-1. 2020 Monitoring Status of Vernal Pools on Former Fort Ord
Table 3-1. Vegetation Species Richness of Native and Non-Native Species Observed on Transects at12
Table 3-2. Vegetation Species Richness of Obligate and Facultative Wetland Species Observed on
Table 3-3. California Tiger Salamander and Fairy Shrimp Detections at Vernal Pools in 202014
Table 3-4. Pond 5 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary 15
Table 3-5. Pond 5 (Reference) CTS Aquatic Monitoring Results
Table 3-6. Pond 5 (Reference) Fairy Shrimp Monitoring Results
Table 3-7. Pond 101 East (East) (Reference) Vegetative Strata Percentage within the Vernal Pool17
Table 3-8. Pond 101 East (East) (Reference) CTS Aquatic Monitoring Results
Table 3-9. Pond 101 East (East) (Reference) Fairy Shrimp Monitoring Results 20
Table 3-10. Pond 997 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary20
Table 3-11. Pond 101 East (West) (Year 2 Post-Mastication) Vegetative Strata Percentage within the 23
Table 3-12. Pond 101 East (West) (Year 2 Post-Mastication) CTS Aquatic Monitoring Results
Table 3-13. Pond 101 East (West) (Year 2 Post-Mastication) Fairy Shrimp Monitoring Results
Table 3-14. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage26
Table 3-15. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic Monitoring Results . 28
Table 3-16. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Fairy Shrimp Monitoring Results 28
Table 3-17. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg 29
Table 3-18. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS31
Table 3-19. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Fairy 31
Table 3-20. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg 32
Table 3-21. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS35

Table 3-22. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Fairy......35 Table 3-23. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetative36 Table 3-24. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic....37 Table 3-25. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Fairy Shrimp...38 Table 3-26. Pond 40 North (Year 3 Post-Burn) Vegetative Strata Percentage within the Vernal Pool 38 Table 3-29. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg40 Table 3-32. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetative43 Table 3-33. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic....44 Table 3-34. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Fairy Shrim.....44 Table 3-35. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Veg45 Table 3-36. Pond 35 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic....46 Table 3-37. Pond 35 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Fairy Shrimp...47 Table 3-42. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) CTS......52 Table 3-43. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Fairy....52 Table 3-44. Pond 56 (Year 3 Post-Mastication) Vegetative Strata Percentage within the Vernal Pool53 Table 3-47. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Veg 55 Table 3-48. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) CTS......57 Table 3-49. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Fairy....57 Table 3-51. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) CTS..... 60 Table 3-52. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Fairy....60 Table 3-53. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Veg61 Table 3-54. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) CTS......62 Table 3-55. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Fairy....63 Table 3-56. Machine Gun Flats (Year 3 Post-Mastication) Vegetative Strata Percentage within the 63 Table 4-1. Pond 5 (Reference) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife70 Table 4-2. Pond 5 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary71 Table 4-3. Pond 5 (Reference) Absolute Percent Cover73 Table 4-4. Pond 5 (Reference) Native and Non-Native Species Richness......74

Table 4-9. Success at Pond 5 (Reference) Based on Performance Standards and Applicable DQO76
Table 4-10. Pond 101 East (East) (Reference) Summary of Historic Surveys for Hydrology, Vegetation77
Table 4-11. Pond 101 East (East) (Reference) Vegetative Strata Percentage within the Vernal Pool78
Table 4-12. Pond 101 East (East) (Reference) Absolute Percent Cover
Table 4-13. Pond 101 East (East) (Reference) Native and Non-Native Species Richness
Table 4-14. Pond 101 East (East) (Reference) Relative Percent Cover of Native and Non-Native Plants 82
Table 4-15. Pond 101 East (East) (Reference) Wetland and Non-Wetland Species Richness
Table 4-16. Pond 101 East (East) (Reference) Relative Percent Cover of Wetland and Non-Wetland82
Table 4-17. Pond 101 East (East) (Reference) Historic Wildlife Monitoring Results 83
Table 4-18. Success at Pond 101 East (East) (Reference) Based on Performance Standards and
Table 4-19. Pond 997 (Reference) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife84
Table 4-20. Pond 997 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary85
Table 4-21. Pond 997 (Reference) Absolute Percent Cover 87
Table 4-22. Pond 997 (Reference) Native and Non-Native Species Richness
Table 4-23. Pond 997 (Reference) Relative Percent Cover of Native and Non-Native Plants 88
Table 4-24. Pond 997 (Reference) Wetland and Non-Wetland Species Richness 88
Table 4-25. Pond 997 (Reference) Relative Percent Cover of Wetland and Non-Wetland Species 88
Table 4-26. Pond 997 (Reference) Historic Wildlife Monitoring Results 91
Table 4-27. Success at Pond 997 (Reference) Based on Performance Standards and Applicable DQO91
Table 4-28. Pond 101 East (West) (Year 2 Post-Mastication) Summary of Historic Surveys for Hydro92
Table 4-29. Pond 101 East (West) (Year 2 Post-Mastication) Vegetative Strata Percentage within the 93
Table 4-30. Pond 101 East (West) (Year 2 Post-Mastication) Absolute Percent Cover95
Table 4-31. Pond 101 East (West) (Year 2 Post-Mastication) and Reference Vernal Pool Absolute Per 95
Table 4-32. Pond 101 East (West) (Year 2 Post-Mastication) Native and Non-Native Species Richness 96
Table 4-33. Pond 101 East (West) (Year 2 Post-Mastication) and Reference Vernal Pool Native and Non97
Table 4-34. Pond 101 East (West) (Year 2 Post-Mastication) Relative Percent Cover of Native and Non.97
Table 4-35. Pond 101 East (West) (Year 2 Post-Mastication) and Reference Vernal Pool Relative
Table 4-36. Pond 101 East (West) (Year 2 Post-Mastication) Wetland and Non-Wetland Species Rich98
Table 4-37. Pond 101 East (West) (Year 2 Post-Mastication) and Reference Vernal Pool Wetland and 98
Table 4-38. Pond 101 East (West) (Year 2 Post-Mastication) Relative Percent Cover of Wetland and98
Table 4-39. Pond 101 East (West) (Year 2 Post-Mastication) and Reference Vernal Pool Relative
Table 4-40. Pond 101 East (West) (Year 2 Post-Mastication) Historic Wildlife Monitoring Results
Table 4-41. Success at Pond 101 East (West) (Year 2 Post-Mastication) Based on Performance 100
Table 4-42. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys100
Table 4-43. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage 101
Table 4-44. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover
Table 4-45. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool 103
Table 4-46. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Native and Non-Native Species 104
Table 4-47. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool 105
Table 4-48. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of
Table 4-49. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool105
Table 4-50. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland 105
Table 4-51. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool 106
Table 4-52. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of
Table 4-53. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool 106
Table 4-54. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring 107
Table 4-55. Success at Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Based on
Table 4-56. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 108

Table 4-57. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg 109 Table 4-58. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Abs......111 Table 4-59. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and111 Table 4-60. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Native.. 112 Table 4-61. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and113 Table 4-62. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative 113 Table 4-63. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and113 Table 4-65. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and114 Table 4-66. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative 114 Table 4-67. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and114 Table 4-68. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Historic 116 Table 4-70. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)117 Table 4-71. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Veg118 Table 4-72. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)120 Table 4-73. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and120 Table 4-74. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Native .. 121 Table 4-75. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and 122 Table 4-76. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative 122 Table 4-77. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and122 Table 4-79. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and123 Table 4-80. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative 123 Table 4-81. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and Ref 123 Table 4-82. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Historic 125 Table 4-84. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Summary 126 Table 4-85. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetative ... 127 Table 4-86. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Absolute 129 Table 4-88. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Native and ... 130 Table 4-90. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative 131 Table 4-92. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland 132 Table 4-94. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative 132 Table 4-96. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Historic 133 Table 4-97. Success at Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 134 Table 4-98. Pond 40 North (Year 3 Post-Burn) Summary of Historic Surveys for Hydrology, Vegetation 134 Table 4-99. Pond 40 North (Year 3 Post-Burn) Vegetative Strata Percentage within the Vernal Pool 135 Table 4-101. Pond 40 North (Year 3 Post-Burn) and Reference Vernal Pool Absolute Percent Cover 137 Table 4-103. Pond 40 North (Year 3 Post-Burn) and Reference Vernal Pool Native and Non-Native..... 139 Table 4-104. Pond 40 North (Year 3 Post-Burn) Relative Percent Cover of Native and Non-Native....... 139 Table 4-105. Pond 40 North (Year 3 Post-Burn) and Reference Vernal Pool Relative Percent Cover of. 139 Table 4-107. Pond 40 North (Year 3 Post-Burn) and Reference Vernal Pool Wetland and Non-Wetland140 Table 4-108. Pond 40 North (Year 3 Post-Burn) Relative Percent Cover of Wetland and Non-Wetland . 140 Table 4-109. Pond 40 North (Year 3 Post-Burn) and Reference Vernal Pool Relative Percent Cover..... 140 Table 4-111. Success at Pond 40 North (Year 3 Post-Burn) Based on Performance Standards and 142 Table 4-112. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 142 Table 4-113. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 143 Table 4-114. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 145 Table 4-115. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 145 Table 4-116. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 146 Table 4-117. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 147 Table 4-118. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 147 Table 4-119. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 147 Table 4-120. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 148 Table 4-122. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 148 Table 4-124. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) 149 Table 4-126. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Summary ... 150 Table 4-127. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetative .151 Table 4-128. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Absolute 153 Table 4-130. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Native 154 Table 4-131. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and155 Table 4-132. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative 155 Table 4-133. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and Ref 155 Table 4-134. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland 155 Table 4-136. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative 156 Table 4-138. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Historic 157 Table 4-139. Success at Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) .. 157 Table 4-140. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 158 Table 4-141. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 159 Table 4-142. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 161 Table 4-143. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .161 Table 4-144. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 162 Table 4-145. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .163 Table 4-146. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 163 Table 4-147. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .163 Table 4-148. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 163 Table 4-149. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .164 Table 4-150. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 164 Table 4-151. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .164 Table 4-152. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 165 Table 4-154. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 166 Table 4-155. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 168 Table 4-156. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 170 Table 4-157. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 170 Table 4-158. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 172 Table 4-159. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 172 Table 4-160. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 172 Table 4-161. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 173 Table 4-162. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 173 Table 4-163. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 173 Table 4-164. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 174 Table 4-165. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 174 Table 4-166. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions 175 Table 4-167. Success at Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface 175 Table 4-168. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 176 Table 4-169. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Veg. 179 Table 4-170. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 179 Table 4-171. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .179 Table 4-172. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 180 Table 4-173. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 181 Table 4-174. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 181 Table 4-175. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .181 Table 4-176. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 182 Table 4-177. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .182 Table 4-178. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 182 Table 4-179. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and 182 Table 4-180. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 183 Table 4-182. Pond 56 (Year 3 Post-Mastication) Summary of Historic Surveys for Hydrology, Veg 184 Table 4-183. Pond 56 (Year 3 Post-Mastication) Vegetative Strata Percentage within the Vernal Pool . 185 Table 4-185. Pond 56 (Year 3 Post-Mastication) and Reference Vernal Pool Absolute Percent Cover in 187 Table 4-187. Pond 56 (Year 3 Post-Mastication) and Reference Vernal Pool Native and Non-Native..... 189 Table 4-188. Pond 56 (Year 3 Post-Mastication) Relative Percent Cover of Native and Non-Native...... 189 Table 4-189. Pond 56 (Year 3 Post-Mastication) and Reference Vernal Pool Relative Percent Cover of. 189 Table 4-192. Pond 56 (Year 3 Post-Mastication) Relative Percent Cover of Wetland and Non-Wetland 190 Table 4-193. Pond 56 (Year 3 Post-Mastication) and Reference Vernal Pool Relative Percent Cover of 190 Table 4-195. Success at Pond 56 (Year 3 Post-Mastication) Based on Performance Standards and 192 Table 4-196. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 192 Table 4-197. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Veg . 193 Table 4-198. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Abs . 195 Table 4-199. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .195 Table 4-200. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Nat. 196 Table 4-201. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .197 Table 4-202. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 197 Table 4-203. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .197 Table 4-204. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 197 Table 4-205. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .198 Table 4-206. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 198 Table 4-207. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .198 Table 4-208. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 199 Table 4-210. Summary of Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions............200 Table 4-211. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Veg. 201 Table 4-212. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 203 Table 4-213. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .203 Table 4-214. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 204 Table 4-215. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .205 Table 4-216. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 205 Table 4-217. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .205 Table 4-218. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 205 Table 4-219. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 206 Table 4-220. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 206 Table 4-221. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 206 Table 4-222. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 208 Table 4-224. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 209 Table 4-225. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Veg . 210 Table 4-226. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 212 Table 4-227. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .212 Table 4-228. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)213 Table 4-229. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 214 Table 4-230. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)214 Table 4-231. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .214 Table 4-232. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 214 Table 4-233. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .215 Table 4-234. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)215 Table 4-235. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and .215 Table 4-236. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) 216 Table 4-238. Machine Gun Flats (Year 3 Post-Mastication) Summary of Historic Surveys for Hydrology217 Table 4-239. Machine Gun Flats (Year 3 Post-Mastication) Vegetative Strata Percentage within the 218 Table 4-242. Machine Gun Flats (Year 3 Post-Mastication) Native and Non-Native Species Richness.... 221 Table 4-243. Machine Gun Flats (Year 3 Post-Mastication) and Reference Vernal Pool Native and 222 Table 4-244. Machine Gun Flats (Year 3 Post-Mastication) Relative Percent Cover of Native and222 Table 4-247. Machine Gun Flats (Year 3 Post-Mastication) and Reference Vernal Pool Wetland and.... 223 Table 4-248. Machine Gun Flats (Year 3 Post-Mastication) Relative Percent Cover of Wetland and 223 Table 4-251. Success at Machine Gun Flats (Year 3 Post-Mastication) Based on Performance......228 Table 4-252. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys.. 229 Table 4-253. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percent231 Table 4-254. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover.........231 Table 4-255. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) and Refence Vernal Pool Abs . 231 Table 4-256. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Native and Non-Native Sp......232 Table 4-257. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) and Refernce Vernal Pool Na . 233 Table 4-258. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of N ... 233 Table 4-259. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.....233 Table 4-260. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland ... 234 Table 4-261. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.....234 Table 4-262. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of234 Table 4-263. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.....234 Table 4-264. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring... 235 Table 4-265. Success at Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Based on Performa 236

APPENDICES

- A VEGETATION TRANSECT DATA
- B STRATUM COVER BY VERNAL POOL
- **C** CTS AND AQUATIC INVERTEBRATE DATA
- D SITE PHOTOS
- E VEGETATION SPECIES RICHNESS OF NATIVE AND NON-NATIVE SPECIES AND WETLAND INDICATOR CATEGORY BY VERNAL POOL
- **F** SPECIES COMPOSITION OF FOLLOW-UP VEGETATION MONITORING BY VERNAL POOL

ACRONYMS AND ABBREVIATIONS

BRAC	Base Realignment and Closure
Burleson	Burleson Consulting, Inc.
CCG	Contra Costa goldfields
Chenega	Chenega Tri Services, LLC
CTS	California Tiger Salamander
cm	centimeter(s)
DQO	Data Quality Objective
FAC	Facultative Plant
FACU	Facultative Upland Plant
FACW	Facultative Wetland Plant
fairy shrimp	California Fairy Shrimp
HLA	Harding Lawson and Associates
HMP	Habitat Management Plan
MEC	Munitions and Explosives of Concern
m	meter(s)
NCDC	National Climatic Data Center
NOAA	National Oceanic and Atmospheric Administration
NWSFO	National Weather Service Forecast Office
NL	Not Listed
OBL	Obligate Wetland Plant
РВО	Programmatic Biological Opinion
sp.	species
USACE	United States Army Corps of Engineers
USFWS	United States Fish and Wildlife Service
UPL	Obligate Upland Plant
Wetland Plan	Wetland Monitoring and Restoration Plan for Munitions and Contaminated Soil Remediation

xv

This page intentionally left blank

1 INTRODUCTION

The United States Army Corps of Engineers (USACE) contracted Burleson Consulting, Inc., A Terracon Company (Burleson) to conduct wetland vegetation and wildlife monitoring at former Fort Ord, Monterey County, California (see Figure 1-1). Wetland monitoring includes three types of monitoring: hydrology, vegetation, and wildlife. Burleson completed vegetation and wildlife monitoring. Hydrology monitoring was completed by Chenega Tri-Services, LLC (Chenega) and is reported separately (Chenega, 2021). These monitoring activities are centered around historic vernal pools on former Fort Ord.

The team monitored wetland vegetation including federally endangered Contra Costa goldfields (*Lasthenia conjugens;* CCG), the state and federally threatened California tiger salamander (*Ambystoma californiense;* CTS), California fairy shrimp (*Linderiella occidentalis;* fairy shrimp), and other aquatic invertebrates in wetlands on former Fort Ord. All biologists handling CTS were approved by the United States Fish and Wildlife Service (USFWS) under the Programmatic Biological Opinion (PBO) issued to the Army to handle, capture, and relocate individuals on former Fort Ord (USFWS, 2017). These monitoring requirements were documented in the *Installation-wide Multispecies Habitat Management Plan* (HMP), the *Programmatic Biological Opinion for Cleanup and Property Transfer Actions Conducted at the Former Fort Ord, Monterey County, California;* and the *Wetland Monitoring and Restoration Plan for Munitions and Contaminated Soil Remedial Activities at Former Fort Ord* (Wetland Plan) (USACE, 1997; USFWS, 2017; Burleson, 2006).

This report presents the results of monitoring within a number of vernal pools on former Fort Ord. Vernal pools assessed in 2020 included reference ponds 5, 101 East (East), 997; and remediated ponds 101 East (West), 41, 3 North, 3 South, 39, 40 North, 40 South, 43, 35, 42, 44, 56, 60, 61, 73, Machine Gun Flats, and 16 (see Figure 1-2 and Figure 1-3). The populations of CCG were mapped and evaluated at Ponds 997, 3 North, 3 South, 61 and Machine Gun Flats. Invertebrate and protocol-level CTS aquatic sampling surveys were completed only at vernal pools that held water long enough to trigger the wildlife surveys. For the 2019-2020 water-year, wildlife surveys were completed at all vernal pools except Pond 997, which did not hold sufficient depth to trigger the wildlife surveys.

1

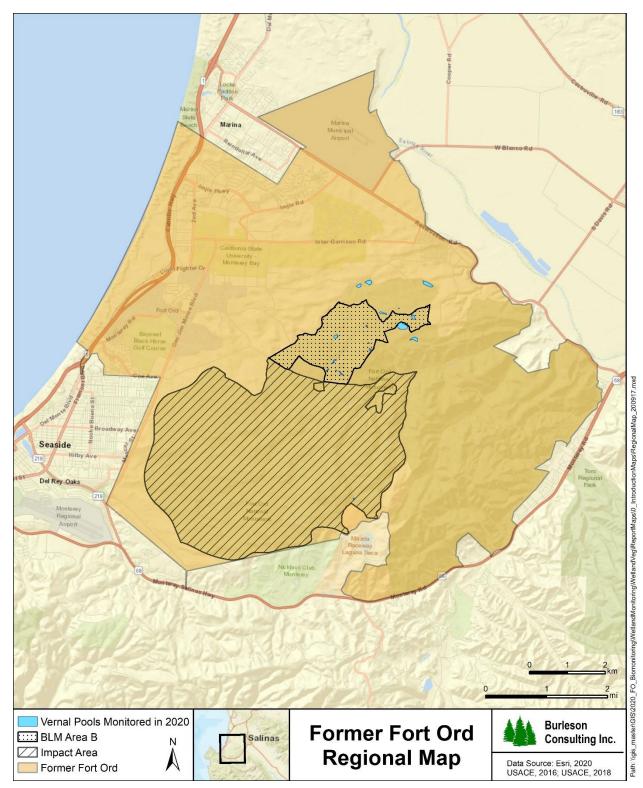
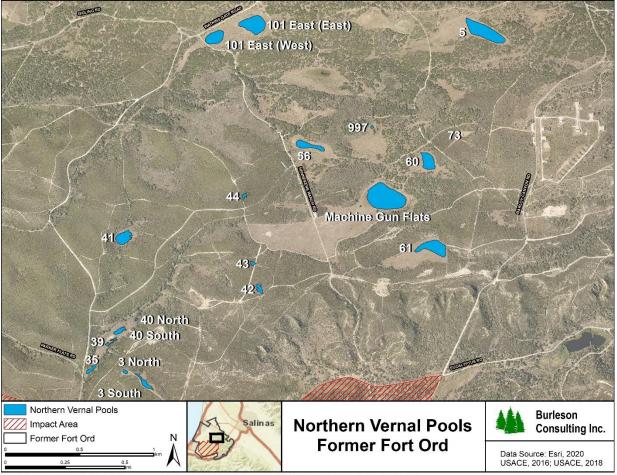
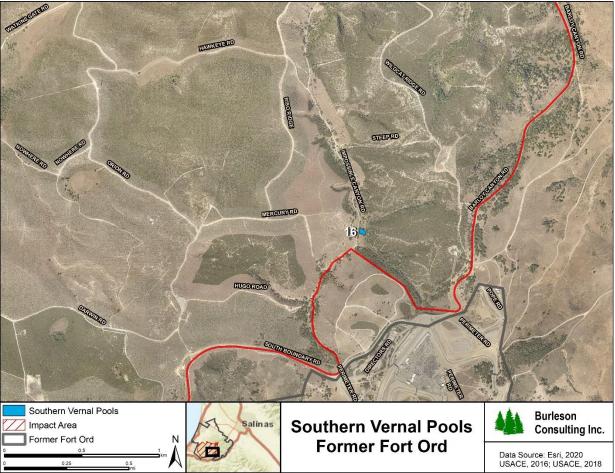
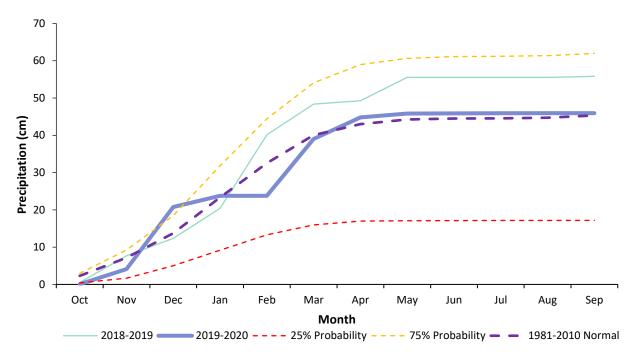




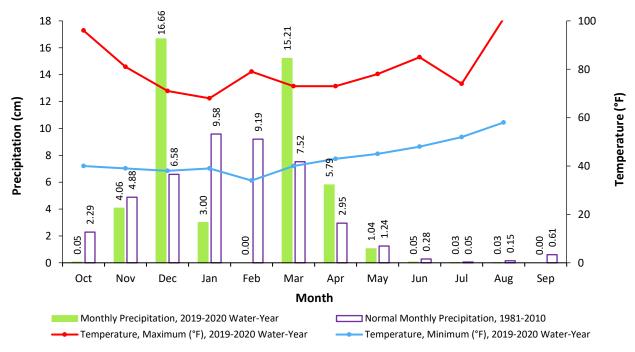
Figure 1-1. Location Map of Vernal Pools on Former Fort Ord

Path: \\gis_master\GIS\2020_FO_Biomonitoring\WetlandMonitoring\WetlandVeg\ReportMaps\0 IntroductionMaps\NorthernPonds 200917.mxd

Figure 1-2. Location Map of Ponds 5, 101 East (East), 997, 101 East (West), 41, 3 North, 3 South, 39, 40 North, 40 South, 43, 35, 42, 44, 56, 60, 61, 73, and Machine Gun Flats



Path: \\gis_master\GIS\2020_FO_Biomonitoring\WetlandMonitoring\WetlandVeg\ReportMaps\0 IntroductionMaps\SouthemPonds 200917.mxd


Figure 1-3. Location Map of Pond 16

In the 2019-2020 water-year, the Monterey Peninsula Regional Airport meteorological tower recorded precipitation that was within 1 inch of normal cumulative precipitation (Naval Postgraduate School Department of Meteorology, 2020; see Figure 1-4). Despite cumulative normal precipitation values, the water-year exhibited uncommon annual timing of precipitation with the bulk of rain falling in December and March. Typically, January and February are the months that receive the highest rainfall, but in 2020, there was no rainfall in February (see Figure 1-5). The National Weather Service Forecast Office (NWSFO) and Monterey Peninsula Regional Airport meteorological towers, approximately 5 miles southwest of Site 39 on former Fort Ord, recorded cumulative monthly precipitation values. The Monterey Peninsula Regional Airport tower replaced the NWSFO tower on April 1, 2019 and is located within 1 kilometer of the NWSFO tower. All values in this report are from the new Monterey Peninsula Regional Airport toward another 10 years. Normal for the NWSFO tower is defined as the mean precipitation from years 1981-2010.

4

Figure 1-4. Cumulative Monthly Precipitation for the 2019-2020 Water-Year compared to the 30-Year Normal (mean 1981-2010), the 2018-2019 Water-Year, and the 25% and 75% Probabilities (NPS, 2020; National Climatic Data Center [NCDC] and National Oceanic and Atmospheric Administration [NOAA], 2020)

Figure 1-5. Monthly Precipitation, Maximum and Minimum Temperatures for the 2019-2020 Water-Year and Normal Monthly Precipitation (NPS, 2020).

5

The goal of hydrology, wetland vegetation, and wildlife monitoring efforts is to evaluate vernal pools potentially affected by remediation activities against success criteria identified in the HMP, PBO, and Wetland Plan (USACE, 1997; USFWS, 2017; Burleson, 2006). The Wetland Plan outlines the Data Quality Objectives (DQO) used to evaluate success criteria for this report. The DQOs focus on vernal pool depth, inundation, vegetation, water quality, and wildlife. The PBO outlines success criteria specifically for CTS and CCG. Reestablishment of these species will be considered successful if, at the end of monitoring, wetland function, wildlife usage, wetland plant cover, diversity and dominance, and CCG abundance are directly comparable to the conditions before remediation. Monitoring results guide decision-making to evaluate if and when corrective actions are necessary and to provide insight for potential mitigation or evaluation of monitoring methodologies. The objectives of monitoring were to document the ability of vernal pools to support CTS and fairy shrimp, understand hydrologic function and water quality conditions, document baseline conditions, and provide data for follow-up comparison. Table 1-1 presents the status of vernal pools monitored in 2020 at former Fort Ord.

Vernal Pool	Monitoring Status
Pond 3 North	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation
Pond 3 South	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation
Pond 5	Reference
Pond 16	Year 2 Post-Subsurface Munitions Remediation
Pond 35	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation
Pond 39	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation
Pond 40 North	Year 3 Post-Burn
Pond 40 South	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation
Pond 41	Year 2 Post-Subsurface Munitions Remediation
Pond 42	Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation
Pond 43	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation
Pond 44	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation
Pond 56	Year 3 Post-Mastication
Pond 60	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation
Pond 61	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation
Pond 73	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation
Pond 101 East (East)	Reference
Pond 101 East (West)	Year 2 Post-Mastication
Pond 997	Reference
Machine Gun Flats	Year 3 Post-Mastication

Table 1-1. 2020 Monitoring Status of Vernal Pools on Former Fort Ord

2 METHODS

Sampling methods for wetland vegetation monitoring and aquatic surveys were consistent with the PBO and Wetland Plan (USFWS, 2017; Burleson, 2006).

Vernal pools must be monitored for baseline condition prior to any remedial activities such as prescribed burns, mastication, excavation, or artificial draining (USFWS, 2017). As described in the PBO, the Army will conduct two years of pre-activity larval CTS sampling, to the extent possible, in the ponds where more than 50 percent of the watershed is affected by prescribed burns; thus, vernal pools may be monitored multiple years for baseline (USFWS, 2017). Additionally, at some ponds, baseline surveys were conducted more than 10 years ago and were sampled again to account for any changes that may have occurred over that period.

Vernal pools are then monitored following any remedial activity for 3 to 5 years depending on the type of disturbance. Post-burn monitoring occurs in vernal pools if more than 50 percent of the watershed of a vernal pool is affected and is conducted annually for the first three years following a burn (USFWS, 2017). Although not specifically indicated in the PBO, the Army applies the same standard to vernal pools where more than 50 percent of the watershed was masticated, but no mastication of vegetation occurred within the inundation area. If vegetation is mowed within the inundation area, the vernal pool is monitored for vegetation in first, third, and fifth years, following mastication (Burleson 2006). Vernal pools where subsurface munitions remediation activities disturbed less than 10 square feet and were shallower than four feet deep are monitored in first, third, and fifth years, following remediation, whereas vernal pools with greater and/or deeper disturbance are monitored annually for five years following remediation (Burleson 2006). In cases of vernal pools where more than one type of remedial activity occurred, the most stringent monitoring frequency is followed. Three reference vernal pools that were not remediated are also monitored for comparison on an annual basis.

In 2016, vegetation within watershed and inundation area of Pond 16 was masticated. In 2017, vegetation within watersheds of Ponds 35, 42, 44, 56, 60, 61, 73, and Machine Gun Flats was masticated. In the same year, vegetation within watersheds of Ponds 3 North, 3 South, 39, 40 North, 40 South, 42, and 43 were prescribed burned. In 2018, vegetation in Pond 101 West, and 101 East (West) was masticated. Also, in 2018, Ponds 3 North, 3 South, 16, 35, 39, 40 North, 40 South, 41, 42, 43, 44, 60, 61, and 73 were investigated for geophysical anomalies that potentially represented munitions and explosives of concern (MEC) items, and all had subsurface munitions remediation except for Pond 40 North (KEMRON, 2020).

In 2020, Pond 101 East (West) was monitored for year 2 post-mastication. Ponds 16 and 41 were monitored for year 2 post-subsurface munitions remediation. Ponds 3 North, 3 South, 39, 40 South, and 43 were monitored for year 3 post-burn and year 2 post-subsurface munitions remediation. Pond 40 North was monitored for year 3 post-burn. Ponds 35, and 44, 60, 61, and 73 were monitored for year 3 post-mastication and year 2 post-subsurface munitions remediation. Pond 42 was monitored for year 3 post-mastication and post-burn and year 2 post-subsurface munitions remediation. Ponds 56 and Machine Guns Flats were monitored for year 3 post-mastication. Ponds 5, 101 East (East), and 997 are reference vernal pools. Ponds 40 North, 56, and Machine Gun Flats were in the final year of monitoring in 2020.

2.1 Vegetation Monitoring

Prior to collecting transect data, vernal pools were visited in early spring to assess the condition and initiate a list of plant species present. Vernal pools were visited more than once prior to collection of quadrat data to identify species present, evaluate vegetative strata, and determine the ideal time to collect data. Vegetation quadrat data were collected between May 8 and August 11, 2020. Data were collected as the vernal pools dried and the vegetation was sufficiently identifiable (see Appendices A, B, E, and F). Biologists visually assessed the historic vernal pool basins for each resource and identified homogeneous vegetative strata.

Vernal pool basins are defined by the hydrogeomorphic basin feature and the distinctly different vegetative community compared to the surrounding upland area. Because the basins vary from year to year and from wet to dry weather cycles over decades, the center portions of the basins typically support wetland vegetation associations, whereas outer portions at the highest elevations may not. The basin may vary from year to year from a combination of factors that include the amount of precipitation and timing, the duration of inundation, decaying vegetation from the previous season, sediment load, soil chemistry, and other stochastic processes. For some vernal pools, these variables only minimally impact the vernal pool basin and for others, it can expand, contract, and change dramatically. The basin boundary is identifiable in the field because the hydrologic regime often precludes the presence of mature stands of upland tree and shrub communities within the basin boundaries. For vernal pools located within grasslands, basin boundaries are typically defined by a change from mesic grasses to monotypic stands of upland grasses.

For this report, vegetative strata refer to the different homogenous vegetative communities that are distributed around the vernal pools in a zonate pattern. These are characteristically concentric circles similar to a bullseye. Open water typically recedes towards the center through the dry season. Differing depths and duration of inundation result in suites of plant species which are organized into discernable zones. These can be readily differentiated and mapped. During the visual assessment, biologists recorded the percent of submergent, emergent, and floating vegetative cover within the inundated areas when present. Inundated areas were characterized by the presence of standing water with wetland vegetation, whereas open water areas were characterized by standing water without vegetation. An upland stratum is characterized by upland species but is only mapped when it is within the vernal pool and therefore surrounded by wetland species, such as mima mounds. The upland transition on the periphery of the vernal pool is not mapped.

Strata were differentiated based on dominant species and overall species composition. The team used a stratified random quadrat method to collect data within each accessible stratum (Barbour *et al.*, 1980). When strata were inundated, vegetation was too dense or tall to enter, or in areas with safety concern due to potential MEC presence, visual cover data were estimated to define strata. In vernal pools that have been monitored using the same methodology in previous years, the transect locations were repeated when the strata were defined by the same dominant species and the transect locations were representative of the species composition for that strata. Otherwise, biologists placed a new transect in the most homogenous representative area for each accessible stratum. These were mapped using a Trimble[®] Juno [®] T41 Series GPS unit. Transects were 5-meters (m) or 10-m in length depending on stratum size. Biologists used a random number table to determine placement of a 0.25 m² quadrat along each transect. The quadrat was placed a minimum of three times for every 5 m of transect. Biologists recorded the absolute percent cover by plant species, thatch, and bare ground (see Appendix A). Species percent cover was averaged for each stratum of the sampled vernal pools (see Appendix B). Biologists

8

mapped strata the same day as quadrat sampling using a Trimble[®] Juno [®] T41 Series GPS unit and calculated absolute percent cover of the strata using ArcGIS (Esri, 2018).

Plant species observed at each vernal pool were recorded. Most species were identified in the field using *The Plants of Monterey County, an Illustrated Field Key; Second Edition* (Matthews and Mitchell, 2015), *Monterey County Wildflowers, a Field Guide, First Edition* (Matthews and Mitchell, 2016), *Plants of San Francisco Bay Region, Mendocino to Monterey, Third Edition* (Beidleman and Kozloff, 2003) and *The Jepson Manual: Vascular Plants of California, Second Edition* (Baldwin *et al.*, 2012). Plants were categorized as native, non-native, or unidentified (see Appendix E Tables E-1 – E-21). Additional categorization of the plants occurred to identify them as one of the following: obligate wetland (OBL), facultative wetland (FACW), facultative (FAC), facultative upland (FACU), obligate upland (UPL), or not listed (NL) (see Appendix E Tables E-22 – E-42) (Lichvar *et al.*, 2016). When species could not be identified in the field, samples were collected from the vernal pool (not from the quadrats) and identified in the office.

Contra Costa goldfields (*Lasthenia conjugens*) and vernal pool bent grass (*Agrostis lacuna-vernalis*) were mapped using a Trimble[®] Juno [®] T41 Series GPS unit. Contra Costa goldfield populations were mapped by creating polygons. Absolute cover was visually estimated for these polygons.

2.2 Wildlife Monitoring

Following the HMP, PBO, and Wetland Plan, biologists conducted aquatic surveys for CTS and fairy shrimp (USACE, 1997; USFWS, 2017; Burleson, 2006). Wildlife surveys were completed in March, April, and May for CTS and fairy shrimp. The criterion used to identify suitable fairy shrimp habitat requires that a vernal pool retain an average of 10 cm of water for at least 18 consecutive days. The criterion used to identify suitable CTS breeding habitat requires that a vernal pool retain an average depth of at least 25 cm from the first rain event through March (Burleson, 2006). Surveys began for fairy shrimp and CTS when the vernal pools maintained a minimum depth of 10 cm during the March hydrology events.

Nets, boots, and other equipment were scrubbed with 10% diluted bleach solution and completely dried between monitoring different vernal pools to reduce the possibility of spreading disease. Additionally, nets, boots, and equipment were treated with 10% diluted bleach solution and dried at the end of each day. Cleaning solutions were applied to equipment in areas away from aquatic resources, on disturbed or developed roads to reduce contamination.

2.2.1 California Tiger Salamander

Survey methods for CTS followed the *Interim Guidance on Site Assessment and Field Surveys for Determining Presence or a Negative Finding of the California Tiger Salamander* (USFWS and California Department of Fish and Game, 2003). Some exceptions were made as needed: aquatic sampling continued after initial detection and dip nets were used exclusively. Additional aquatic sampling was completed to provide additional insight into vernal pool function.

CTS larvae were collected using long-handled, fine-meshed, D-shaped dipnets to allow biologists to record individual metrics and derive an approximate CTS count for each vernal pool. All sites were sampled using dipnets to minimize aquatic habitat disturbance. This methodology was chosen to allow direct comparison to past results. Depending on the extent of aquatic habitat, two to six biologists sampled each site. Biologists collected samples from each vernal pool until the habitat was adequately represented.

Biologists measured and recorded the length of a subset of 30 individual CTS larvae collected. When the total number of CTS collected was less than 30, all individuals were measured. California tiger salamander and other amphibian species encountered were identified and the total numbers recorded (see Appendix C Table C-1).

2.2.2 California Fairy Shrimp

Aquatic sampling for fairy shrimp and other aquatic invertebrates was conducted using a fine-meshed dip net and followed the *Interim Survey Guidelines to Permittees for Recovery Permits Under Section* 10(a)(1)(A) of the Endangered Species Act for the Listed Vernal Pool Branchiopods (USFWS and California Department of Fish and Game, 1996). Representative portions of the bottom, edges, and vertical water column of each vernal pool were sampled. When fairy shrimp were present, the abundance was estimated by collecting 5-20 swipes throughout the vernal pool. The number of swipes relates to the size and complexity of the vernal pool and was consistent with the range of frequencies outlined in protocols from previous reports. More swipes occur at larger and/or more complex vernal pools than at small vernal pools. Following dip netting, the number of collected fairy shrimp were totaled and the abundance was reported as follows (see Appendix C Tables C-2 – C-3):

- Low abundance: 1 to 10 individuals;
- Moderate abundance: 11 to 100 individuals;
- High abundance: 101 to 300 individuals; and
- Very high abundance: greater than 300 individuals.

2.3 Evaluation for Data Quality Objectives and Success Criteria

Data quality objectives (DQO) and performance standards outlined in the Wetland Plan were used to measure successful wetland function following MEC and soil remediation activities (Burleson, 2006). DQOs can be summarized as:

- DQO 1: depth average of 25 cm through March for CTS and average of at least 10 cm through May for fairy shrimp
- DQO 2: inundation consistent with baseline and similar to reference vernal pool trends
- DQO 3: vegetation similar hydrophytic vegetation as reference control wetlands
- DQO 4: water quality adequate for the presence of CTS and/or fairy shrimp
- DQO 5: wildlife consistent with baseline and similar to reference control wetland trends

Hydrological conditions, inundation areas, and water quality were assessed by Chenega using DQO 1, DQO 2, and DQO 4 and are not included in this report (Chenega, 2021).

Plant cover and species diversity were assessed using DQO 3. Species diversity was assessed by examining species richness and species abundance. Wetland vegetation monitoring results were analyzed to identify whether the vernal pool was similar to baseline and reference vernal pools and if wetland function was consistent through time. The disturbed vernal pool should have the following characteristics by the end of the last year of monitoring:

 A number of native wetland species present in the vernal pool comparable to the number present in the vernal pool before MEC and contaminated soils removal or in control wetlands, and • A relative dominance of native wetland species in the vernal pool comparable to the relative dominance in the vernal pool before MEC and contaminated soil removal or in control wetlands.

Wildlife usage was assessed using DQO 5. DQOs 1 and 4 apply to depths and the relationship between water quality and wildlife presence and were assessed as part of the Hydrology Monitoring Annual Report (Chenega, 2021). For DQO 5, the vernal pool was considered successful if the post-remediation wildlife usage was similar to pre-disturbance usage. The Wetland Plan indicates that a vernal pool that supported CTS and fairy shrimp prior to remediation activities should continue to support those species following such activities (Burleson, 2006).

In addition to the Wetland Plan, the PBO outlines the following success criteria specifically for CTS and CCG (USFWS, 2017). Species reestablishment will be considered successful if, at the end of monitoring, each of the following is directly comparable to the conditions before the start of work:

- 1. Wetland function, as measured by the parameters of hydrologic conditions (inundation area and depth, pH, temperature, dissolved oxygen levels);
- 2. Wildlife usage, specifically CTS larval presence;
- 3. Plant cover and wetland plant species diversity and dominance; and
- 4. CCG abundance.

These four conditions were assessed in conjunction with the DQOs. Wetland function was assessed with DQO 1, DQO 2, and DQO 4 and was discussed in the Hydrology Monitoring Annual Report (Chenega, 2021). Wildlife usage was assessed with DQO 5. Plant cover and wetland plant species diversity and dominance were assessed with DQO 3. Contra Costa goldfield abundance was assessed with DQO 3.

Historic data for cumulative precipitation, wetland vegetation, and wildlife presence or absence for all reference and post-remediation vernal pools were summarized by vernal pool. Wetland vegetation was compared across years and to reference vernal pools based on the stratum, absolute percent vegetative cover, species richness, native plant species richness, relative percent native species cover, wetland plant species richness, relative percent wetland plant cover, and species composition (see Appendices G and H). Wildlife was evaluated using the presence or non-detection of CTS and fairy shrimp.

11

This page intentionally left blank

3 RESULTS

Vegetation monitoring was conducted at Ponds 5, 101 East (East), 997, 101 East (West), 41, 3 North, 3 South, 39, 40 North, 40 South, 43, 35, 42, 44, 56, 60, 61, 73, Machine Gun Flats, and 16. Across all monitored vernal pools, the mean number of native plant species was 18 and non-native species was 14 (see Table 3-1). Of these species, a mean of 18 were wetland species, either obligate (OBL), facultative wetland (FACW), or facultative (FAC) (see Table 3-2). In addition to vegetative strata mapping and transect surveys, populations of CCG were surveyed at Ponds 3 North, 3 South, 61, 997, and Machine Gun Flats.

Vernal Pool	Monitoring Status	Native	Non-Native
Pond 5	Reference	12	11
Pond 101 East (East)	Reference	24	19
Pond 997	Reference	27	14
Mean (Reference)	-	21	15
Pond 101 East (West)	Year 2 Post-Mastication	21	20
Pond 41	Year 2 Post-Subsurface Munitions Remediation	21	14
Pond 3 North	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	23	16
Pond 3 South	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	33	21
Pond 39	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	12	20
Pond 40 North	Year 3 Post-Burn	7	8
Pond 40 South	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	8	18
Pond 43	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	26	15
Pond 35	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation	10	16
Pond 42	Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation	18	10
Pond 44	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation	22	17
Pond 56	Year 3 Post-Mastication	13	5
Pond 60	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation	9	7
Pond 61	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation	24	12
Pond 73	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation	14	9
Machine Gun Flats	Year 3 Post-Mastication	27	25
Pond 16	Year 2 Post-Subsurface Munitions Remediation	11	6
Mean (Remediated)	-	18	14
Mean (All)	-	18	14

Table 3-1. Vegetation Species Richness of Native and Non-Native Species Observed on Transects atVernal Pools Monitored in 2020

Vernal Pool	Monitoring Status	OBL	FACW	FAC	Wetland Species
Pond 5	Reference	4	7	3	14
Pond 101 East (East)	Reference	5	8	7	20
Pond 997	Reference	9	10	5	24
Mean (Reference)	-	6	8	5	19
Pond 101 East (West)	Year 2 Post-Mastication	6	11	6	23
Pond 41	Year 2 Post-Subsurface Munitions Remediation	5	8	6	19
Pond 3 North	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	7	10	6	23
Pond 3 South	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	9	12	8	29
Pond 39	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	2	2	5	9
Pond 40 North	Year 3 Post-Burn	2	4	4	10
Pond 40 South	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	4	3	5	12
Pond 43	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	9	11	4	24
Pond 35	Year 3 Post-Mastication, Year 2 Post- Subsurface Munitions Remediation	6	3	4	13
Pond 42	Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation	7	7	4	18
Pond 44	Year 3 Post-Mastication, Year 2 Post- Subsurface Munitions Remediation	7	8	5	20
Pond 56	Year 3 Post-Mastication	6	6	1	13
Pond 60	Year 3 Post-Mastication, Year 2 Post- Subsurface Munitions Remediation	6	5	3	14
Pond 61	Year 3 Post-Mastication, Year 2 Post- Subsurface Munitions Remediation	9	9	4	22
Pond 73	Year 3 Post-Mastication, Year 2 Post- Subsurface Munitions Remediation	5	9	1	15
Machine Gun Flats	Year 3 Post-Mastication	5	12	10	27
Pond 16	Year 2 Post-Subsurface Munitions Remediation	2	5	1	7
Mean (Remediated)	-	6	7	5	18
Mean	-	6	8	5	18

Table 3-2. Vegetation Species Richness of Obligate and Facultative Wetland Species Observed onTransects at Vernal Pools Monitored in 2020

Aquatic wildlife monitoring was conducted at Ponds 5, 101 East (East), 997, 101 East (West), 41, 3 North, 3 South, 39, 40 North, 40 South, 43, 35, 42, 44, 56, 60, 61, 73, Machine Gun Flats, and 16 (see Appendix C Tables C-1 – C-3). Pond 997 was the only vernal pool that did not hold sufficient depth to trigger the wildlife surveys in 2020. Vernal pools were sampled up to three times in March, April, and May. All vernal pools except Ponds 5, 3 North, 56, 60, and Machine Gun Flats were either dry in March or dried completely during the sampling period and were not sampled during all events. California tiger salamanders were only present in Pond 60 and Machine Gun Flats. A total of 13 individuals were

observed at Pond 60 and 8 individuals at Machine Gun Flats. Fairy shrimp were present in 13 out of the 19 vernal pools sampled in 2020, ranging from low to high abundance (see Table 3-3).

Vernal Pool	Monitoring Status	CTS Detected	Fairy Shrimp Detected	
Pond 5	Reference	No	No	
Pond 101 East (East)	Reference	No	Yes (Moderate)	
Pond 101 East (West)	Year 2 Post-Mastication	No	No	
Pond 41	Year 2 Post-Subsurface Munitions Remediation	No	Yes (Moderate)	
Pond 3 North	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	No	Yes (Low)	
Pond 3 South	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	No	Yes (Moderate)	
Pond 39	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	No	Yes (Low)	
Pond 40 North	Year 3 Post-Burn	No	Yes (Moderate)	
Pond 40 South	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	No	Yes (Low)	
Pond 43	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	No	Yes (Moderate)	
Pond 35	Year 3 Post-Mastication, Year 2 Post- Subsurface Munitions Remediation	No	Yes (High)	
Pond 42	Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation	No	Yes (High)	
Pond 44	Year 3 Post-Mastication, Year 2 Post- Subsurface Munitions Remediation	No	Yes (High)	
Pond 56	Year 3 Post-Mastication	No	No	
Pond 60	Year 3 Post-Mastication, Year 2 Post- Subsurface Munitions Remediation	Yes	No	
Pond 61	Year 3 Post-Mastication, Year 2 Post- Subsurface Munitions Remediation	No	Yes (High)	
Pond 73	Year 3 Post-Mastication, Year 2 Post- Subsurface Munitions Remediation	No	Yes (Low)	
Machine Gun Flats	Year 3 Post-Mastication	Yes	Yes (Low)	
Pond 16	Year 2 Post-Subsurface Munitions Remediation	No	Yes (High)	

Table 3-3. California Tiger Salamander and Fairy Shrimp Detections at Vernal Pools in 2020

3.1 Pond 5

Pond 5 is a reference vernal pool that was monitored as a control for comparison to the remediated vernal pools. In 2020, Pond 5 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.1.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 5 on June 10, 2020. These monitoring data represent reference conditions. Pond 5 was dry by the June 10 monitoring event. Biologists identified five vegetative strata at the vernal pool (see Table 3-4 and Figure 3-1). Appendix B provides the species cover results for each stratum. Stratum 1 was repeated from 2016, 2018, and 2019. Strata 2, and 3 were repeated from 2016, 2017, 2018, and 2019. Stratum 6 was repeated from 2018 and 2019. Stratum 7 was repeated from 2019. Transect 1 was repeated from 2016, 2018, and 2019. Transect 2 was repeated from

2016. Transect 3 was relocated to a more representative location. Transect 6 was repeated from 2018 and 2019. Transect 7 was repeated from 2019.

Stratum	Percentage
1	35%
2	32%
3	12%
6	14%
7	7%

Table 3-4. Pond 5 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Figure 3-1. Pond 5 (Reference) Vegetation Strata and Transects on Former Fort Ord, 2020

Sixty-nine plant species were observed within the vernal pool basin boundary. Of these species, 39 were native and 30 were non-native. Eight species were OBL wetland plants, 21 were FACW or FAC, 17 were FACU or UPL, and 23 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 5 consisted of a 10-m transect placed in stratum 1. Four plant species were observed along the transect. Of these species, two were native and two were non-native. Pale spikerush (*Eleocharis macrostachya*) was the dominant species, accounting for approximately 50% cover (see Appendix B Table B-1). Thatch was abundant accounting for approximately 46%. Other species included

Pacific bent grass (*Agrostis avenacea*), alkali mallow (*Malvella leprosa*), and rabbitfoot grass (*Polypogon monspeliensis*). Bare ground accounted for approximately 2%.

Transect 2 at Pond 5 consisted of a 10-m transect placed in stratum 2. Four plant species were observed along the transect. Of these species, three were native and one was non-native. Pale spikerush was the dominant species, accounting for 35% (see Appendix B Table B-1). Thatch was abundant accounting for approximately 59%. Rabbitfoot grass and salt grass (*Distichlis spicata*) contributed approximately 4% and 2% cover, respectively. Other species included alkali mallow.

Transect 3 at Pond 5 consisted of a 10-m transect placed in stratum 3. Eighteen plant species were observed along the transect. Of these species, nine were native and nine were non-native. Bugle hedge nettle (*Stachys ajugoides*) was the dominant species, accounting for approximately 34% cover (see Appendix B Table B-1). Thatch was abundant accounting for 46% cover. Spreading alkaliweed (*Cressa truxillensis*), salt grass, pale spikerush, and Lemmon's canary grass (*Phalaris lemmonii*) contributed cover ranging from 2% to 4%. Smooth cat's-ear (*Hypochaeris glabra*), brown-headed rush (*Juncus phaeocephalus*), rabbitfoot grass and curly dock (*Rumex crispus*) each contributed approximately 1% cover. Other species included large-flowered agoseris (*Agoseris grandiflora*), annual quaking grass (*Briza minor*), horseweed (*Erigeron canadensis*), rough cat's ear (*Hypochaeris radicata*), grass poly (*Lythrum hyssopifolia*), Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*), weedy cudweed (*Pseudognaphalium luteoalbum*), and common sow thistle (*Sonchus oleraceus*). Bare ground accounted for approximately 2%.

Transect 6 at Pond 5 consisted of a 10-m transect placed in stratum 6. Seven plant species were observed along the transect. Of these species, five were native and two were non-native. Pale spikerush and rabbitfoot grass were the dominant species, accounting for approximately 10% and 6% cover, respectively (see Appendix B Table B-1). Thatch was abundant, accounting for approximately 73%. Salt grass, brown-headed rush, Lemmon's canary grass, rabbitfoot grass, and curly dock contributed cover ranging from 2% to 6% cover. Other species included spreading alkaliweed.

Transect 7 at Pond 5 consisted of a 10-m transect placed in stratum 7. Eight plant species were observed along the transect. Of these species, three were native and five were non-native. Baltic rush (*Juncus balticus*) was the dominant species, accounting for approximately 60% cover (see Appendix B Table B-1). Thatch was abundant, accounting for approximately 33%. Horseweed and *Pseudognaphalium* sp. each contributed 2% cover. Other species included Pacific bent grass, smooth cat's ear, rabbitfoot grass, cutleaf burnweed (*Senecio glomeratus*), and common sow thistle. Bare ground accounted for approximately 1%.

3.1.2 Wildlife Monitoring

Pond 5 was surveyed for CTS and fairy shrimp on March 17, April 15, and May 18, 2020. California tiger salamanders and fairy shrimp were not detected. Table 3-5 and Table 3-6 provide results of the CTS and fairy shrimp surveys in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Vernal Pool	Sampling	# of Larvae	# of Larvae	Total Length of Larvae (mm)		Snout-Vent Length of Larvae (mm)		Survey		
	Date	Obs.	Measured	Mean*	Range	Mode	Mean*	Range	Mode	Hours
	3/17/2020	0	-	-	-	-	-	-	-	30 min
5	4/15/2020	0	-	-	-	-	-	-	-	4 hrs 30 min
	5/18/2020	0	-	-	-	-	-	-	-	1 hr

	Table 3-5. Pond 5	Reference) CTS Aquat	tic Monitoring	Results
--	-------------------	-----------	-------------	----------------	---------

Table 3-6. Pond 5 (Reference) Fairy Shrimp Monitoring Results

Sampling Date	Abundance (# Individuals)
3/17/2020	Not detected
4/15/2020	Not detected
5/18/2020	Not detected

3.2 Pond 101 East (East)

Pond 101 East (East) is a reference vernal pool that was monitored as a control for comparison to the remediated vernal pools. In 2020, Pond 101 East (East) was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.2.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 101 East (East) on June 9, June 25, and July 2, 2020. These monitoring data represent reference conditions. Pond 101 East (East) was dry by May 26 (Chenega, 2021). Biologists identified six strata at the vernal pool (see Table 3-7 and Figure 3-2). Appendix B provides the species cover results within each stratum. Strata 1 and 2 were repeated from 2016, 2018, and 2019, whereas strata 5 and 6 were repeated from 2017, 2018, and 2019. Strata 4 was repeated from 2016. Stratum 8 was in a new location in 2020. Transects 1 and 6 were relocated because the previous locations were no longer within the correct strata. Transect 2 was repeated from 2016. Transects 4 and 5 were relocated to a more representative location and Transect 8 was new.

Table 3-7. Pond 101 East (East) (Reference) Vegetative Strata Percentage within the Vernal PoolBasin Boundary

Stratum	Percentage
1	0.4%
2	38%
4	25%
5	3%
6	0.5%
8	34%

Figure 3-2. Pond 101 East (East) (Reference) Vegetation Strata and Transects on Former Fort Ord, 2020

Eighty-six plant species were observed within the vernal pool basin boundary. Of these species, 51 were native and 35 were non-native. Five species were OBL wetland plants, 31 were FACW or FAC, 20 were FACU or UPL, and 30 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 101 East (East) consisted of a 5-m transect placed in stratum 1. Eight plant species were observed along the transect. Of these species, four were native and four were non-native. Alkali mallow was the dominant species, accounting for approximately 48% cover (see Appendix B Table B-2). Thatch was abundant, accounting for approximately 36%. Pale spikerush contributed approximately 7% cover while, curly dock and flowering quillwort each contributed approximately 1% cover. Other species included grass poly, rabbitfoot grass, western yellowcress (*Rorippa curvisiliqua*), and sheep sorrel. Bare ground accounted for approximately 7%.

Transect 2 at Pond 101 East (East) consisted of a 10-m transect placed in stratum 2. Five plant species were observed along the transect. Of these species, two were native and three were non-native. Pale spikerush was the dominant species, accounting for approximately 56% cover (see Appendix B Table B-2). Thatch was abundant, accounting for approximately 33%. Curly dock contributed approximately 6% cover. Alkali mallow contributed 2% cover. Pacific bent grass and rabbitfoot grass were also present. Bare ground accounted for approximately 2%.

Transect 4 at Pond 101 East (East) consisted of a 10-m transect placed in stratum 4. Ten plant species were observed along the transect. Of these species, five were native and five were non-native. Baltic rush was the dominant species, accounting for approximately 49% cover (see Appendix B Table B-2).

Thatch was abundant, accounting for approximately 32%. Other species included tall annual willowherb (*Epilobium ciliatum*), rattail sixweeks grass (*Festuca myuros*), rabbitfoot grass, and spring vetch (*Vicia sativa* ssp. *sativa*). Bare ground accounted for approximately 2%.

Transect 5 at Pond 101 East (East) consisted of a 10-m transect placed in stratum 5. Twenty-four plant species were observed along the transect. Of these species, ten were native and 14 were non-native. Smooth cat's ear and Spanish lotus (*Acmispon americanus* var. *americanus*) were the dominant species, each accounting for approximately 12% cover (see Appendix B Table B-2). Bare ground and thatch were fairly abundant, accounting for approximately 21% and 18%, respectively. Sheep sorrel (*Rumex* acetosella) and bugle hedge nettle contributed approximately 8% and 6% cover, respectively. Annual quaking grass, Chinese pusley (*Heliotropium curassavicum* var. *oculatum*), gumweed (*Madia gracilis*), cottonbatting plant (*Pseudognaphalium stramineum*), and common vetch (*Vicia sativa* ssp. *nigra*) contributed cover ranging from 2% to 4%. Pacific bent grass, long-beaked filaree (*Erodium botrys*), horseweed, brome fescue (*Festuca bromoides*), rattail sixweeks grass, Baltic rush, weedy cudweed, common sow thistle, pin point clover (*Trifolium gracilentum*), small head clover (*Trifolium microcephalum*), and spring vetch each contributed approximately 1% cover. Other species included slender wild oat, coyote brush (*Baccharis pilularis*), scarlet pimpernel (*Lysimachia arvensis*), and rabbitfoot grass.

Transect 6 at Pond 101 East (East) consisted of a 10-m transect placed in stratum 6. Twelve plant species were observed along the transect. Of these species, four were native and eight were non-native. Clustered field sedge (*Carex praegracilis*) was the dominant species, accounting for approximately 42% cover (see Appendix B Table B-2). Bare ground and thatch were abundant, accounting for approximately, 26% and 25% cover, respectively. Sheep sorrel contributed approximately 4% while rattail fescue and common sow thistle each contributed approximately 1% cover. Other species included ripgut grass (*Bromus diandrus*), bull thistle (*Cirsium vulgare*), horseweed, cut-leaved geranium (*Geranium dissectum*), Baltic rush, cottonbatting plant, common vetch, and spring vetch.

Transect 8 at Pond 101 East (East) consisted of a 10-m transect placed in stratum 6. Twenty-five plant species were observed along the transect. Of these species, 14 were native and 11 were non-native. Brown-headed rush, Pacific bent grass, and bugle hedge nettle were the dominant species, accounting for approximately 16%, 16%, and 11% cover, respectively (see Appendix B Table B-2). Thatch was abundant, accounting for approximately 25% cover. Cut-leaved geranium and rabbitfoot grass contributed approximately 6% and 5% cover, respectively. Coast tarweed (*Madia sativa*), curly dock, variegated clover (*Trifolium variegatum*), common vetch, and spring vetch contributed cover ranging from 2% to 4%. Other species included Spanish lotus, large-flowered agoseris, annual quaking grass, tall annual willowherb, long-beaked filaree, horseweed, rattail sixweeks grass, Chinese pusley, smooth cat's-ear, alkali mallow, Lemmon's canary grass, common sow thistle, bearded clover (*Trifolium barbigerum*), pin point clover, and small head clover. Bare ground accounted for approximately 4%.

3.2.2 Wildlife Monitoring

Pond 101 East (East) was surveyed for CTS and fairy shrimp on April 17, 2020. California tiger salamanders were not detected during the April survey event; however, fairy shrimp were present in moderate abundance. No surveys were conducted in March or May due to insufficient vernal pool depth. Table 3-8 and Table 3-9 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Vernal Pool	Sampling # of Larvae		# of Larvae	Total Length of Larvae (mm)			Snout-Vent Length of Larvae (mm)			Survey
	Date	Obs.	Measured	Mean*	Range	Mode	Mean*	Range	Mode	Hours
101 East (East)	4/17/2020	0	-	-	-	-	-	-	-	3 hrs

Table 3-8. Pond 101 East (East) (Reference) CTS Aquatic Monitoring Results

Table 3-9. Pond 101 East (East) (Reference) Fairy Shrimp Monitoring Results

Sampling Date	Abundance (# Individuals)				
4/17/2020	Moderate (15)				

3.3 Pond 997

Pond 997 is a reference vernal pool that was monitored as a control for comparison to the remediated vernal pools. In 2020, Pond 997 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.3.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 997 on June 2, 2020. These monitoring data represent reference conditions. Pond 997 was dry by April 28 (Chenega, 2021). Biologists identified four wetland strata at the vernal pool (see Table 3-10 and Figure 3-3). Appendix B provides the species cover results within each stratum. Strata 1, 2, and 3 were repeated from 2017, 2018, and 2019, whereas stratum 5 was repeated from 2018 and 2019. Transects 1 and 3 were repeated from 2017, 2018, and 2019. Transect 5 was relocated because the previous location was no longer within the correct stratum. Stratum 2 consisted of CCG and no transects were placed in this stratum. Figure 3-4 illustrates the extent and density of the CCG population at Pond 997.

Table 3-10. Pond 997 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	6%
2 (CCG)	4%
3	78%
5	12%

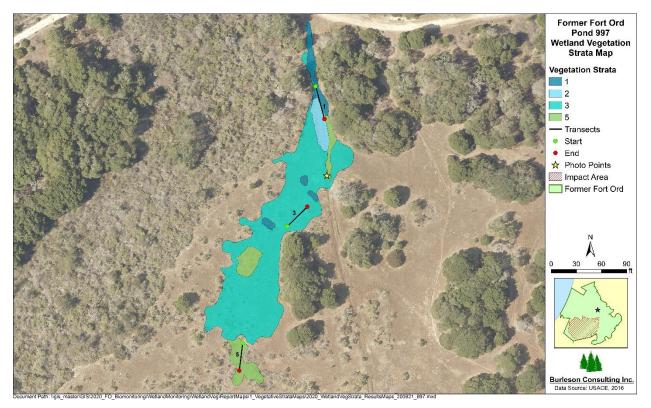


Figure 3-3. Pond 997 (Reference) Vegetation Strata and Transects on Former Fort Ord, 2020

Eighty-two plant species were observed within the vernal pool basin boundary. Of these species, 56 were native and 26 were non-native. Eleven species were OBL wetland plants, 25 were FACW or FAC, 14 were FACU or UPL, and 32 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 997 consisted of a 10-m transect placed in stratum 1. Eighteen plant species were observed along the transect. Of these species, 13 were native and five were non-native. Coyote thistle (*Eryngium armatum*) and round woolly-marbles (*Psilocarphus chilensis*) were the dominant species, accounting for approximately 29% and 10% cover, respectively (see Appendix B Table B-3). Thatch and bare ground were fairly abundant, accounting for approximately 24% and 14%, respectively. Rabbitfoot grass contributed approximately 8%, while needle spikerush (*Eleocharis acicularis* var. *acicularis*) pale spikerush, common toad rush (*Juncus bufonius* var. *bufonius*), grass poly, chaffweed (*Lysimachia minima*), Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*), and cut-leaved plantain (*Plantago coronopus*) contributed cover ranging from 1% to 5%. Other species included annual quaking grass, aquatic pygmy-weed (*Crassula aquatica*), California waterwort (*Elatine californica*), smooth cat'sear, Howell's quillwort (*Isoetes howellii*), round-fruited toad rush (*Juncus bufonius* var. *occidentalis*), brown-headed rush, and Contra Costa goldfields.

Stratum 2 consisted of CCG. Figure 3-4 illustrates the extent and density of the population at Pond 997. No transects were placed in stratum 2 to avoid disturbing the population.

Transect 3 at Pond 997 consisted of a 10-m transect placed in stratum 3. Thirty-two plant species were observed along the transect. Of these species, 17 were native and 14 were non-native, one species was

unidentified. California oat grass (*Danthonia* californica) was the dominant species, accounting for approximately 24% cover (see Appendix B Table B-3). Thatch and bare ground were fairly abundant, each accounting for approximately 11%. Rattlesnake grass (*Briza maxima*), annual quaking grass, Johnny-Nip (*Castilleja ambigua* ssp. *ambigua*), coyote thistle, smooth cat's ear, gumweed, coast tarweed, cut-leaved geranium, and sheep sorrel contributed cover ranging from 3% to 6%. Hill lotus (*Acmispon parviflorus*), silvery hair-grass (*Aira caryophyllea*), coastal tarweed (*Deinandra corymbosa*), long-beaked filaree, brome fescue, rattail sixweeks grass, cut-leaved geranium, low bulrush (*Isolepis cernua*), common toad rush, scarlet pimpernel, grass poly, chaffweed, and coast pretty face (*Triteleia hyacinthina*) contributed cover ranging from 1% to 2%. Other species included dwarf brodiaea (*Brodiaea terrestris* ssp. *terrestris*), unknown grass, rough cat's-ear, keeled bulrush (*Isolepis carinata*), brownheaded rush, marsh microseris (*Microseris paludosa*), rabbitfoot grass, western blue-eyed grass (*Sisyrinchium bellum*), and Davy's centuary (*Zeltnera davyi*).

Transect 5 at Pond 997 consisted of a 10-m transect placed in stratum 5. Fourteen plant species were observed along the transect. Of these species, ten were native and 4 were non-native. Brown-headed rush was the dominant species, accounting for approximately 56% cover (see Appendix B Table B-3). Thatch was abundant, accounting for approximately 22%. Rattlesnake grass, California oat grass, coyote thistle, and grass poly contributed cover ranging from 2% to 6%. Other species included coyote brush (*Baccharis pilularis*), annual quaking grass, dwarf brodiaea, Johnny-Nip, cut-leaved geranium, common toad rush, chaffweed, coast tarweed, and Hickman's popcornflower. Bare ground accounted for 6%.

3.3.1.1 Contra Costa Goldfields

Contra Costa goldfields at Pond 997 were mapped on May 13, 2020: they occupied 0.02 acre, with a density of 10% cover. Figure 3-4 illustrates the extent of the CCG population at Pond 997.

Figure 3-4. Contra Costa Goldfields Populations at Pond 997 (Reference), 2020

3.3.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 997 because the vernal pool did not have sufficient depth to trigger surveys.

3.4 Pond 101 East (West)

Pond 101 East (West)¹, a post-mastication remediation vernal pool, was in year 2 of monitoring in 2020. Pond 101 East (West) was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021). Prior to 2019, Pond 101 East (West) was a reference vernal pool.

3.4.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 101 East (West) on June 8, June 26, and July 14, 2020. These monitoring data represent year 2 post-mastication conditions. Pond 101 East (West) was dry by May 26 (Chenega, 2021). Biologists identified six strata at the vernal pool (see Table 3-11 and Figure 3-5). Appendix B provides the species cover results within each stratum. Strata 1, 2, 4, and 5 were repeated from 2016, 2017, 2018, and 2019. Stratum 6 was repeated from 2017, 2018, and 2019. Stratum 8 was repeated from 2019. Transects 1 and 5 were relocated to a more representative vegetative composition. Transects 2, 4, and 6 were relocated because the previous locations were no longer within the correct strata. Transect 8 was repeated from 2019.

Table 3-11. Pond 101 East (West) (Year 2 Post-Mastication) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	3%
2	10%
4	4%
5	44%
6	12%
8	4%
9	25%

¹ Pond 101 East (West) is identified as "Waterbody 53" in Harding ESE (2002).

Figure 3-5. Pond 101 East (West) (Year 2 Post-Mastication) Vegetation Strata and Transects on Former Fort Ord, 2020

Seventy-five plant species were observed within the vernal pool basin boundary. Of these species, 41 were native and 34 were non-native. Nine species were OBL wetland plants, 31 were FACW or FAC, 15 were FACU or UPL, and 20 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 101 East (West) consisted of a 10-m transect placed in stratum 1. Ten plant species were observed along the transect. Of these species, seven were native and three were non-native. Pale spikerush and alkali mallow were the dominant species, accounting for approximately 17% and 12% cover, respectively (see Appendix B Table B-4). Thatch was abundant, accounting for approximately 59%. Pacific foxtail (*Alopecurus saccatus*), lowland cudweed (*Gnaphalium palustre*), Chinese pusley, rabbitfoot grass, western yellowcress, and bracted verbena (*Verbena bracteata*), contributed cover ranging from approximately 1% to 3%. Other species included grass poly and lady's thumb (*Persicaria maculosa*). Bare ground accounted for approximately 3%.

Transect 2 at Pond 101 East (West) consisted of a 10-m transect placed in stratum 2. Four plant species were observed along the transect, all of which were native. Pale spikerush was the dominant species, accounting for approximately 43% cover (see Appendix B Table B-4). Thatch was abundant, accounting for approximately 54% cover. Smooth goldfields (*Lasthenia glaberrima*), alkali mallow, and Lemmon's canary grass contributed approximately 1% cover or less. Bare ground accounted for approximately 2% cover.

Transect 4 at Pond 101 East (West) consisted of a 10-m transect placed in stratum 4. Fifteen plant species were observed along the transect. Of these species, seven were native and eight were non-native. Coast tarweed and gumweed were the dominant species, accounting for approximately 31% and 16% cover, respectively (see Appendix B Table B-4). Thatch was abundant and accounted for approximately 28% cover. Pale spikerush, cut-leaved geranium, Chinese pusley, brown-headed rush, and sheep sorrel contributed cover ranging from 2% to 5%. Spanish lotus, annual quaking grass, scarlet pimpernel, cottonbatting plant, curly dock, and spring vetch each contributed approximately 1% cover. Other species included Italian rye grass (*Festuca perennis*) and weedy cudweed. Bare ground accounted for approximately 2%.

Transect 5 at Pond 101 East (West) consisted of a 10-m transect placed in stratum 5. Eleven plant species were observed along the transect. Of these species, four were native and seven were non-native. Italian rye grass was the dominant species, accounting for approximately 43% cover (see Appendix B Table B-4). Brome fescue contributed approximately 11% cover. Thatch was abundant, accounting for approximately 23% cover. Alkali mallow and pale spikerush contributed approximately 8% and 7% cover, respectively, while ripgut brome, annual quaking grass, salt grass, coyote thistle, cutleaved geranium, smooth cat's-ear, and curly dock each contributed 1% cover or less. Bare ground accounted for approximately 4% cover.

Transect 6 at Pond 101 East (West) consisted of a 5-m transect placed in stratum 6. Nineteen plant species were observed along the transect. Of these species, six were native and 13 were non-native. Brown-headed rush was the dominant species, accounting for approximately 28% cover (see Appendix B Table B-4). Thatch was abundant, accounting for approximately 46% cover. Pacific bent grass, cut-leaved geranium, Baltic rush, coast tarweed, and common sow thistle contributed cover ranging from 2% to 4%. Other species included Spanish lotus, coyote brush, annual quaking grass, rattail sixweeks grass, Italian rye grass, smooth cat's-ear, rabbitfoot grass, cottonbatting plant, sheep sorrel, curly dock, cutleaf burnweed, prickly sow thistle (*Sonchus asper*), and common vetch. Bare ground accounted for approximately 4% cover.

Transect 8 at Pond 101 East (West) consisted of a 5-m transect placed in stratum 8. Twelve plant species were observed along the transect. Of these species, six were native and six were non-native. Western goldenrod (*Euthamia occidentalis*) and rabbitfoot grass were the dominant species, accounting for approximately 26% and 9% cover, respectively (see Appendix B Table B-4). Thatch was abundant, accounting for approximately 47%. Cut-leaved geranium and brown-headed rush each contributed approximately 2% cover. Annual quaking grass, needle spikerush, Italian rye grass, alkali mallow, Hickman's popcornflower, cottonbatting plant, sheep sorrel, and common sow thistle contributed 1% cover or less. Bare ground accounted for approximately 8% cover.

Transect 9 at Pond 101 East (West) consisted of a 10-m transect placed in stratum 9. Thirteen plant species were observed along the transect. Of these species, three were native and ten were non-native. Pacific bent grass was the dominant species, accounting for approximately 29% cover (see Appendix B Table B-4). Thatch was abundant, accounting for approximately 31%. Curly dock, Chinese pusley, rabbitfoot grass, and pale spikerush, contributed 8%, 8%, 7%, and 6% cover, respectively. Cut-leaved geranium contributed approximately 4% cover while, annual quaking grass, brome fescue, Italian rye grass, smooth cat's-ear, Baltic rush, common sow thistle, and spring vetch contributed 1% cover or less. Bare ground accounted for 2% cover.

3.4.2 Wildlife Monitoring

Pond 101 East (West) was surveyed for CTS and fairy shrimp on April 17, and May 19, 2020. California tiger salamanders and fairy shrimp were not detected. No surveys were conducted in March due to insufficient depth. Table 3-12 and Table 3-13 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Table 3-12. Pond 101 East (West) (Year 2 Post-Mastication) CTS Aquatic Monitoring Results

Vernal Pool	Sampling	# of Larvae	# of Larvae	Total Length of Larvae (mm)			Snout-Vent Length of Larvae (mm)			Survey
	Date	Obs. Mo	Measured	Mean*	Range	Mode	Mean*	Range	Mode	Hours
101 East	4/17/2020	0	-	-	-	-	-	-	-	3 hrs
(West)	5/19/2020	0	-	-	-	-	-	-	-	18 mins

Table 3-13. Pond 101 East (West) (Year 2 Post-Mastication) Fairy Shrimp Monitoring Results

Sampling Date	Abundance (# Individuals)
4/17/2020	Not detected
5/19/2020	Not detected

3.5 Pond 41

Pond 41, a post-subsurface munitions remediation vernal pool, was in year 2 of monitoring in 2020. Pond 41 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.5.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 41 on June 1, 2020. These monitoring data represent year 2 post-subsurface munitions remediation conditions. Pond 41 was dry by May 26 (Chenega, 2021). Biologists identified four strata at the vernal pool (see Table 3-14 and Figure 3-6). Appendix B provides the species cover results within each stratum. Strata 1, 2, and 3 were repeated from 2016 and 2019. Stratum 4 was repeated from 2019. Transects 1 and 2 were repeated from 2016 and 2019, whereas Transect 4 was repeated from 2019. Transect 3 was relocated because the previous location was no longer within the stratum.

 Table 3-14. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage

 within the Vernal Pool Basin Boundary

Stratum	Percentage
1	14%
2	59%
3	21%
4	6%
Upland	1%

Figure 3-6. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Sixty plant species were observed within the vernal pool basin boundary. Of these species, 39 were native and 21 were non-native. Six species were OBL wetland plants, 26 were FACW or FAC, 12 were FACU or UPL, and 16 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 41 consisted of a 10-m transect placed in stratum 1. Nine plant species were observed along the transect. Of these species, eight were native and one was non-native. Pale spikerush and rabbitfoot grass were the dominant species, accounting for approximately 45% and 9% cover, respectively (see Appendix B Table B-5). Thatch was abundant, accounting for approximately 32%. Needle spikerush and Lemmon's canary grass each contributed approximately 4% cover, while annual hair grass (*Deschampsia danthonioides*), smooth goldfields, and bugle hedge nettle contributed cover ranging from 1% to 2%. Other species included alkali mallow and Hickman's popcornflower. Bare ground accounted for approximately 2%.

Transect 2 at Pond 41 consisted of a 10-m transect placed in stratum 2. Twelve plant species were observed along the transect. Of these species, nine were native and three were non-native. Rabbitfoot grass and cut-leaved geranium were the dominant species, accounting for approximately 30% and 16% cover, respectively (see Appendix B Table B-5). Thatch was fairly abundant, accounting for approximately 22% cover. Needle spikerush contributed approximately 9% cover, while annual hair grass, pale spikerush, brown-headed rush, alkali mallow, Lemmon's canary grass, and bugle hedge nettle contributed cover ranging from 2% to 5%. Smooth goldfields, Hickman's popcornflower, and curly dock, each contributed approximately 1% cover.

Transect 3 at Pond 41 consisted of a 10-m transect placed in stratum 3. Twenty plant species were observed along the transect. Of these species, nine were native and 11 were non-native. Brown-headed rush was the dominant species, accounting for approximately 58% cover (see Appendix B Table B-5). Thatch was abundant, accounting for approximately 22%. Annual quaking grass, needle spikerush, brome fescue, purple cudweed (*Gamochaeta ustulata*), cut-leaved geranium, Baltic rush, scarlet pimpernel, coast tarweed, gumweed, rabbitfoot grass, curly dock, and common sow thistle contributed cover ranging from 1% to 3%. Other species included soft chess (*Bromus hordeaceus*), annual hair grass, long-beaked filaree, horseweed, smooth cat's-ear, alkali mallow, and sheep sorrel. Bare ground accounted for approximately 3%.

Transect 4 at Pond 41 consisted of a 10-m transect placed in stratum 4. Twenty-two plant species were observed along the transect. Of these species, 12 were native and ten were non-native. California oat grass and gumweed were the dominant species, accounting for approximately 25% and 12% cover, respectively (see Appendix B Table B-5). Thatch was abundant, accounting for approximately 31% cover. Silvery hair-grass, coyote brush, annual quaking grass, dwarf brodiaea, Johnny-Nip, coyote thistle, rattail sixweeks grass, purple cudweed, cut-leaved geranium, smooth cat's-ear, cut-leaved plantain, rabbitfoot grass, and bugle hedge nettle contributed cover ranging from 1% to 3%. Other species included soft chess, brome fescue, brown-headed rush, Pacific woodrush (*Luzula comosa*), scarlet pimpernel, chaffweed, and coast tarweed. Bare ground accounted for approximately 14%.

3.5.2 Wildlife Monitoring

Pond 41 was surveyed for CTS and fairy shrimp on April 16, 2020. California tiger salamanders were not detected at the April survey event; however, fairy shrimp were present in moderate abundance. No surveys were conducted in March or May due to insufficient vernal pool depth. Table 3-15 and Table 3-16 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Table 3-15. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic MonitoringResults

Vernal Pool	Sampling	# of Larvae	# of Larvae	Total Length of Larvae (mm) Snout-Vent Length o Larvae (mm)			Survey			
	Date	Obs.	Measured	Mean*	Range	Mode	Mean*	Range	Mode	Hours
41	4/16/2020	0	-	-	-	-	-	-	-	2 hrs 15 mins

Table 3-16. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Fairy Shrimp MonitoringResults

Sampling Date	Abundance (# Individuals)					
4/16/2020	Moderate (15)					

3.6 Pond 3 North

Pond 3 North was in year 3 of monitoring for post-burn and year 2 for post-subsurface munitions remediation in 2020. Pond 3 North was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

28

3.6.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 3 North on June 5, June 18, and June 25, 2020. These monitoring data represent year 3 post-burn and year 2 post-subsurface munitions remediation conditions. Pond 3 North was dry by the June 25 monitoring event. Biologists identified three strata at the vernal pool (see Table 3-17 and Figure 3-7). Appendix B provides the species cover results within each stratum. Stratum 1 was repeated from 2015 and 2018. Strata 2, 3, and 4 were repeated from 2015, 2018, and 2019. Transect 1 was repeated from 2015 and 2018. Transect 2 was relocated because the previous location was no longer within the stratum. Transect 3 was repeated from 2018. Stratum 4 consisted of CCG and no transects were placed in this stratum. Figure 3-8 illustrates the extent and density of the goldfield population at Pond 3 North.

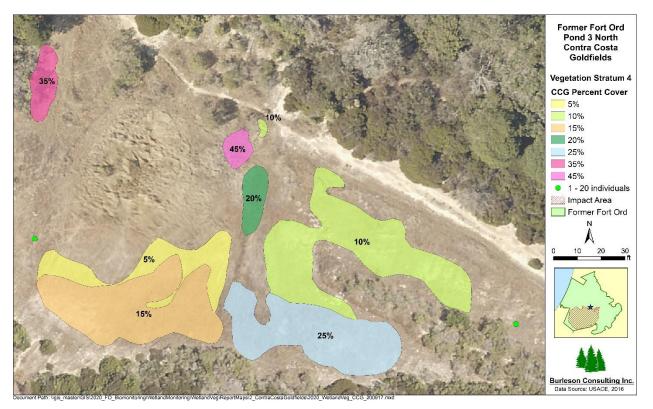
Table 3-17. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)
Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	11%
2	14%
3	37%
4 (CCG)	38%

Figure 3-7. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Seventy-four plant species were observed within the vernal pool basin boundary. Of these species, 46 were native and 28 were non-native. Eleven species were OBL wetland plants, 27 were FACW or FAC, 13 were FACU or UPL, and 23 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 3 North consisted of a 10-m transect placed in stratum 1. Four plant species were observed along the transect. Of these species, three were native and one was non-native. Pale spikerush was the dominant species, accounting for approximately 62% cover (see Appendix B Table B-6). Thatch and bare ground were fairly abundant, accounting for approximately 22% and 15%, respectively. Needle spikerush, smooth goldfields, and rabbitfoot grass contributed approximately 1% cover or less.


Transect 2 at Pond 3 North consisted of a 10-m transect placed in stratum 2. Seventeen plant species were observed along the transect. Of these species, eleven were native and six were non-native. Pale spikerush was the dominant species, accounting for approximately 13% cover (see Appendix B Table B-6). Thatch and bare ground were abundant, accounting for approximately 28% and 23%, respectively. Rabbitfoot grass, coyote thistle, and Mediterranean barley (*Hordeum marinum* ssp. *gussoneanum*) contributed approximately 8%, 7%, and 6% cover, respectively. Needle spikerush, common toad rush, grass poly, chaffweed, Hickman's popcornflower, cut-leaved plantain, Sacramento mesa mint (*Pogogyne zizyphoroides*), round woolly-marbles, and Davy's cenutuary contributed cover ranging from 1% to 4%. Other species included brass buttons (*Cotula coronopifolia*), annual hair grass, Italian rye grass, and Contra Costa goldfields.

Transect 3 at Pond 3 North consisted of a 10-m transect placed in stratum 3. Thirty plant species were observed along the transect. Of these species, 15 were native, 14 were non-native, and one was unidentified. Italian rye grass and California oat grass were the dominant species each accounting for approximately 16% cover (see Appendix B Table B-6). Bare ground and thatch were abundant, accounting for approximately 21% and 19% cover, respectively. Coyote thistle contributed 9% cover, while soft chess, Johnny-Nip, scarlet pimpernel, marsh microseris, and cut-leaved plantain contributed cover ranging from 2% to 3%. Hill lotus, silvery hair-grass, coyote brush, annual quaking grass, rattail sixweeks grass, brown-headed rush, grass poly, narrow-leaved clover (*Trifolium angustifolium*), and little hop clover (*Trifolium dubium*) each contributed approximately 1% cover. Other species included pink star-tulip (*Calochortus uniflorus*), coastal tarweed, horseweed, smooth car's-ear, common toad rush, narrowleaf cottonrose (*Logfia gallica*), chaffweed, Madia sp., gumweed, California plantain (*Plantago erecta*), rabbitfoot grass, common sow thistle, and Davy's centuary.

Stratum 4 consisted of CCG. Figure 3-8 illustrates the extent and density of the populations at 3 North. No transects were placed in stratum 4 to avoid disturbing the population.

3.6.1.1 Contra Costa Goldfields

Contra Costa goldfields at Pond 3 North were mapped on May 13, May 22, and May 27, 2020; they occupied 0.16 acre, with a density range of 5-45% cover. Figure 3-8 illustrates the extent of the CCG population at Pond 3 North.

Figure 3-8. Contra Costa Goldfields Populations at Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation), 2020

3.6.2 Wildlife Monitoring

Pond 3 North was surveyed for CTS and fairy shrimp March 17, April 16, and May 20, 2020. California tiger salamanders were not detected; however, fairy shrimp were present in April in low abundance. Table 3-18 and Table 3-19 provide results of the CTS and fairy shrimp surveys conducted in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

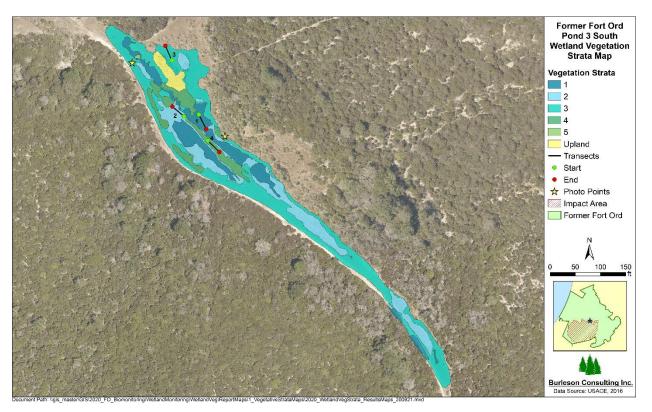
Vernal Pool	Sampling	· · Larvae		Total Le	ength of Lar	vae (mm)	Snout-Vent Length of Larvae (mm)			Survey
	Date O	Obs. Measured	Mean	Range	Mode	Mean	Range	Mode	Hours	
	3/17/2020	0	-	-	-	-	-	-	-	11 mins
3 North	4/16/2020	0	-	-	-	-	-	-	-	30 mins
	5/20/2020	0	-	-	-	-	-	-	-	8 mins

Table 3-18. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic Monitoring Results

Table 3-19. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) FairyShrimp Monitoring Results

Sampling Date	Abundance (# Individuals)
3/17/2020	Not detected
4/16/2020	Low (6)
5/20/2020	Not detected

3.7 Pond 3 South


Pond 3 South was in year 3 of monitoring for post-burn and year 2 for post-subsurface munitions remediation in 2020. Pond 3 North was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.7.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 3 South on May 26, 2020. These monitoring data represent year 3 post-burn and year 2 post-subsurface munitions remediation conditions. Pond 3 South was dry by the May 26 monitoring event. Biologists identified five strata at the vernal pool (see Table 3-20 and Figure 3-9). Appendix B provides the species cover results within each stratum. Strata 1 through 4 were repeated from 2016, 2018, and 2019. Transect 1 was repeated from 2016, 2018, and 2019, whereas Transects 2 through 4 were repeated from 2019. Stratum 5 consisted of CCG and no transects were placed in this stratum. Figure 3-10 illustrates the extent and density of the CCG population at Pond 3 South.

Stratum	Percentage
1	17%
2	22%
3	47%
4	10%
5 (CCG)	0.1%
Upland	3%

Table 3-20. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Figure 3-9. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Ninety-two plant species were observed within the vernal pool basin boundary. Of these species, 60 were native and 32 were non-native. Nine species were OBL wetland plants, 33 were FACW or FAC, 15 were FACU or UPL, and 35 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 3 South consisted of a 10-m transect placed in stratum 1. Thirteen plant species were observed along the transect. Of these species, nine were native and four were non-native. Pale spikerush was the dominant species accounting for approximately 42% cover (see Appendix B Table B-7). Thatch was abundant, accounting for approximately 26%. Needle spikerush, coyote thistle, and cutleaved plaintain contributed cover ranging from 3% to 7% cover. Brass buttons, brown-headed rush, smooth goldfields, grass poly, alkali mallow, Hickman's popcornflower, and rabbitfoot grass contributed cover ranging from 1% to 2%. Other species included aquatic pygmy-weed and annual hair grass. Bare ground accounted for 10%.

Transect 2 at Pond 3 South consisted of a 10-m transect placed in stratum 2. Thirty plant species were observed along the transect. Of these species, 18 were native and 12 were non-native. Brown-headed rush was the dominant species, accounting for approximately 50% cover (see Appendix B Table B-7). Thatch and bare ground were present, accounting for approximately 16% and 7% cover, respectively. Dwarf brodiaea, needle spikerush, Italian rye grass, cut-leaved geranium, grass poly, cut-leaved plantain, and rabbitfoot grass, contributed cover ranging from 2% to 4%. Other species included silvery hair-grass, annual quaking grass, Johnny-Nip, California oat grass, annual hair grass, coyote thistle, brome fescue,

rattail sixweeks grass, keeled bulrush, low bulrush, common toad rush, round-fruited toad rush, narrowleaf cottonrose, scarlet pimpernel, chaffweed, alkali mallow, marsh microseris, round woolly-marbles, California buttercup (*Ranunculus californicus*), small-flower catchfly (*Silene gallica*), variegated clover, and Davy's centuary.

Transect 3 at Pond 3 South consisted of a 10-m transect placed in stratum 3. Thirty-two plant species were observed along the transect. Of these species, 17 were native and 15 were non-native. California oat grass and grass poly were the dominant species, accounting for approximately 18% and 12% cover, respectively (see Appendix B Table B-7). Bare ground and thatch were abundant, accounting for approximately 22% and 21% cover, respectively. Common yarrow (*Achillea millefolium*), silvery hairgrass, annual quaking grass, dwarf brodiaea, Johnny-Nip, coyote thistle, long-beaked filaree, brome fescue, Italian rye grass, cut-leaved geranium, smooth cat's-ear, rough cat's ear, brown-headed rush, narrowleaf cottonrose, scarlet pimpernel, chaffweed, coast tarweed, cut-leaved plantain, California plantain, rabbitfoot grass, checkerbloom (*Sidalcea malviflora*), common sow thistle, and Davy's centuary contributed cover ranging from 1% to 2%. Other species included pink star-tulip, horseweed, nit grass (*Gastridium phleoides*), gumweed, marsh microseris, sun cups (*Taraxia ovata*), and bearded clover.

Transect 4 at Pond 3 South consisted of a 10-m transect placed in stratum 4. Twenty-three plant species were observed along the transect. Of these species, 13 were native and 10 were non-native. Italian rye grass and pale spikerush were the dominant species, accounting for approximately 41% and 9% cover, respectively (see Appendix B Table B-7). Thatch was fairly abundant, accounting for 17% cover. Soft chess, annual quaking grass, dwarf brodiaea, cut-leaved geranium, brown-headed rush, alkali mallow, common sow thistle, and little hop clover contributed cover ranging from 2% to 4%. Ripgut grass, pink star-tulip, horseweed, purple cudweed, smooth cat's-ear, scarlet pimpernel, grass poly, marsh microseris, cottonbatting plant, California buttercup, small-flower catchfly, bearded clover, and Davy's centuary each contributed 1% cover or less.

Stratum 5 consisted of CCG. Figure 3-10 illustrates the extent and density of the populations at 3 South. No transects were placed in stratum 5 to avoid disturbing the population.

3.7.1.1 Contra Costa Goldfields

Contra Costa goldfields at Pond 3 South were mapped on May 13, 2020: they occupied 0.002 acre, with a density of 5% cover. Figure 3-10 illustrates the extent of the CCG population at Pond 3 South.

Figure 3-10. Contra Costa Goldfield Occurrence at Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation), 2020

3.7.2 Wildlife Monitoring

Pond 3 South was surveyed for CTS and fairy shrimp on April 16, 2020. California tiger salamanders were not detected during the April survey event; however, fairy shrimp were present in moderate abundance. No surveys were conducted in March or May due to insufficient vernal pool depth. Table 3-21 and Table 3-22 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Table 3-21. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS
Aquatic Monitoring Results

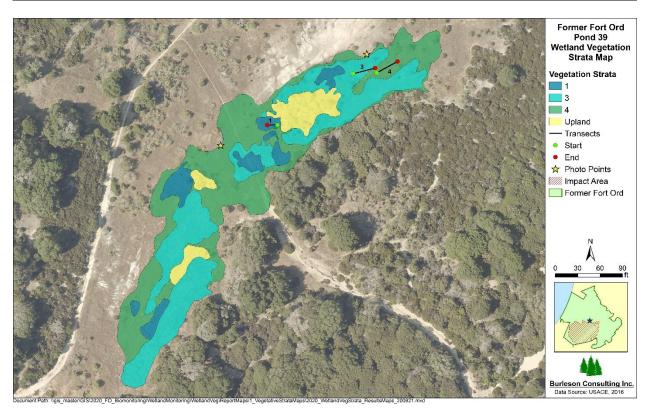
Vernal	Sampling	# of Larva	# of				e (mm) Snout-Vent Length of Larvae (mm)			
Pool	Date	e Obs.	Larvae Measured	Mean	Range	Mode	Mean	Range	Mode	Hours
3 South	4/16/2020	0	-	-	-	-	-	-	-	45 mins

Table 3-22. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) FairyShrimp Monitoring Results

Sampling Date	Abundance (# Individuals)				
4/16/2020	Moderate (13)				

35

3.8 Pond 39


Pond 39 was in year 3 of monitoring for post-burn and year 2 for post-subsurface munitions remediation in 2020. Pond 39 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.8.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 39 on May 22 and June 3, 2020. These monitoring data represent year 3 post-burn and year 2 post-subsurface munitions remediation conditions. Pond 39 was dry by May 26 (Chenega, 2021). Biologists identified three strata at the vernal pool (see Table 3-23 and Figure 3-11). Appendix B provides the species cover results within each stratum. Strata 1 and 3 were repeated from 2016, 2018, and 2019. Stratum 4 was repeated from 2018 and 2019. Transect 1 was repeated from 2016 and 2018. Transect 3 was repeated from 2018 and 2019. Transect 4 was repeated from 2018.

Table 3-23. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetative
Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage				
1	9%				
3	38%				
4	44%				
Upland	9%				

Figure 3-11. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Eighty-five plant species were observed within the vernal pool basin boundary. Of these species, 53 were native and 32 were non-native. Seven species were OBL wetland plants, 30 were FACW or FAC, 15 were FACU or UPL, and 33 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 39 consisted of a 5-m transect placed in stratum 1. Two native plant species were observed along the transect. Pale spikerush accounting for approximately 73% and needle spikerush accounted for approximately 2% cover (see Appendix B Table B-8). Thatch was fairly abundant, accounting for approximately 20%. Bare ground accounted for approximately 5% cover.

Transect 3 at Pond 39 consisted of a 10-m transect placed in stratum 3. Eighteen plant species were observed along the transect. Of these species, 6 were native and 12 were non-native. Italian rye grass was the dominant species, accounting for approximately 38% cover (see Appendix B Table B-8). Thatch was fairly abundant, accounting for approximately 19%. California oat grass contributed approximately 13% cover, while western rush (*Juncus occidentalis*) contributed approximately 8%. Salt grass, rattail sixweeks grass, cut-leaved geranium, and cut-leaved plantain contributed cover ranging from 3% to 5%. Other species included silvery hair-grass, slender wild oat (*Avena barbata*), ripgut grass, soft chess, annual quaking grass, dwarf brodiaea, long-beaked filaree, gumweed, little hop clover, common vetch, and Davy's centuary. Bare ground accounted for approximately 2%.

Transect 4 at Pond 39 consisted of a 10-m transect placed in stratum 4. Twenty-six plant species were observed along the transect. Of these species, 7 were native and 19 were non-native. California oat grass and cut-leaved plantain were the dominant species, accounting for approximately 27% and 13% cover, respectively (see Appendix B Table B-8). Thatch was abundant, accounting for approximately 25%. Spanish lotus, hill lotus, silvery hair-grass, soft chess, annual quaking grass, long-beaked filaree, brome fescue, rattail sixweeks grass, cut-leaved geranium, smooth cat's ear, rough cat's-ear, gumweed, English plantain (*Plantago lanceolata*), sun cups, narrow-leaved clover, and little hop clover contributed cover ranging from 1% to 5%. Other species included slender wild oat, ripgut grass, dense flower owl's clover (*Castilleja densiflora*), western rush, scarlet pimpernel, hairy vetch (*Vicia hirsuta*), common vetch, and spring vetch. Bare ground was also present and accounted for approximately 8%.

3.8.2 Wildlife Monitoring

Pond 39 was surveyed for CTS and fairy shrimp on March 17 and April 16, 2020. California tiger salamanders were not detected; however, fairy shrimp were present in April in low abundance. No further surveys were conducted in May due to insufficient vernal pool depth. Table 3-24 and Table 3-25 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

					-					
Vernal Pool Sampling Larva		# of Larvae	# of Larvae	Total Length of Larvae (mm)			-Vent Leng arvae (mm		Survey	
	Obs.		Mean	Range	Mode	Mean	Range	Mode	Hours	
39	3/17/2020	0	-	-	-	-	-	-	-	5 mins
29	4/16/2020	0	-	-	-	-	-	-	-	17 mins

Table 3-24. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic Monitoring Results

Table 3-25. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Fairy Shrimp
Monitoring Results

Sampling Date	Abundance (# Individuals)				
3/17/2020	Not detected				
4/16/2020	Low (5)				

3.9 Pond 40 North

Pond 40 North, a post-burn vernal pool, was in year 3 of monitoring in 2020. Pond 40 North was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.9.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 40 North on June 16, 2020. These monitoring data represent year 3 post-burn conditions. Pond 40 North was dry by the June 16 monitoring event. Biologists identified three strata at the vernal pool (see Table 3-26 and Figure 3-12). Appendix B provides the species cover results within each stratum. Stratum 2 was repeated from 2015, 2018, and 2019, whereas stratum 3 was repeated from 2015 and 2019. Stratum 4 was repeated from 2018 and 2019. Transect 2 was repeated from 2015, 2018, and 2019. Transect 3 was relocated because the previous location was no longer within the correct stratum. Transect 4 was repeated from 2019.

Table 3-26. Pond 40 North (Year 3 Post-Burn) Vegetative Strata Percentage within the Vernal PoolBasin Boundary

Stratum	Percentage
2	33%
3	41%
4	26%

Figure 3-12. Pond 40 North (Year 3 Post-Burn) Vegetation Strata and Transects on Former Fort Ord, 2020

Fifty-nine plant species were observed within the vernal pool basin boundary. Of these species, 31 were native and 28 were non-native. Four species were OBL wetland plants, 17 were FACW or FAC, 14 were FACU or UPL, and 24 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 2 at Pond 40 North consisted of a 5-m transect placed in stratum 2. Three native plant species were observed along the transect. Pale spikerush was the dominant species, accounting for approximately 53% cover (see Appendix B Table B-9). Thatch and bare ground were abundant, accounting for approximately 26% and 20%, respectively. Purple cudweed and chaffweed contributed 1% cover or less.

Transect 3 at Pond 40 North consisted of a 5-m transect placed in stratum 3. Seven plant species were observed along the transect. Of these species, three were native and four were non-native. Coyote thistle and pale spikerush were the dominant species, accounting for approximately 22% and 13% cover, respectively (see Appendix B Table B-9). Thatch and bare ground were abundant, accounting for approximately 30% and 13%, respectively. Brown-headed rush and cut-leaved plantain each contributed approximately 9%, while Italian rye grass, rabbitfoot grass, and curly dock contributed cover ranging from 1% to 2%.

Transect 4 at Pond 40 North consisted of a 5-m transect placed in stratum 4. Eleven plant species were observed along the transect. Of these species, five were native and six were non-native. Brown-headed rush and cut-leaved plantain were the dominant species, accounting for approximately 33% and 15% cover, respectively (see Appendix B Table B-9). Thatch was abundant, accounting for approximately 36%.

Cut-leaved geranium contributed approximately 3% cover, while annual quaking grass, coastal tarweed, coyote thistle, grass poly, gumweed, rabbitfoot grass, curly dock, and small-flower catchfly contributed 1% cover or less. Bare ground accounted for approximately 7%.

3.9.2 Wildlife Monitoring

Pond 40 North was surveyed for CTS and fairy shrimp on April 16, and May 20, 2020. California tiger salamanders were not detected; however, fairy shrimp were present in April in moderate abundance. No surveys were conducted in March due to insufficient vernal pool depth. Table 3-27 and Table 3-28 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

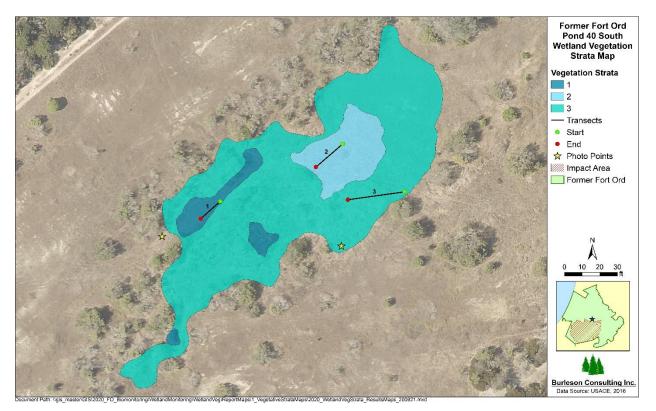
Vernal Pool	Sampling	# of Larvae	# of Larvae	Total Length of Larvae (mm)		Survey				
Date Obs. I	Measured	Mean	Range	Mode	Mean	Range	Mode	Hours		
40 North	4/16/2020	0	-	-	-	-	-	-	-	18 mins
40 NOTIN	5/20/2020	0	-	-	-	-	-	-	-	10 mins

Table 3-27. Pond 40 North (Year 3 Post-Burn) CTS Aquatic Monitoring Results

Table 3-28. Pond 40 North (Year 3 Post-Burn) Fairy Shrimp Monitoring Results

Sampling Date	Abundance (# Individuals)
4/16/2020	Moderate (36)
5/20/2020	Not detected

3.10 Pond 40 South


Pond 40 South was in year 3 of monitoring for post-burn and year 2 for post-subsurface munitions remediation in 2020. Pond 40 South was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.10.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 40 South on May 27, 2020. These monitoring data represent year 3 post-burn and year 2 post-subsurface munitions remediation conditions. Pond 40 South was dry by April 29 (Chenega, 2021). Biologists identified three strata at the vernal pool (see Table 3-29 and Figure 3-13). Appendix B provides the species cover results within each stratum. Strata 1 through 3 were repeated from 2016, 2018, and 2019. Transects 1 and 2 were repeated from 2016, 2018, and 2019. Transect 3 was repeated from 2016.

Table 3-29. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	6%
2	12%
3	82%

Figure 3-13. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Sixty-six plant species were observed within the vernal pool basin boundary. Of these species, 36 were native and 30 were non-native. Five species were OBL wetland plants, 24 were FACW or FAC, 16 were FACU or UPL, and 21 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 40 South consisted of a 5-m transect placed in stratum 1. Ten plant species were observed along the transect. Of these species, five were native and five were non-native. Hickman's popcornflower was the dominant species, accounting for approximately 50% cover (see Appendix B Table B-10). Thatch was abundant, accounting for approximately 20%. Needle spikerush contributed approximately 8% cover, while pale spikerush, cut-leaved plantain, and curly dock contributed cover ranging from 3% to 5%. Other species included Italian rye grass, brown-headed rush, grass poly, Lemmon's canary grass, and rabbitfoot grass. Bare ground accounted for approximately 5% cover.

Transect 2 at Pond 40 South consisted of a 5-m transect placed in stratum 2. Twelve plant species were observed along the transect. Of these species, one was native and 11 were non-native. Cut-leaved plantain, smooth cat's ear, and brown-headed rush were the dominant species, accounting for approximately 11%, 9%, and 7% cover, respectively (see Appendix B Table B-10). Thatch and bare ground were abundant, accounting for approximately 30% and 19%, respectively. Silvery hair-grass and narrow-leaved clover each contributed 6% cover. Soft chess, annual quaking grass, long-beaked filaree, sheep sorrel, and small-flower catchfly contributed cover ranging from 2% to 4%. Other species included brome fescue and little hop clover.

Transect 3 at Pond 40 South consisted of a 10-m transect placed in stratum 3. Fourteen plant species were observed along the transect. Of these species, four were native and ten were non-native. Italian rye grass was the dominant species accounting for approximately 35% cover (see Appendix B Table B-10). Thatch was abundant, accounting for approximately 37%. California oat grass, brome fescue, cut-leaved geranium, and coast tarweed contributed cover ranging from 3% to 7%. Ripgut grass, soft chess, brown-headed rush, gumweed, and sheep sorrel contributed cover ranging from 1% to 2%. Other species included annual quaking grass, long-beaked filaree, rattail sixweeks grass, and smooth cat's-ear. Bare ground accounted for approximately 4%.

3.10.2 Wildlife Monitoring

Pond 40 South was surveyed for CTS and fairy shrimp on April 16, 2020. California tiger salamanders were not detected in April; however, fairy shrimp were present in low abundance. No surveys were conducted in March or May due to insufficient vernal pool depth. Table 3-30 and Table 3-31 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Table 3-30. Pond 40 South (Year 3 Post-Burn) CTS Aquatic Monitoring Results

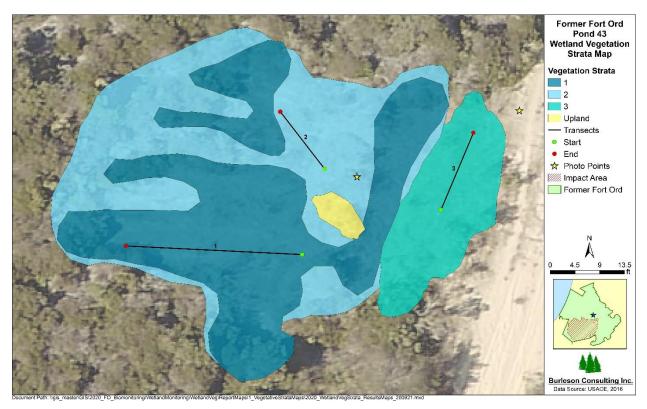
Vernal Pool	Sampling	# of Larvae	# of Larvae	Total Le	ngth of Larv	vae (mm)		Vent Leng rvae (mm		Survey
	Date	Obs.	Measured	Mean	Range	Mode	Mean	Range	Mode	Hours
40 South	4/16/2020	0	-	-	-	-	-	-	-	4 mins

Table 3-31. Pond 40 South (Year 3 Post-Burn) Fairy Shrimp Monitoring Results

Sampling Date	Abundance (# Individuals)				
4/16/2020	Low (1)				

3.11 Pond 43

Pond 43 was in year 3 of monitoring for post-burn and year 2 for post-subsurface munitions remediation in 2020. Pond 43 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).


3.11.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 43 on May 28, 2020. These monitoring data represent year 3 post-burn and year 2 post-subsurface munitions remediation conditions. Pond 43 was dry by May 26 (Chenega, 2021). Biologists identified three strata at the vernal pool (see Table 3-32 and Figure 3-14). Appendix B provides the species cover results within each stratum. All three strata were repeated from 2016, 2018, and 2019. Transects 1 and 3 were repeated from 2016, 2018, and 2019. Transect 2 was relocated because the previous location was no longer within the correct stratum.

Stratum	Percentage
1	46%
2	37%
3	15%
Upland	1%

 Table 3-32. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetative

 Strata Percentage within the Vernal Pool Basin Boundary

Figure 3-14. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Eight-six plant species were observed within the vernal pool basin boundary. Of these species, 62 were native, 23 were non-native, and one was unidentified. Ten species were OBL wetland plants, 25 were FACW or FAC, 12 were FACU or UPL, and 39 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 43 consisted of a 10-m transect placed in stratum 1. Fifteen plant species were observed along the transect. Of these species, 13 were native and two were non-native. Coyote thistle, Hickman's popcornflower, pale spikerush, and smooth goldfields were the dominant species, accounting for approximately 11%, 9%, 8%, and 8% cover, respectively (see Appendix B Table B-11). Thatch was abundant, accounting for approximately 31%. Sacramento mesa mint (*Pogogyne zizyphoroides*) contributed approximately 7%, while needle spikerush contributed approximately 5% cover. Aquatic

pygmy-weed, low bulrush, brown-headed rush, grass poly, chaffweed, rabbitfoot grass, and round woolly-marbles contributed cover ranging from 1% to 2%. Other species included annual hair grass and flowering quillwort (*Triglochin scilloides*). Bareground contributed approximately 12%.

Transect 2 at Pond 43 consisted of a 10-m transect placed in stratum 2. Twenty-six plant species were observed along the transect. Of these species, 15 were native and 11 were non-native. Brown-headed rush was the dominant species, accounting for approximately 42% cover (see Appendix B Table B-11). Bare ground and thatch were fairly abundant, accounting for approximately 21% and 10%, respectively. Annual quaking grass, coastal tarweed, annual hair grass, cut-leaved geranium, smooth cat's-ear, dwarf rush (*Juncus capitatus*), western rush, grass poly, chaffweed, gumweed, coast tarweed, Hickman's popcornflower, rabbitfoot grass, Sacramento mesa mint, round woolly-marbles, western blue-eyed grass, and common sow thistle contributed cover ranging from 1% to 4%. Other species included silvery hair-grass, coyote brush, soft chess, coyote thistle, brome fescue, purple cudweed, common toad rush, and weedy cudweed.

Transect 3 at Pond 43 consisted of a 5-m transect placed in stratum 3. Twenty-seven plant species were observed along the transect. Of these species, fifteen 15 were native and 12 were non-native. California oat grass was the dominant species, accounting for 45% cover (see Appendix B Table B-11). Spanish lotus contributed approximately 6% cover, while coastal tarweed, coyote thistle, gumweed, cut-leaved plantain, and little hop clover contributed cover ranging from 2% to 5%. Silvery hair-grass, soft chess, annual quaking grass, brome fescue, purple cudweed, cut-leaved geranium, smooth cat's-ear, grass poly, and small tarweed each contributed approximately 1% cover. Other species included timwort (*Cicendia quadrangularis*), common toad rush, western rush, brown-headed rush, scarlet pimpernel, chaffweed, rabbitfoot grass, round woolly-marbles, western blue-eyed grass, Capetown grass (*Tribolium obliterum*) and Davy's centaury. Bare ground and thatch accounted for approximately 11% and 7%, respectively.

3.11.2 Wildlife Monitoring

Pond 43 was surveyed for CTS and fairy shrimp April 15, 2020. California tiger salamanders were not detected in April; however, fairy shrimp were present in moderate abundance. No surveys were conducted in March or May due to insufficient vernal pool depth. Table 3-33 and Table 3-34 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Table 3-33. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic Monitoring Results

Vernal	Sampling	# of Larvae	arvae Larvae (mm)	Snout-Vent Length of Larvae (mm)			Survey			
Pool	Date Obs.	Obs.		Mean	Range	Mode	Mean	Range	Mode	Hours
43	4/15/2020	0	-	-	-	-	-	-	-	15 mins

Table 3-34. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Fairy ShrimpMonitoring Results

Sampling Date	Abundance (# Individuals)
4/15/2020	Moderate (40)

3.12 Pond 35


Pond 35 was in year 3 of monitoring for post-mastication and year 2 for post-subsurface munitions remediation in 2020. Pond 35 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.12.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 35 on May 21, 2020. These data represent year 3 postmastication and year 2 post-subsurface munitions remediation conditions. Pond 35 was dry by the May 21 monitoring event. Biologists identified three strata at the vernal pool (see Table 3-35 and Figure 3-15). Appendix B provides the species cover results within each stratum. Strata 1 and 2 were repeated from 2016, 2018, and 2019. Stratum 4 was repeated from 2018 and 2019. Transects 1 and 2 were repeated from 2016, 2018, and 2019. Transect 4 was relocated because the previous location was no longer within the stratum.

Table 3-35. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)
Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	20%
3	36%
4	44%

Figure 3-15. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Sixty plant species were observed within the vernal pool basin boundary. Of these species, 29 were native and 31 were non-native. Seven species were OBL wetland plants, 13 were FACW or FAC, 12 were FACU or UPL, and 28 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 35 consisted of a 10-m transect placed in stratum 1. Nine plant species were observed along the transect. Of these species, five were native and four were non-native. Cut-leaved plantain and Hickman's popcornflower were the dominant species, accounting for approximately 35% and 26% cover, respectively (see Appendix B Table B-12). Grass poly contributed 9% cover, while brass buttons, pale spikerush, smooth goldfields, round woolly-marbles, and flowering quillwort contributed cover ranging from 1% to 2%. Other species included Italian rye grass. Bare ground and thatch each accounted for approximately 12%.

Transect 2 at Pond 35 consisted of a 10-m transect placed in stratum 2. Eight plant species were observed along the transect. Of these species, three were native and five were non-native. Cut-leaved plantain was the dominant species, accounting for approximately 37% cover (see Appendix B Table B-12). Thatch and bare ground were abundant, each accounted for approximately 28%. Narrow-leaved clover contributed approximately 5% cover, while round woolly-marbles contributed approximately 2% cover. Other species included annual hair grass, Italian rye grass, smooth cat's-ear, grass poly, and holly leaf navarretia (*Navarretia atractyloides*).

Transect 4 at Pond 35 consisted of a 10-m transect placed in stratum 4. Seventeen plant species were observed along the transect. Of these species, three were native and fourteen were non-native. Italian rye grass and California oat grass were the dominant species, each accounting for approximately 28% cover (see Appendix B Table B-12). Thatch was abundant, accounting for 19%. Narrow-leaved clover contributed approximately 11%, while silvery hair-grass, ripgut grass, soft chess, long-beaked filaree, brome fescue, rattail sixweeks grass, cut-leaved geranium, smooth cat's-ear, and cut-leaved plantain contributed cover ranging from 1% to 2%. Other species included slender wild oat, annual quaking grass, dwarf brodiaea, meadow barley (*Hordeum branchyantherum*), and little hop clover. Bare ground accounted for approximately 3%.

3.12.2 Wildlife Monitoring

Pond 35 was surveyed for CTS and fairy shrimp on April 16, 2020. California tiger salamanders were not detected in April; however, fairy shrimp were present in high abundance. No surveys were conducted in March or May due to insufficient vernal pool depth. Table 3-36 and Table 3-37 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

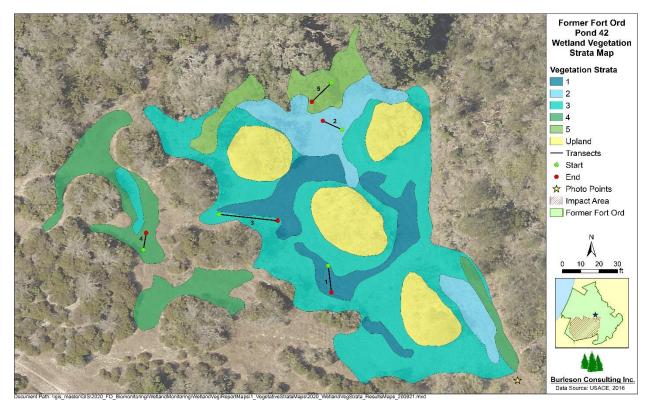
Table 3-36. Pond 35 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic
Monitoring Results

Vernal Pool	Sampling Date	# of Larvae Obs.	# of Larvae	Total Le	ngth of Larv	vae (mm)		-Vent Leng Irvae (mm	•	Survey
			Measured	Mean	Range	Mode	Mean	Range	Mode	Hours
35	4/16/2020	0	-	-	-	-	-	-	-	21 mins

Table 3-37. Pond 35 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Fairy ShrimpMonitoring Results

Sampling Date	Abundance (# Individuals)
4/16/2020	High (186)

3.13 Pond 42


Pond 42 was in year 3 for post-mastication and post-burn and year 2 for post-subsurface munitions remediation in 2020. Pond 42 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.13.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 42 on June 15, 16, and 26, 2020. These monitoring data represent year 3 post-mastication and post-burn and year 2 post-subsurface munitions remediation conditions. Pond 42 was dry by the June 26 monitoring event. Biologists identified five strata at the vernal pool (see Table 3-38 and Figure 3-16). Appendix B provides the species cover results within each stratum. Strata 1 through 4 were repeated from 2017, 2018, and 2019. Stratum 5 was repeated from 2019. Transect 1 was relocated to an area with more representative vegetative composition. Transect 2 was repeated from 2018 and 2019. Transects 3 and 5 were relocated because the previous locations were no longer within the correct strata. Transect 4 was repeated from 2017, 2018, and 2019.

Table 3-38. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface MunitionsRemediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	11%
2	10%
3	41%
4	14%
5	6%
Upland	17%

Figure 3-16. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Ninety-three plant species were observed within the vernal pool basin boundary. Of these species, 57 were native, 33 were non-native, and three were unidentified. Eleven species were OBL wetland plants, 29 were FACW or FAC, 16 were FACU or UPL, and 37 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 42 consisted of a 5-m transect placed in stratum 1. Eight plant species were observed along the transect. Of these species, six were native and two were non-native. Needle spikerush was the dominant species, accounting for approximately 37% cover (see Appendix B Table B-13). Thatch was abundant, accounting for approximately 29%. Brown-headed rush contributed 11%, while coyote thistle and pale spikerush contributed approximately 4% and 3% cover, respectively. Other species included smooth goldfields, grass poly, Hickman's popcornflower, and rabbitfoot grass. Bare ground accounted for approximately 12% cover.

Transect 2 at Pond 42 consisted of a 5-m transect placed in stratum 2. Ten plant species were observed along the transect. Of these species, six were native, two were non-native, and one was unidentified. Pale spike-rush was the dominant species, accounting for approximately 42% (see Appendix B Table B-13). Thatch was abundant, accounting for approximately 49% cover. Rabbitfoot grass contributed 4%, while needle spikerush contributed 2%. Other species included coyote thistle, Howell's quillwort, smooth goldfields, grass poly, Hickman's popcornflower, and *Pseuodognaphalium* sp.

Transect 3 at Pond 42 consisted of a 10-m transect placed in stratum 3. Twenty plant species were observed along the transect. Of these species, twelve were native, seven were non-native, and one was

unidentified. Brown-headed rush, needle spikerush, and coyote thistle were the dominant species, accounting for approximately 35%, 17%, and 15% cover, respectively (see Appendix B Table B-13). Thatch was fairly abundant, accounting for approximately 17%. Rabbitfoot grass contributed 6% cover, while vernal pool bent grass, dwarf brodiaea, brass buttons, annual hair grass, smooth goldfields, grass poly, chaffweed, and Hickman's popcornflowercontributed cover ranging from 1% to 3%. Other species included timwort, western pearlflower (*Heterocodon rariflorum*), smooth cat's-ear, scarlet pimpernel, *Pseudognaphalium sp.*, round woolly-marbles, cutleaf burnweed, and common sow thistle. Bare ground accounted for approximately 4% cover.

Transect 4 at Pond 42 consisted of a 5-m transect placed in stratum 4. Fifteen plant species were observed along the transect. Of these species, seven were native and eight were non-native. Coastal tarweed and California oat grass were the dominant species, accounting for approximately 27% and 19% cover, respectively (see Appendix B Table B-13). Bare ground and thatch were abundant, accounting for approximately 24% and 19% cover, respectively. Silvery hair-grass, annual quaking grass, brome fescue, nit grass, purple cudweed, smooth cat's-ear, scarlet pimpernel, rabbitfoot grass, and Davy's centuary contributed cover ranging from 1% to 2%. Other species included slender wild oat, dwarf brodiaea, coyote thistle, and California plantain.

Transect 5 at Pond 42 consisted of a 5-m transect placed in stratum 5. Four plant species were observed along the transect. One species was native, two were non-native, and one was unidentified. Brass buttons was the dominant species accounting for approximately 63% cover (see Appendix B Table B-13). Thatch was abundant, contributing 30% cover. Rabbitfoot grass accounted for 5% cover, while horseweed and *Pseudognaphalium* sp. were less than 1%. Bare ground accounted for approximately 2% cover.

3.13.2 Wildlife Monitoring

Pond 42 was surveyed for CTS and fairy shrimp on April 15, and May 19, 2020. California tiger salamanders were not detected; however, fairy shrimp were present in April in high abundance. No surveys were conducted in March due to insufficient vernal pool depth. Table 3-39 and Table 3-40 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

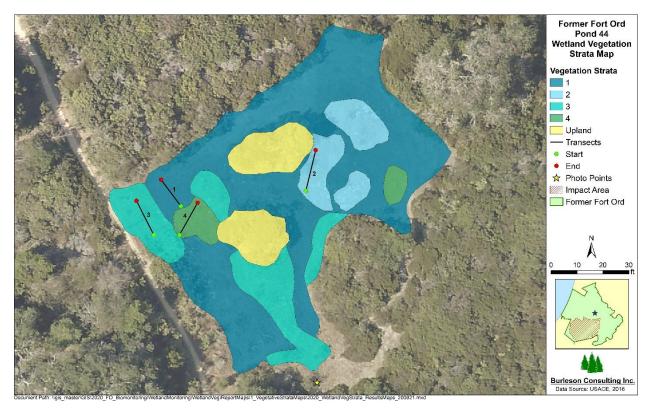
Table 3-39. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic Monitoring Results

Vernal Pool	Sampling	# of Larvae	# of Larvae	(mm)		Snout-Vent Length of Larvae (mm)			Survey	
Date Obs. Measured		Mean	Range	Mode	Mean	Range	Mode	Hours		
42	4/15/2020	0	-	-	-	-	-	-	-	1 hr 30 mins
42	5/19/2020	0	-	-	-	-	-	-	-	26 mins

Table 3-40. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface MunitionsRemediation) Fairy Shrimp Monitoring Results

Sampling Date	Abundance (# Individuals)
4/15/2020	High (125)
5/19/2020	Not detected

3.14 Pond 44


Pond 44, a post-mastication vernal pool, was in year 3 of monitoring in 2020. Pond 44 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.14.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 44 on May 28 and June 1, 2020. These monitoring data represent year 3 post-mastication and year 2 post-subsurface munitions remediation conditions. Pond 44 was dry by May 26 (Chenega, 2021). Biologists identified four strata at the vernal pool (see Table 3-41 and Figure 3-17). All vegetative strata within the basin were mapped and tabulated. Appendix B provides the species cover results within each stratum. Strata 1 and 3 were repeated from 2016, 2018, and 2019, whereas stratum 4 was repeated from 2018 and 2019. Strata 2 was repeated from 2016. Transect 1 was repeated from 2018 and 2019. Transect 2 was relocated because the previous location was no longer within the correct stratum. Transect 3 was repeated from 2016, 2018, and 2019, whereas Transect 4 was relocated to an area with more representative vegetative composition.

Table 3-41. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)
Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	59%
2	9%
3	18%
4	4%
Upland	11%

Figure 3-17. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Sixty-seven plant species were observed within the vernal pool basin boundary. Of these species, 41 were native and 26 were non-native. Five species were OBL wetland plants, 21 were FACW or FAC, 13 were FACU or UPL, and 28 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 44 consisted of a 5-m transect placed in stratum 1. Eighteen plant species were observed along the transect. Of these species, ten were native and eight were non-native. Coyote thistle, rabbitfoot grass, and round woolly-marbles were the dominant species, accounting for approximately 12%, 11%, and 10% cover, respectively (see Appendix B Table B-14). Bare ground and thatch were fairly abundant, accounting for approximately 20% and 17%, respectively. Common toad rush accounted for approximately 7% cover, while grass poly and Hickman's popcornflower each contributed 6% cover. Vernal pool bent grass, annual quaking grass, needle spikerush, brown-headed rush, chaffweed, cut-leaved plantain, Sacramento mesa mint, and little hop clover from 1% to 4%. Other species included long-beaked filaree, brome fescue, smooth cat's-ear, and smooth goldfields.

Transect 2 at Pond 44 consisted of a 5-m transect placed in stratum 2. Seventeen plant species were observed along the transect. Of these species, 12 were native and five were non-native. Common toad rush and grass poly were the dominant species, accounting for approximately 18% and 12% cover, respectively (see Appendix B Table B-14). Thatch was abundant, accounting for approximately 27% cover. Rabbitfoot grass, Hickman's popcornflower, and coyote thistle contributed approximately 9%, 7%, and 5% cover, respectively. Vernal pool bent grass, annual quaking grass, dwarf brodiaea, annual hair grass, needle spikerush, brown-headed rush, chaffweed, cut-leaved plantain, and round woolly-marbles

contributed cover ranging from 1% to 2%. Other species included aquatic pygmy-weed, pale spikerush, and dwarf rush. Bare ground accounted for approximately 8% cover.

Transect 3 at Pond 44 consisted of a 5-m transect placed in stratum 3. Twenty-five plant species were observed along the transect. Of these species, 13 were native and 12 were non-native. California oat grass was the dominant species, accounting for approximately 47% cover (see Appendix B Table B-14). Gumweed and cut-leaved plantain contributed approximately 12% and 11% cover, respectively. Hill lotus, silvery hair-grass, slender wild oat, rattlesnake grass, dwarf brodiaea, coyote thistle, nit grass, smooth cat's-ear, common toad rush, brown-headed rush, scarlet pimpernel, chaffweed, rabbitfoot grass, little hop clover, and little owl's clover (*Triphysaria pusilla*) contributed cover ranging from 1% to 4%. Other species included valley tassels, needle spikerush, rattail sixweeks grass, cut-leaved geranium, sun cups, hop clover, and Davy's centuary. Bare ground and thatch were minimal, accounting for approximately 4% and 1%, respectively.

Transect 4 at Pond 44 consisted of a 5-m transect placed in stratum 4. Twenty-one plant species were observed along the transect. Of these species, 13 were native and eight were non-native. Brown-headed rush was the dominant species, accounting for approximately 36% cover (see Appendix B Table B-14). Thatch and bare ground were fairly abundant, accounting for approximately 15% and 11%, respectively. Coyote thistle and needle spikerush accounted for approximately 11% and 8% cover, respectively. Annual quaking grass, dwarf brodiaea, annual hair grass, common toad rush, smooth goldfields, chaffweed, Hickman's popcornflower, cut-leaved plantain, rabbitfoot grass, round woolly marbles, little hop clover, and variegated clover contributed cover ranging from 1% to 5%. Other species included vernal pool bent grass, cut-leaved geranium, smooth cat's-ear, dwarf rush, and Sacramento mesa mint.

3.14.2 Wildlife Monitoring

Pond 44 was surveyed for CTS and fairy shrimp April 15, 2020. California tiger salamanders were not detected in April; however, fairy shrimp were present in high abundance. No surveys were conducted in March or May due to insufficient vernal pool depth. Table 3-42 and Table 3-43 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

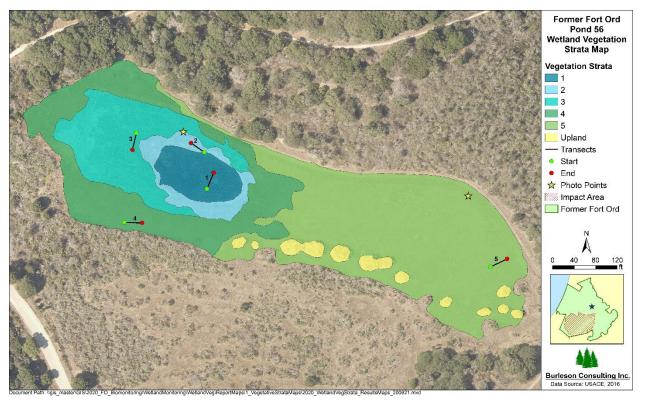
Table 3-42. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic Monitoring Results

Vernal Pool	Sampling	# of Larvae	# of Larvae	(mm)		Snout-Vent Length of Larvae (mm)			Survey	
Date	Obs.	Measured	Mean	Range	Mode	Mean	Range	Mode	Hours	
44	4/15/2020	0	-	-	-	-	-	-	-	21 mins

Table 3-43. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) FairyShrimp Monitoring Results

Sampling Date	Abundance (# Individuals)
4/15/2020	High (258)

3.15 Pond 56


Pond 56, a post-mastication vernal pool, was in year 3 of monitoring in 2020. Pond 56 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.15.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 56 on June 16, July 14, and August 11, 2020. These monitoring data represent year 3 post-mastication conditions. Pond 56 was dry by August 3 (Chenega, 2021). Biologists identified five strata at the vernal pool (see Table 3-44 and Figure 3-18). Appendix B provides the species cover results within each stratum. Stratum 1 was repeated from 2016 and 2019. Strata 2 through 4 were repeated from 2015, 2016, and 2019 whereas stratum 5 was repeated from 2015 and 2016. Transect 1 was repeated from 2016. Transects 2 and 5 were relocated to areas with more representative vegetative composition. Transects 3 and 4 were repeated from 2016.

Table 3-44. Pond 56 (Year 3 Post-Mastication) Vegetative Strata Percentage within the Vernal Pool				
Basin Boundary				

Stratum	Percentage
1	6%
2	5%
3	16%
4	24%
5	46%
Upland	3%

Figure 3-18. Pond 56 (Year 3 Post-Mastication) Vegetation Strata and Transects on Former Fort Ord, 2020

Sixty-seven plant species were observed within the vernal pool basin boundary. Of these species, 42 were native and 25 were non-native. Eight species were OBL wetland plants, 23 were FACW or FAC, 14

were FACU or UPL, and 22 were not-listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 56 consisted of a 10-m transect placed in stratum 1. Two native plant species were observed along the transect. Pale spikerush was the dominant species, accounting for approximately 46% cover (see Appendix B Table B-15). Thatch was abundant, accounting for approximately 48%. Alkali mallow contributed 4%. Bare ground accounted for approximately 2% cover.

Transect 2 at Pond 56 consisted of a 10-m transect placed in stratum 2. Four native plant species were observed along the transect. Salt grass and pale spikerush were the dominant species, accounting for approximately 25% and 8% cover, respectively (see Appendix B Table B-15). Thatch was abundant, accounting for 54% cover. Needle spikerush contributed 3%, while brown-headed rush contributed 2% cover. Bare ground accounted for approximately 8%.

Transect 3 at Pond 56 consisted of a 10-m transect placed in stratum 3. Three native plant species were observed along the transect. Pale spikerush was the dominant species, accounting for approximately 19% cover (see Appendix B Table B-15). Salt grass contributed 12%, while brown-headed rush contributed and 11% cover. Thatch was abundant accounting for approximately 55%. Bare ground accounted for approximately 3% cover.

Transect 4 at Pond 56 consisted of a 10-m transect placed in stratum 4. Eight plant species were observed along the transect. Of these species, six were native and two were non-native. Brown-headed rush was the dominant species, accounting for approximately 14% cover (see Appendix B Table B-15). Thatch was abundant, accounting for approximately 74% cover. Salt grass contributed approximately 5%, while grass poly, Lemmon's canary grass, Hickman's popcornflower, rabbitfoot grass, bugle hedge nettle, and flowering quillwort each contributed 1% cover or less. Bare ground accounted for approximately 2% cover.

Transect 5 at Pond 56 consisted of a 10-m transect placed in stratum 5. Thirteen plant species were observed along the transect. Of these species, eight were native and five were non-native. Brown-headed rush and coyote thistle were the dominant species, accounting for approximately 23% and 15% cover, respectively (see Appendix B Table B-15). Thatch was abundant, accounting for approximately 46%. Alkali mallow contributed approximately 6% cover, while Pacific bent grass, dwarf brodiaea, annual hair grass, salt grass, needle spikerush, grass poly, and rabbit foot grass contributed cover ranging from 1% to 2%. Other species included annual quaking grass, coastal tarweed, and long-beaked filaree. Bare ground accounted for approximately 2% cover.

3.15.2 Wildlife Monitoring

Pond 56 was surveyed for CTS and fairy shrimp on March 16, April 13, and May 19, 2020. California tiger salamanders and fairy shrimp were not detected. Table 3-45 and Table 3-46 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Vernal Pool	Sampling	# of Larvae	# of Larvae	Total Length of Larvae (mm)				-Vent Lena Irvae (mm	Survey Hours	
	Date	Obs.	Measured	Mean*	Range	Mode	Mean*	Range	Mode	
	3/16/2020	0	-	-	-	-	-	-	-	1 hr 36 mins
56	4/13/2020	0	-	-	-	-	-	-	-	3 hrs 20 mins
	5/19/2020	0	-	-	-	-	-	-	-	30 mins

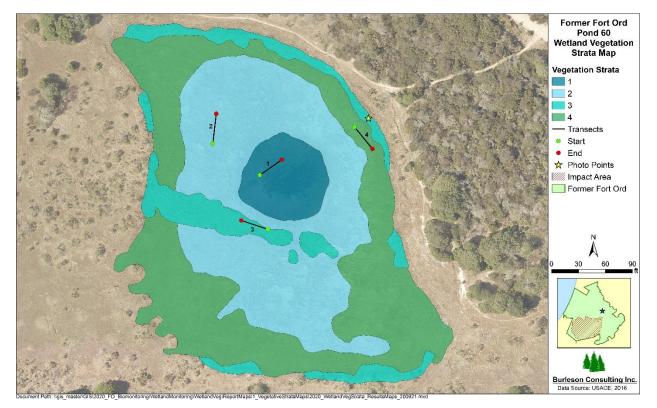
Table 3-45. Pond 56 (Year 3 Post-Mastication) CTS Aquatic Monitoring Results

Table 3-46. Pond 56 (Year 3 Post-Mastication) Fairy Shrimp Monitoring Results

Sampling Date	Abundance (# Individuals)
3/16/2020	Not detected
4/13/2020	Not detected
5/19/2020	Not detected

3.16 Pond 60

Pond 60 was in year 3 post-mastication vernal pool monitoring and year 2 for post-subsurface munitions remediation in 2020. Pond 60 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).


3.16.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 60 on June 17 and August 11, 2020. These monitoring data represent year 3 post-mastication conditions. Pond 60 was dry by July 14 (Chenega, 2021). Biologists identified four strata at the vernal pool (see Table 3-47 and Figure 3-19). Appendix B provides the species cover results within each stratum. Strata 1 through 4 were repeated from 2015, 2018, and 2019. Transect 1 was relocated to an area with more representative vegetative composition. Transect 2 was repeated from 2018 and 2019, while Transect 3 was repeated from 2018. Transect 4 was repeated from 2015.

Stratum	Percentage
1	7%
2	39%
3	13%
4	41%

 Table 3-47. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)

 Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Figure 3-19. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Fifty-seven plant species were observed within the vernal pool basin boundary. Of these species, 32 were native and 25 were non-native. Eight species were OBL wetland plants, 18 were FACW or FAC, 10 were FACU or UPL, and 21 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 60 consisted of a 10-m transect placed in stratum 1. Two native plant species were observed along the transect. Pale spikerush was the dominant species, accounting for approximately 51% cover (see Appendix B Table B-16). Thatch was abundant accounting for approximately 45% cover. Alkali mallow was the other species observed which contributed 3% cover. Bare ground accounted for approximately 1%.

Transect 2 at Pond 60 consisted of a 10-m transect placed in stratum 2. Four plant species were observed along the transect. Three were native and one was non-native. Pale spikerush was the dominant species, accounting for approximately 44% cover (see Appendix B Table B-16). Thatch was abundant accounting for approximately 41% cover. Salt grass contributed approximately 7% cover, brown-headed rush was approximately 3% cover, while brass buttons was less than 1%. Bare ground accounted for approximately 5%.

Transect 3 at Pond 60 consisted of a 10-m transect placed in stratum 3. Three native plant species were observed along the transect. Brown-headed rush and pale spikerush were the dominant species, accounting for approximately 38% and 20% cover, respectively (see Appendix B Table B-16). Thatch was

abundant accounting for approximately 37% cover. Salt grass contributed 4% cover, while bare ground accounted for approximately 2%.

Transect 4 at Pond 60 consisted of a 10-m transect placed in stratum 4. Seventeen plant species were observed along the transect. Of these species, nine were native and eight were non-native. Bugle hedge nettle and rabbitfoot grass were the dominant species, accounting for approximately 12% and 11% cover, respectively (see Appendix B Table B-16). Thatch was abundant accounting for approximately 47% cover. Salt grass contributed 9% cover, while needle spikerush and pale spikerush each contributed 5% cover. Annual quaking grass, horseweed, brown-headed rush, grass poly, and Lemmon's canary grass contributed cover ranging from 1% to 2%. Other species included silvery hair-grass, brass buttons, Howell's quillwort, weedy cudweed, cottonbatting plant, curly dock, and common sow thistle. Bare ground accounted for approximately 5%.

3.16.2 Wildlife Monitoring

Pond 60 was surveyed for CTS and fairy shrimp on March 16, April 14 and May 18, 2020. California tiger salamanders were present at all three monitoring events while fairy shrimp were not detected. Table 3-48 and Table 3-49 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Table 3-48. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic Monitoring Results

Vernal	Sampling	# of Larvae	# of Larvae	Total Length of Larvae (mm)				Vent Leng Irvae (mm	Survey	
Pool	Date	Obs.	Measured	Mean*	Range	Mode	Mean*	Range	Mode	Hours
	3/16/2020	1	1	16	16	16	7	7	7	1 hr
60	4/14/2020	5	5	34	26-38	38	17	15-19	18	2 hrs 40 mins
	5/18/2020	7	7	88	70-101	N/A	49	41-55	52	1 hr

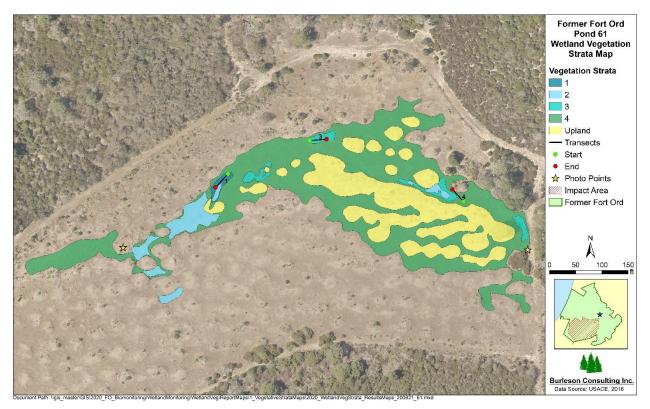
*The mean was rounded to the nearest whole number

Table 3-49. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Fairy Shrimp Monitoring Results

Sampling Date	Abundance (# Individuals)
3/16/2020	Not detected
4/14/2020	Not detected
5/18/2020	Not detected

3.17 Pond 61

Pond 61 was in year 3 of monitoring for post-mastication and year 2 for post-subsurface munitions remediation in 2020. Pond 61 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).


3.17.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 61 on May 19, May 20, and June 3, 2020. These monitoring data represent year 3 post-mastication and year 2 post-subsurface munitions remediation conditions. Pond 61 was dry by April 29 (Chenega, 2021). Biologists identified four strata at the vernal

pool (see Table 3-50 and Figure 3-20). Appendix B provides the species cover results within each stratum. Strata 1 through 4 were repeated from 2017, 2018, and 2019. Transect 1 was repeated from 2017, whereas Transect 3 was repeated from 2017, 2018, and 2019. Transect 4 was repeated from 2019. Stratum 2 consisted of CCG and no transect was placed in this stratum. Figure 3-20 illustrates the extent and density of the populations at Pond 61.

Table 3-50. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	1%
2 (CCG)	6%
3	3%
4	59%
Upland	32%

Figure 3-20. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Ninety-eight plant species were observed within the vernal pool basin boundary. Of these species, 68 were native, 29 were non-native, and one was unidentified. Ten species were OBL wetland plants, 29 were FACW or FAC, 13 were FACU or UPL, and 46 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 61 consisted of a 10-m transect placed in stratum 1. Fourteen plant species were observed along the transect. Of these species, 12 were native and two were non-native. Pale spikerush was the dominant species, accounting for approximately 21% cover (see Appendix B Table B-17). Bareground and thatch were abundant, accounting for approximately 34% and 25%, respectively. Howell's quillwort contributed 5% cover, while dwarf brodiaea, needle spikerush, Contra Costa goldfields, smooth goldfields, grass poly, Hickman's popcornflower, and flowering quillwort contributed cover ranging from 1% to 3%. Other species included aquatic pygmy-weed, chaffweed, rabbitfoot grass, Sacramento mesa mint, and round woolly-marbles.

Stratum 2 consisted of CCG. Figure 3-21 illustrates the extent and density of the populations at Pond 61. No transects were placed in stratum 2 to avoid disturbing the population.

Transect 3 at Pond 61 consisted of a 10-m transect placed in stratum 3. Twenty-six plant species were observed along the transect. Of these species, 17 were native, eight were non-native, and one was unidentified. Coyote thistle and Hickman's popcornflower were the dominant species, each accounting for approximately 17% (see Appendix B Table B-17). Thatch was fairly abundant, accounting for approximately 15% cover. Needle spikerush contributed 10% cover, while dwarf brodiaea, smooth goldfields, and grass poly each contributed approximately 7% cover. Annual quaking grass, cut-leaved geranium, Howell's quillwort, brown-headed rush, chaffweed, Sacramento mesa mint, round woolly-marbles, and common sow thistle contributed cover ranging from 1% to 3%. Other species included vernal pool bent grass, rattlesnake grass, timwort, California oat grass, variegated clover, and Unknown 1. Bare ground accounted for approximately 10%.

Transect 4 at Pond 61 consisted of a 10-m transect placed in stratum 4. Twenty plant species were observed along the transect. Of these species, 11 were native and nine were non-native. California oat grass and brown-headed rush were the dominant species, accounting for approximately 29% and 19% cover, respectively (see Appendix B Table B-17). Thatch was also fairly abundant and accounted for approximately 14% cover. Gumweed accounted for approximately 9% cover, while rattlesnake grass, coyote thistle, and cut-leaved geranium contributed cover ranging from 4% to 5%. Common yarrow, dwarf brodiaea, needle spikerush, smooth cat's-ear, chaffweed, coast tarweed, and marsh micoseris contributed cover ranging from 1% to 3%. Other species included Spanish lotus, silvery hair-grass, soft chess, annual quaking grass, rattail sixweeks grass, rough cat's-ear, and scarlet pimpernel. Bare ground accounted for approximately 5%.

3.17.1.1 Contra Costa Goldfields

Contra Costa goldfields at Pond 61 were mapped on April 28, May 13, and May 20, 2020; they occupied 0.15 acre with a density of 15-65% cover. Figure 3-21 illustrates the extent of the CCG population at Pond 61.

Figure 3-21. Contra Costa Goldfields Populations at Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation), 2020

3.17.2 Wildlife Monitoring

Pond 61 was surveyed for CTS and fairy shrimp on April 14, 2020. California tiger salamanders were not detected in April; however, fairy shrimp were present in high abundance. No surveys were conducted in March or May due to insufficient vernal pool depth. Table 3-51 and Table 3-52 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Table 3-51. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) CTS
Aquatic Monitoring Results

Vernal Pool	Sampling	# of Larvae	# of Larvae Measured	- · · · · [Larvae	Snout-Vent Length of Larvae (mm)			Survey
	Date	Obs.		Mean	Range	Mode	Mean	Range	Mode	Hours
61	4/14/2020	0	-	-	-		-	-	-	21 mins

 Table 3-52. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Fairy

 Shrimp Monitoring Results

Sampling Date	Abundance (# Individuals)
4/14/2020	High (172)

3.18 Pond 73

Pond 73 was in year 3 of monitoring for post-mastication and year 2 for post-subsurface munitions remediation in 2020. Pond 73 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.18.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 73 on June 3 and 4, 2020. These monitoring data represent year 3 post-mastication and year 2 post-subsurface munitions remediation conditions. Pond 73 was dry by the June 4 monitoring event. Biologists identified three strata at the vernal pool (see Table 3-53 and Figure 3-22). Appendix B provides the species cover results within each stratum. Strata 1 and 2 were repeated from 2017, 2018, and 2019, whereas stratum 4 was repeated from 2018 and 2019. Transect 1 was repeated from 2018 and 2019. Transect 2 was relocated to an area with more representative vegetative composition. Transect 4 was repeated from 2018.

Table 3-53. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	11%
2	46%
4	41%
Upland	2%

Figure 3-22. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

61

Sixty-nine plant species were observed within the vernal pool basin boundary. Of these species, 43 were native, 25 were non-native, and one was unidentified. Nine species were OBL wetland plants, 25 were FACW or FAC, ten were FACU or UPL, and 25 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Transect 1 at Pond 73 consisted of a 5-m transect placed in stratum 1. Three plant species were observed along the transect. Of these species, two were native and one was non-native. Pale spikerush was the dominant species, accounting for approximately 64% cover (see Appendix B Table B-18). Thatch was abundant, accounting for approximately 32% cover. Brown-headed rush and rabbitfoot grass contributed 1% or less. Bare ground contributed approximately 3% cover.

Transect 2 at Pond 73 consisted of a 10-m transect placed in stratum 2. Eight plant species were observed along the transect. Of these species, six were native and two were non-native. Brown-headed rush was the dominant species accounting for approximately 68% (see Appendix B Table B-18). Thatch was also fairly abundant and contributed approximately 19% cover. Coyote thistle contributed 8% cover. Annual hair grass, needle spikerush, smooth goldfields, and rabbitfoot grass contributed cover ranging from 1% to 4%. Other species included cut-leaved geranium and Hickman's popcornflower.

Transect 4 at Pond 73 consisted of a 10-m transect placed in stratum 4. Twenty-one plant species were observed along the transect. Of these species, twelve were native and nine were non-native. Coyote thistle and rabbitfoot grass were the dominant species, accounting for approximately 31% and 23% cover, respectively (see Appendix B Table B-18). Bare ground and thatch accounted for approximately 9% and 8% cover, respectively. Brown-headed rush contributed 13%, while annual quaking grass, Johnny-Nip, coastal tarweed, annual hair grass, needle spikerush, smooth cat's-ear, dwarf rush, grass poly, chaffweed, round woolly-marbles, common sow thistle, and Davy's centuary contributed cover ranging from 1% to 2%. Other species included vernal pool bent grass, cut-leaved geranium, rough cat's-ear, common toad rush, dwarf rush, narrowleaf cottonrose, and Hickman's popcornflower.

3.18.2 Wildlife Monitoring

Pond 73 was surveyed for CTS and fairy shrimp on April 20, 2020. California tiger salamanders were not detected in April; however, one individual fairy shrimp was present. No surveys were conducted in March or May due to insufficient vernal pool depth. Table 3-54 and Table 3-55 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

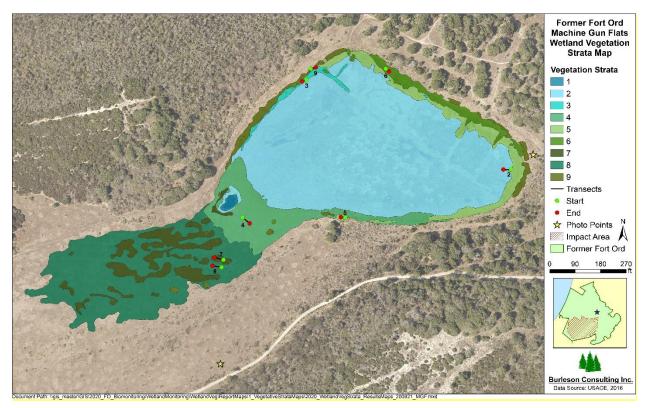
Table 3-54. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) CTS
Aquatic Monitoring Results

Vernal	Sampling	# of Larvae	# of Larvae	Total Length of Larvae (mm)			Snout La	Survey		
Pool Date	Date	Date Obs.	Measured	Mean	Range	Mode	Mean	Range	Mode	Hours
73	4/20/2020	0	-	-	-	-	-	-	-	1 hr

Table 3-55. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Fairy Shrimp Monitoring Results

Sampling Date	Abundance (# Individuals)
4/20/2020	Low (1)

3.19 Machine Gun Flats


Machine Gun Flats, a post-mastication vernal pool, was in year 3 of monitoring in 2020. Machine Gun Flats was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.19.1 Vegetation Monitoring

Vegetation monitoring was completed at Machine Gun Flats on May 29, June 4, June 5, and June 25, 2020. These monitoring data represent year 3 post-mastication conditions. Standing water with a depth of 85 cm was present during the June 25 monitoring event. Biologists identified nine strata at the vernal pool (see Table 3-56 and Figure 3-23). Appendix B provides the species cover results within each stratum. Strata 1 through 9 were repeated from 2019. Transects 3 and 5 were relocated to an area with more representative vegetative composition. All other transects were repeated from 2019.

Table 3-56. Machine Gun Flats (Year 3 Post-Mastication) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	0.3%
2	53%
3	1%
4	9%
5	5%
6	3%
7	6%
8	21%
9	2%

Figure 3-23. Machine Gun Flats (Year 3 Post-Mastication) Vegetation Strata and Transects on Former Fort Ord, 2020

One hundred twenty-three plant species were observed within the vernal pool basin boundary. Of these species, 77 were native, 43 were non-native, and three were unidentified. Nine species were OBL wetland plants, 41 were FACW or FAC, 24 were FACU or UPL, and 49 were not listed. Appendix E identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Stratum 1 consisted of the inundated area with about 21% emergent vegetation, 50% floating vegetation, and 29% open water. Emergent vegetation consisted of pale spikerush and water smartweed (*Persicaria amphibia*). Floating vegetation was longleaf pondweed (*Potamogeton nodosus*). No transects were placed in the stratum because it was inundated at the time of monitoring. Percent cover was visually assessed for this stratum.

Transect 2 at Machine Gun Flats consisted of a 10-m transect placed in stratum 2. Ten plant species were observed along the transect. Of these species, seven were native and three were non-native. Pale spikerush was the dominant species accounting for 15% cover (see Appendix B Table B-19). Thatch was very abundant, accounting for approximately 72%. Rabbitfoot grass contributed 5% cover, while Pacific bent grass, salt grass, brown-headed rush, and longleaf pondweed contributed cover ranging from 1% to 2%. Other species included needle spikerush, Baltic rush, grass poly, and alkali mallow. Bare ground accounted for approximately 2%.

Transect 3 at Machine Gun Flats consisted of a 5-m transect placed in stratum 3. Twenty-three plant species were observed along the transect. Of these species, eight were native and 15 were non-native. Rabbitfoot grass was the dominant species, accounting for approximately 14% cover (see Appendix B

Table B-19). Thatch was abundant, accounting for approximately 35% cover. Baltic rush contributed 6%, while Pacific bent grass, annual quaking grass, coastal tarweed, salt grass, long-beaked filaree, horseweed, cut-leaved geranium, smooth cat's-ear, rough cat's-ear, grass poly, alkali mallow, cut-leaved plantain, weedy cudweed, cutleaf burnweed, small-flower catchfly, prickly sow thistle, common sow thistle, and bugle hedge nettle contributed cover ranging from 1% to 4%. Other species included Italian thistle (*Carduus pycnocephalus*), beardless wild rye (*Elymus triticoides*), and cottonbatting plant. Bare ground accounted for approximately 9%.

Transect 4 at Machine Gun Flats consisted of a 10-m transect placed in stratum 4. Eighteen plant species were observed along the transect. Of these species, seven were native and 11 were non-native. Coyote thistle was the dominant species, accounting for approximately 19% cover (see Appendix B Table B-19). Salt grass contributed 10% cover, while coastal tarweed was 8% cover. Thatch was abundant, accounting for approximately 43%. Annual quaking grass, cut-leaved geranium, smooth cat's-ear, pale flax (Linum bienne), alkali mallow, common sow thistle, and bugle hedge nettle contributed cover ranging from 1% to 4%. Other species included silvery hair-grass, soft chess, long-beaked filaree, Italian rye grass, brownheaded rush, grass poly, cut-leaved plantain, and Davy's centuary. Bare ground accounted for approximately 2%.

Transect 5 at Machine Gun Flats consisted of a 5-m transect placed in stratum 5. Seven plant species were observed along the transect. Of these species, five were native and two were non-native. Baltic rush was the dominant species, accounting for 28% cover (see Appendix B Table B-19). Thatch and bare ground were abundant, accounting for approximately 44% and 23% cover, respectively. Needle spikerush contributed 2% cover, while cut-leaved geranium, brown-headed rush, and cottonbatting plant each contributed approximately 1% cover. Other species included Pacific bent grass and salt grass.

Transect 6 at Machine Gun Flats consisted of a 5-m transect placed in stratum 6. Eight plant species were observed along the transect. Of these species, four were native, three were non-native, and one was unidentified. Western goldenrod and Baltic rush were the dominant species, accounting for approximately 24% and 16% cover, respectively (see Appendix B Table B-19). Bare ground and thatch were abundant, accounting for approximately 28% and 26% cover, respectively. Needle spikerush, cutleaved geranium, scarlet pimpernel, *Pseudognaphalium* sp., common sow thistle, and western vervain (*Verbena lasiostachys* var. *lasiostachys*) contributed 2% or less cover.

Transect 7 at Machine Gun Flats consisted of a 10-m transect placed in stratum 7. Twenty-nine plant species were observed along the transect. Of these species, 15 were native, 12 were non-native, and two were unidentified. Coyote thistle was the dominant species, accounting for approximately 18% cover (see Appendix B Table B-19). Bare ground and thatch were abundant, accounting for approximately 28% and 22%, respectively. Silvery hair-grass, Johnny-Nip, long-beaked filaree, brown-headed rush, cut-leaved plantain, and Davy's centuary contributed cover ranging from 2% to 7%. Vernal pool bent grass, annual quaking grass, dwarf brodiaea, California oat grass, brome fescue, smooth cat's-ear, common toad rush, chaffweed, *Madia* sp., round woolly-marbles, and sack clover (*Trifolim depauperatum*) each contributed 1% cover. Other species included valley tassels, coastal tarweed, rattail sixweeks grass, cut-leaved geranium, dwarf rush, scarlet pimpernel, grass poly, gumweed, common sow thistle, *Trifolium* sp., and variegated clover.

Transect 8 at Machine Gun Flats consisted of a 10-m transect placed in stratum 8. Eleven plant species were observed along the transect. Of these species, three were native and eight were non-native. Brome fescue and California oat grass were the dominant species, accounting for approximately 26%

and 22% cover, respectively (see Appendix B Table B-19). Thatch was abundant, accounting for approximately 30%. Dwarf brodiaea, long-beaked filaree, Italian rye grass, cut-leaved geranium, smooth cat's-ear, pale flax, grass poly, and gumweed contributed cover ranging from 1% to 4%. Other species included annual quaking grass. Bare ground accounted for approximately 7% cover.

Transect 9 at Machine Gun Flats consisted of a 5-m transect placed in stratum 9. Seventeen plant species were observed along the transect. Of these species, three were native, 13 were non-native, and one was unidentified. Beardless wild rye was the dominant species, accounting for approximately 39% cover (see Appendix B Table B-19). Thatch was abundant, accounting for approximately 31%. Needle spikerush, horseweed, smooth cat's-ear, sheep sorrel, and cutleaf burnweed contributed cover ranging from 2% to 6%. Slender wild oat, annual quaking grass, cut-leaved geranium, scarlet pimpernel, grass poly, cut-leaved plantain, rabbitfoot grass, *Pseudognaphlium* sp., weedy cudweed, prickly sow thistle, and common sow thistle contributed 1% cover or less. Bare ground accounted for 6% cover.

3.19.1.1 Contra Costa Goldfields

The area was surveyed four times between March and June and no individuals were detected.

3.19.2 Wildlife Monitoring

Machine Gun Flats was surveyed for CTS and fairy shrimp on March 16, April 14, and May 18, 2020. California tiger salamanders were present in March and April, while one individual fairy shrimp was present in April. Table 3-57 and Table 3-58 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

Vernal Sampling Pool Date	Sampling	# of Larvae	# of Larvae	Total Length of Larvae (mm)			Snout-Vent Length of Larvae (mm)			Survey	
	Date	Obs.	Measured	Mean*	Range	Mode	Mean*	Range	Mode	Hours	
Machine Gun Flats	3/16/2020	5	5	25	23-29	N/A	12	9-15	N/A	2 hrs 4 mins	
	4/14/2020	3	3	36	26-51	N/A	23	19-29	N/A	8 hrs 12 mins	
	5/18/2020	0	-	-	-	-	-	-	-	4 hrs 50 mins	

Table 3-57. Machine Gun Flats (Year 3 Post-Mastication) CTS Aquatic Monitoring Results

*The mean was rounded to the nearest whole number

Table 3-58. Machine Gun Flats (Year 3 Post-Mastication) Fairy Shrimp Monitoring Results
--	-----------------------------------

Sampling Date	Abundance (# Individuals)
3/16/2020	Not detected
4/14/2020	Low (1)
5/18/2020	Not detected

3.20 Pond 16

Pond 16 was in year 2 for post-subsurface munitions remediation in 2020. Pond 16 was monitored for hydrology, vegetation, and wildlife. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2021).

3.20.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 16 on June 15 and August 11, 2020. These monitoring data represent year 2 post-subsurface munitions remediation conditions. Pond 16 was dry by the August 11 monitoring event. Biologists identified five strata at the vernal pool (see Table 3-59 and Figure 3-24). Appendix B provides the species cover results within each stratum. Strata 3 and 5 were repeated from 2015, 2017, and 2019. Strata 1, 4, and 6 were repeated from 2017 and 2019. Transects 3 and 5 were repeated from 2015, 2017, and 2019. Transect 4 was repeated from 2019, whereas Transect 6 was repeated from 2017 and 2017 and 2019.

Table 3-59. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage
within the Vernal Pool Basin Boundary

Stratum	Percentage
1	4%
3	34%
4	25%
5	33%
6	4%

Figure 3-24. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2020

Eighty-one species were observed within the vernal pool basin boundary. Of these species, 52 were native and 29 were non-native. Eight species were OBL wetland plants, 30 were FACW or FAC, 16 were FACU or UPL, and 27 were not listed. Appendix E identifies the number of native, non-native, and

unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum.

Stratum 1 at Pond 16 consisted of an estimated California bulrush (*Schoenoplectus californicus*) 65%, Chinese pusley 2%, bull thistle 1%, lowland cudweed 1%, alkali mallow 1%, thatch 5%, and bare ground 25% cover. No transects were placed in the stratum since the height and density of the California bulrush created accessibility issues. Percent cover was visually assessed for this stratum.

Transect 3 at Pond 16 consisted of a 10-m transect placed in stratum 3. Five plant species were observed along the transect. Of these species three were native and two were non-native. Pale spikerush was the dominant species, accounting for approximately 54% cover (see Appendix B Table B-20). Thatch was abundant, accounting for approximately 23% cover. Lowland cudweed contributed approximately 10%, while swamp pricklegrass (*Crypsis schoenoides*) contributed 5% cover. Other species included barnyard grass (*Echinochloa crus-galli*) and alkali mallow. Bare ground accounted for approximately 8% cover.

Transect 4 at Pond 16 consisted of a 10-m transect placed in stratum 4. Eight plant species were observed along the transect. Of these species six were native and two were non-native. Clustered field sedge was the dominant species, accounting for approximately 54% cover (see Appendix B Table B-20). Thatch was fairly abundant, accounting for approximately 20% cover. Baltic rush and California blackberry (*Rubus californica*) contributed approximately 13% and 9% cover, respectively. Seashore bent grass (*Agrostis pallens*), annual quaking grass, bull thistle, beardless wild rye, and brown-headed rush each contributed 1% cover or less. Bare ground accounted for approximately 1% cover.

Transect 5 at Pond 16 consisted of a 10-m transect placed in stratum 5. Three native plant species were observed along the transect. Whiteroot (*Carex barbarae*) and California blackberry were the dominant species, accounting for approximately 39% and 20% cover, respectively (see Appendix B Table B-20). Thatch was abundant, accounting for approximately 21% cover. West Coast Canada goldenrod (*Solidago elongata*) contributed approximately 10% cover. Bare ground accounted for 10% cover.

Transect 6 at Pond 16 consisted of a 5-m transect placed in stratum 6. Three plant species were observed along the transect. Of these species one was native and two were non-native. Baltic rush was the dominant species, accounting for approximately 72% cover (see Appendix B Table B-20). Thatch was abundant accounting for 23% cover. Other species included weedy cudweed and curly dock. Bare ground contributed approximately 4% cover.

3.20.2 Wildlife Monitoring

Pond 16 was surveyed for CTS and fairy shrimp on April 20 and May 19, 2020. California tiger salamanders were not detected; however, fairy shrimp were present in April in high abundance. No surveys were conducted in March due to insufficient vernal pool depth. Table 3-60 and Table 3-61 provide results of the CTS and fairy shrimp surveys completed in 2020. Invertebrate results for 2020 are provided in Appendix C (see Table C-2).

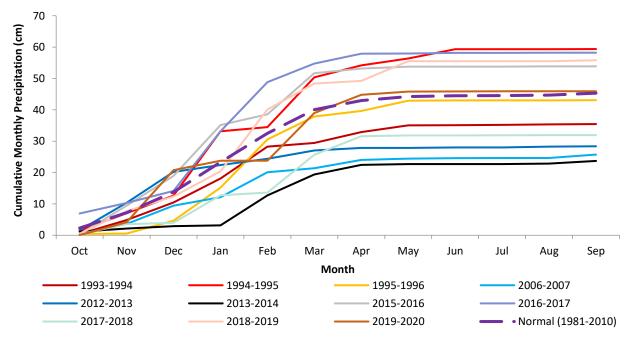
Table 3-60. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) CTS Aquatic MonitoringResults

Vernal Sampling # of		# of	Total Length of Larvae (mm)			Snout-V	Survey			
Pool	Date	Larvae Obs.	Larvae Measured	Mean*	Range	Mode	Mean *	Range	Mode	Hours
10	4/20/2020	0	-	-	-	-	-	-	-	2 hrs
16	5/19/2020	0	-	-	-	-	-	-	-	1 hr 10 mins

Table 3-61. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Fairy Shrimp MonitoringResults

Sampling Date	Abundance (# Individuals)
4/20/2020	High (267)
5/19/2020	Not detected

4 DISCUSSION


Data quality objectives (DQO) and performance standards outlined in the Wetland Plan were used to measure successful wetland function following MEC and soil remediation activities (Burleson, 2006). Evaluation for the DQOs was included in the Methods Section 2.4. DQOs for wetland vegetation and wildlife are summarized below:

- DQO 3: vegetation similar hydrophytic vegetation as reference control wetlands
- DQO 5: wildlife consistent with baseline and similar to reference control wetland trends

4.1 Pond 5 – Reference

Pond 5 has been monitored for twelve years as a reference vernal pool. Table 4-1 summarizes the years in which monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 5 (see Figure 4-1). Above-normal water-years were 1994-1995, 2015-2016, 2016-2017, and 2018-2019. All other monitoring was conducted either in a normal or below-normal water-year, drought year, or consecutive drought year.

		Water-Year										
Survey	1993-	1994-	1995-	2006-	2009-	2012-	2013-	2015-	2016-	2017-	2018-	2019-
	1994	1995	1996	2007	2010	2013	2014	2016	2017	2018	2019	2020
Hydrology	•	•	•	•		•	•	•	•	•	•	•
Vegetation	•	•	•	•				•	•	•	•	•
Wildlife	•	•	•	•	•			•	•	•	•	•

Figure 4-1. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 5 (Reference) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.1.1 Vegetation Monitoring

Vegetation data were collected at Pond 5 in 2007, 2016, 2017, 2018, 2019, and 2020 (Shaw, 2008; Burleson, 2017, 2018, 2019, and 2020). Data from 1994, 1995, and 1996 only represent dominant species and are not included in the following analyses because the data were collected using a different methodology than was used in more recent years (Jones and Stokes, 1996). In 2007, data were collected in three zones using a 1.0 m² quadrat placed at three locations within each zone, and data for all strata were combined for the entire pool to allow for comparison to other years. In years 2016-2020, data were collected using methodologies described in the Methods section of this report. Data from 2016 and 2020 were compared stratum-to-stratum in Table 4-2 as well as visually in Figure 4-2.

Stratum	Percentage				
Stratum	2016	2020			
1	26%	35%			
2	32%	32%			
3	38%	12%			
4	4%	N/A			
6	N/A	14%			
7	N/A	7%			

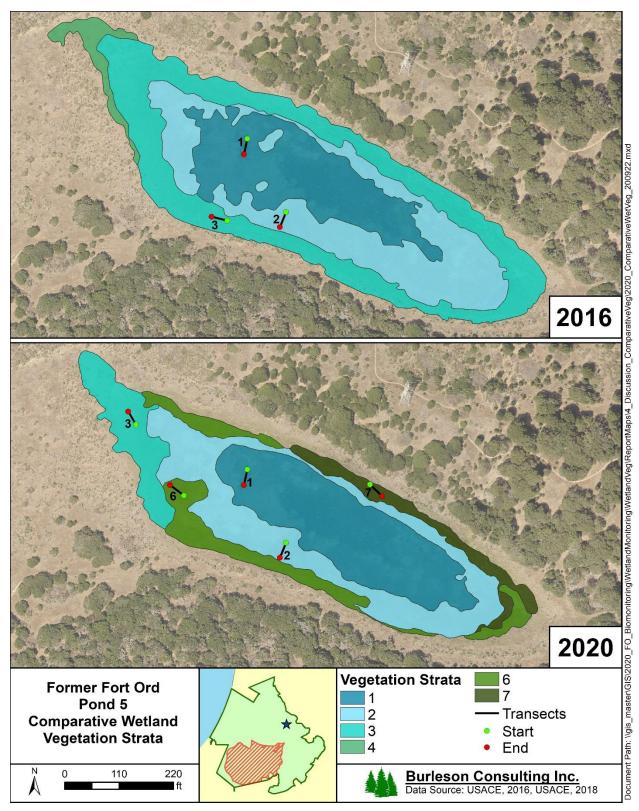


Figure 4-2. Pond 5 (Reference) Vegetation Strata and Transects for 2016 and 2020

The absolute percent vegetative cover observed in 2020 was comparable to previous years and most similar to 2018 (see Table 4-3). Vegetative cover ranged from 36.3% in 2007 to 76.0% in 2019, whereas thatch/bare ground ranged from 24.0% in 2019 to 63.7% in 2007.

Year	Vegetative Cover	Thatch/Bare Ground
2007	36.3%	63.7%
2016	75.1%	25.2%
2017	60.5%	40.4%
2018	54.6%	45.5%
2019	76.0%	24.0%
2020	47.6%	52.4%

Table 4-3. Pond 5 (Reference) Absolute Percent Cover

Species richness increased between 2007 and 2018, subsequently decreased on transects in 2019 and decreased on both transects and overall basin in 2020 at Pond 5. Species richness on transects was 4, 7, 29, 41, 35, and 17 species in 2007, 2016, 2017, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 26, 40, 73, 88, 94, and 69 species, respectively (see Table 4-4 and Appendix A Table A-1).

Species composition at Pond 5 varied between monitoring years; however, the dominant species in the vernal pool were pale spikerush (*Eleocharis macrostachya*) and salt grass (*Distichlis spicata*) in the majority of monitoring years. Baltic rush (*Juncus balticus*) and bugle hedge nettle (*Stachys ajugoides*) contributed greater cover in 2020 than has previously been observed. A complete comparison of species composition observed during the surveys at Pond 5 in 2007, 2016, 2017, 2018, 2019, and 2020 can be found in Appendix F. Figure 4-3 shows a subset of this comparison for species observed with a 2% cover or greater.

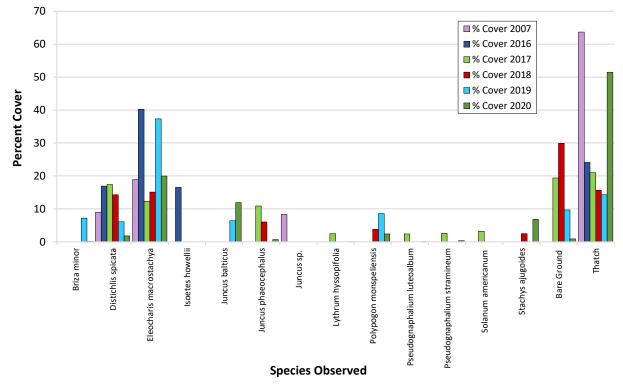


Figure 4-3. Percent Cover of Dominant Species at Pond 5 (Reference)

Native and non-native species richness on Pond 5 transects increased through time until 2018 and decreased in 2019 and 2020 (see Table 4-4). The relative percent cover of native species varied through time and the 2020 values were within the range observed in previous years. The relative percent cover of non-native species increased from 2016-2019 but decreased in 2020 (see Table 4-5).

Year	Native	Non-Native	Unidentified
2007	2	1	1
2016	7	0	0
2017	15	11	3
2018	25	16	0
2019	21	14	0
2020	12	11	0

Year	Native	Non-Native	Unidentified
2007	76.9%	0.3%	22.9%
2016	100.0%	0.0%	0.0%
2017	86.6%	12.9%	0.6%
2018	83.3%	16.7%	0.0%
2019	73.6%	26.4%	0.0%
2020	91.3%	8.7%	0.0%

Table 4-5. Pond 5 (Reference) Relative Percent Cover of Native and Non-Native Plants

Wetland and non-wetland species richness on Pond 5 transects increased through time until 2018 and decreased slightly in 2019 and 2020 (see Table 4-6). The relative percent cover of wetland and non-wetland species were within the range of previously observed values (see Table 4-7).

Year	Wetland			Non-We	Not Listed		
Tear	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
2007	1	1	0	1	0	1	
2016	3	3	0	1	0	0	
2017	5	8	5	5	0	6	
2018	5	11	7	8	1	9	
2019	5	9	4	5	1	11	
2020	4	7	3	3	1	5	

Table 4-6. Pond 5 (Reference) Wetland and Non-Wetland Species Richness

Table 4-7. Pond 5 (Reference) Relative Percent Cover of Wetland and Non-Wetland Species

Voor		Wetland		Non-We	Not Listed	
fear	Year OBL		ACW FAC		UPL	NOT LISTED
2007	52.1%	24.8%	0.0%	0.3%	0.0%	22.9%
2016	75.9%	23.3%	0.0%	0.8%	0.0%	0.0%
2017	26.3%	55.3%	9.6%	8.0%	0.0%	0.8%
2018	33.7%	50.5%	10.2%	3.3%	0.3%	2.0%
2019	51.9%	31.0%	10.3%	3.4%	0.1%	3.3%
2020	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%

4.1.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. As a reference vernal pool, Pond 5 is used for comparison to remediated vernal pools.

4.1.1.2 *Performance Standard: Plant Cover and Species Diversity*

Pond 5 is a reference vernal pool and not required to meet performance standards. The vernal pool provides a control for comparison to the remediated vernal pools.

4.1.2 Wildlife Monitoring

Wildlife data were collected at Pond 5 in 1994, 1995, 1996, 2007, 2010, 2016, 2017, 2018, 2019, and 2020 (Jones and Stokes, 1996; Shaw, 2008, 2011; Burleson, 2017, 2018, 2019, 2020). Fairy shrimp were present in 1995 and 2019. California tiger salamander larvae were observed in 1995, 2010, 2016, 2017, and 2019. Table 4-8 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1994	Not detected	Not detected
1995	Abundant	Very low – moderate
1996	Not detected	Not detected
2007	Not detected	Not detected
2010	Few - Common	Not detected
2016	Common - Abundant (101, 75, 100)	Not detected
2017	Common (12, 18, 16)	Not detected
2018	Not detected	Not detected
2019	Common - Abundant (0, 165, 46)	Low (3)
2020	Not detected	Not detected

 Table 4-8. Pond 5 (Reference) Historic Wildlife Monitoring Results

4.1.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020. They were present in 1995, 2010, 2016, 2017, and 2019, but were not detected in 1994, 1996, 2007, 2018, or 2020. The variation in CTS presence may be associated with rainfall patterns and the resultant vernal pool habitat. Presence was always observed in the surveyed above-normal water years, however, CTS were only present once (2010) in a normal or below normal water-year (see Figure 4-1 and Table 4-8).

Fairy shrimp were not detected in 2020. Fairy shrimp were previously detected in 1995 and 2019.

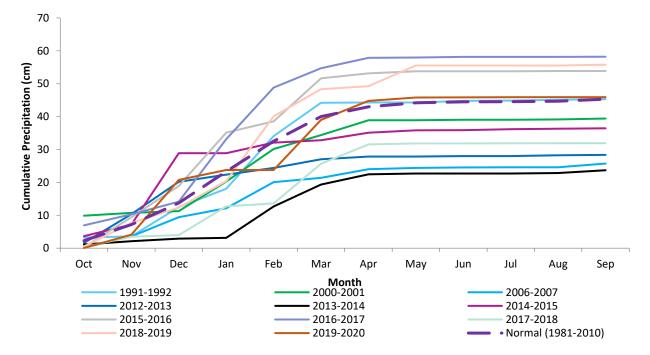
4.1.2.2 Performance Standard: Wildlife Usage

Pond 5 is a reference vernal pool and was not required to meet the performance standards. The vernal pool is used as a control for comparison to the remediated vernal pools.

4.1.3 Conclusion

Pond 5 is used for comparison to remediated vernal pools (see Table 4-9).

Table 4-9. Success at Pond 5 (Reference) Based on Performance Standards and Applicable DataQuality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Suitable for Comparison
Wildlife Usage	DQO 5	Suitable for Comparison

4.2 Pond 101 East (East) – Reference

Pond 101 East (East) was monitored for twelve years as a reference vernal pool. Table 4-10 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 101 East (East) (see Figure 4-4). Above-normal water-years were 2015-2016, 2016-2017, and 2018-2019. All other monitoring was conducted either in a normal or below-normal water-year, drought year, or consecutive drought year.

Table 4-10. Pond 101 East (East) (Reference) Summary of Historic Surveys for Hydrology,Vegetation, and Wildlife

	Water-Year											
Survey	1991-	2000-	2006-	2009-	2012-	2013-	2014-	2015-	2016-	2017-	2018-	2019-
	1992	2001	2007	2010	2013	2014	2015	2016	2017	2018	2019	2020
Hydrology		•	٠		•	•	•	•	•	•	•	•
Vegetation								•	•	•	•	•
Wildlife	٠	•	٠	•				•	•	•	٠	•

Figure 4-4. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 101 East (East) (Reference) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.2.1 Vegetation Monitoring

Vegetation data were collected at Pond 101 East (East) in 2016, 2017, 2018, 2019, and 2020 (Burleson, 2017, 2018, 2019, 2020). Data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2020 were compared stratum-to-stratum in Table 4-11 as well as visually in Figure 4-5.

Table 4-11. Pond 101 East (East) (Reference) Vegetative Strata Percentage within the Vernal PoolBasin Boundary

Stratum	Percentage				
Stratum	2016	2020			
1	0.4%	0.4%			
2	48%	38%			
3	44%	N/A			
4	8%	25%			
5	N/A	2%			
6	N/A	0.5%			
8	N/A	34%			

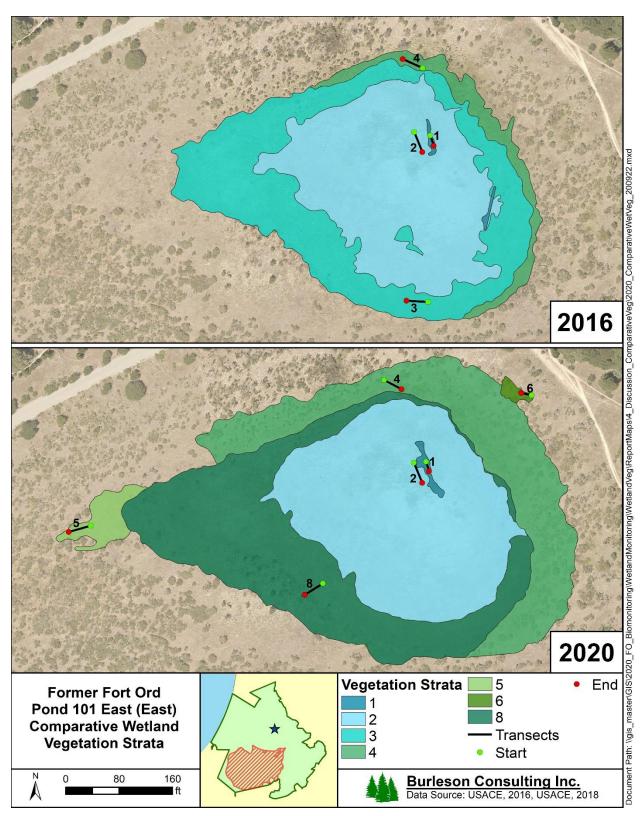


Figure 4-5. Pond 101 East (East) (Reference) Vegetation Strata and Transects for 2016 and 2020

The absolute percent vegetative cover observed in 2020 was comparable to previous years and most similar to 2016 (see Table 4-12). Vegetative cover ranged from 60.7% in 2016 to 84.6% in 2017, whereas thatch/bare ground ranged from 16.6% in 2017 to 41.0% in 2016.

Year	Vegetative Cover Thatch/Bare Grou	
2016	6 60.7% 41.0%	
2017	84.6%	16.6%
2018	68.7%	32.6%
2019	72.6%	28.6%
2020	63.4%	36.6%

Table 4-12. Pond 101 East (East) (Reference) Absolute Percent Cover

Species richness increased between 2016 and 2020 on the transects and fluctuated slightly in the overall basin between 2018 and 2020 at Pond 101 East (East). Species richness on transects was 18, 18, 32, 37, and 43 species in 2016, 2017, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 37, 59, 89, 84, and 86 species, respectively (see Table 4-13 and Appendix A Table A-2).

Species composition at Pond 101 East (East) was variable through time, and the dominant species were different between years. Pale spikerush (*Eleocharis macrostachya*) and Baltic rush (*Juncus balticus*) were the dominant species in 2016 and 2020; Baltic rush (*Juncus balticus*) and purple cudweed (*Gnaphalium palustre*) were the dominant species in 2017; pale spikerush (*Eleocharis macrostachya*), common toadrush (*Juncus bufonius* var. *bufonius*) and alkali mallow (*Malvella leprosa*) were dominant in 2018, and pale spikerush (*Eleocharis macrostachya*), sheep sorrel (*Rumex acetosella*), and Baltic rush (*Juncus balticus*) were dominant in 2019. A complete comparison of species composition observed at Pond 101 East (East) in 2016, 2017, 2018, 2019, and 2020 can be found in Appendix F.

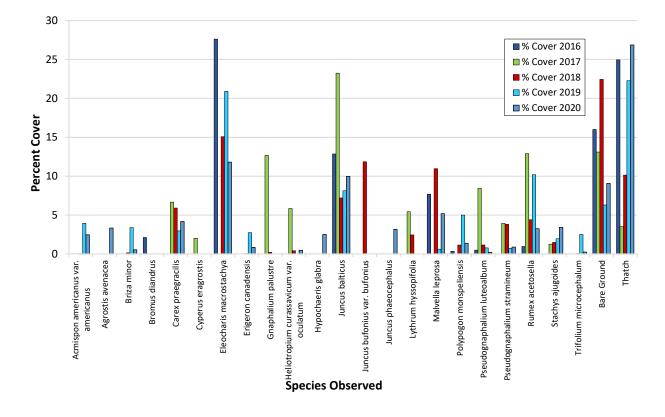


Figure 4-6. Percent Cover of Dominant Species at Pond 101 East (East) (Reference)

Native species richness on Pond 101 East (East) transects increased between 2016 and 2018, remained the same in 2019, and increased in 2020 (see Table 4-13). Non-native species richness was more variable between monitoring years, but generally increased by 2019 and remained the same in 2020. Native and non-native species relative percent cover were variable, and 2020 values were most similar to 2017 and 2019 (see Table 4-14).

Year	Native	Non-Native	Unidentified
2016	9	9	0
2017	13	5	0
2018	18	11	3
2019	18	19	0
2020	24	19	0

Table 4-13. Pond 101 East (East) (Reference) Native and I	Non-Native Species Richness
-----------------------------	--------------------------------	-----------------------------

Year	Native	Non-Native	Unidentified
2016	88.9%	11.1%	0.0%
2017	67.7%	32.3%	0.0%
2018	84.4%	14.7%	0.9%
2019	64.7%	35.3%	0.0%
2020	72.2%	27.8%	0.0%

Table 4-14. Pond 101 East (East) (Reference) Relative Percent Cover of Native and Non-Native Plants

Wetland species richness on Pond 101 East (East) transects increased between 2016 and 2018, but was static in 2019 and increased in 2020 (see Table 4-15). Non-wetland species on transects increased from 2016 to 2019 and decreased in 2020. The relative percent cover of wetland species was variable between surveys with a decrease in 2019 and 2020 (see Table 4-16). The relative percent cover of non-wetland species was relatively static between surveys with a slight increase in 2018 and 2019 and a decrease in 2020.

Voor		Wetland		Non-Wetland		Not Listed
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2016	3	6	1	3	0	5
2017	3	8	3	2	0	2
2018	5	9	5	4	2	7
2019	4	8	7	7	3	8
2020	5	8	7	6	3	14

Table 4-15. Pond 101 East (East) (Reference) Wetland and Non-Wetland Species Richness

Table 4-16. Pond 101 East (East) (Reference) Relative Percent Cover of Wetland and Non-WetlandSpecies

Voor		Wetland		Non-Wetland		Notlisted
Year	OBL	FACW	FAC	FACU	UPL	Not Listed
2016	48.4%	27.3%	1.0%	15.1%	0.0%	8.2%
2017	8.1%	64.0%	5.3%	15.6%	0.0%	7.0%
2018	28.2%	40.2%	6.0%	22.6%	1.1%	1.8%
2019	32.9%	24.0%	12.5%	19.4%	3.4%	7.7%
2020	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%

4.2.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. As a reference vernal pool, Pond 101 East (East) is used for comparison to remediated vernal pools.

4.2.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 101 East (East) is a reference vernal pool and not required to meet performance standards. The vernal pool provides a control for comparison to the remediated vernal pools.

4.2.2 Wildlife Monitoring

Wildlife data were collected at Pond 101 East (East) in 1992, 2001, 2007, 2010, 2016, 2017, 2018, 2019, and 2020 (Jones and Stokes, 1992; Harding ESE, 2002; Shaw, 2007; Shaw, 2011; Burleson, 2017, 2018, 2019, 2020). California tiger salamander larvae were observed in 1992, 2010, 2016, 2017, 2018, and 2019. Fairy shrimp were present in 2001, 2019, and 2020. Table 4-17 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1992	Present*	Not detected*
2001	Not detected*	Moderate (100, 12)
2007	Not detected	Not detected
2010	Common*	Not detected*
2016	Common – Abundant (>101, 101, 67)	Not detected
2017	Common (36, 70, 5)	Not detected
2018	Few (2)	Not detected
2019	Common – Abundant (38, 212, 225)	Moderate (32)
2020	Not detected	Moderate (15)

Table 4-17. Pond 101 East (East) (Reference) Historic Wildlife Monitoring Results

*Data do not differentiate between 101 East (East), 101 East (West), and 101 West. They are identified collectively as Pond 101.

4.2.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020 although they were present in 1992, 2010, 2016, 2017, 2018, and 2019. The lack of CTS in 2001, 2007, and 2020 may have been associated with below-normal or normal precipitation; however, CTS were present in below-normal water-years 2010 and 2018.

Fairy shrimp were present in 2020. Fairy shrimp were not detected in 1992, 2007, 2010, 2016, 2017, or 2018, but were present in 2001 and 2019. It was possible that survey event timing prevented detections since previous fairy shrimp detections were made in February and March and surveys during years with no detections occurred later between March and May. However, this was not the case for surveys in 2020. Surveys occurred between March and May and fairy shrimp were present, suggesting that detection is likely associated with the timing of precipitation and resultant ponding, rather than specific months.

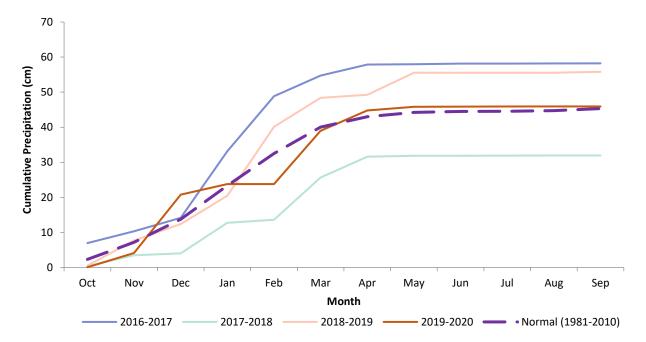
4.2.2.2 Performance Standard: Wildlife Usage

Pond 101 East (East) is a reference vernal pool and was not required to meet the performance standard. The vernal pool is used as a control for comparison to the remediated vernal pools.

4.2.3 Conclusion

Pond 101 East (East) is used for comparison to remediated vernal pools (see Table 4-18).

Performance Standard	Applicable DQO	Success		
Plant Cover & Species Diversity	DQO 3	Suitable for Comparison		
Wildlife Usage	DOO 5	Suitable for Comparison		


Table 4-18. Success at Pond 101 East (East) (Reference) Based on Performance Standards andApplicable Data Quality Objectives

4.3 Pond 997 – Reference

Pond 997 was monitored for four years as a reference vernal pool, although approximately 13% of vegetation within the Pond 997 watershed was masticated in 2017. Table 4-19 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 997 (see Figure 4-7). The 2016-2017 and 2018-2019 water-years were above-normal, whereas the 2019-2020 water-year was similar to the cumulative normal, and 2017-2018 water-year was below normal.

Table 4-19. Pond 997 (Reference) Summary of Historic Surveys for Hydrology, Vegetation, andWildlife

Survoy	Water-Year				
Survey	2016-2017	2017-2018	2018-2019	2019-2020	
Hydrology	•	•	•	•	
Vegetation	•	•	•	•	
Wildlife	•		•	•	

Figure 4-7. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 997 (Reference) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.3.1 Vegetation Monitoring

Vegetation data were collected at Pond 997 in 2017, 2018, 2019, and 2020 (Burleson, 2018, 2019, 2020). Data were collected using the methodology described in the Methods section of this report. Data from 2017 and 2020 were compared stratum-to-stratum in Table 4-20 as well as visually in Figure 4-8.

Pond 997 also supports a CCG population, located in stratum 2. The population was mapped and a visual estimate of percent cover was recorded in 2020 to compare to 2017, 2018, and 2019 (see Figure 4-10 in Section 4.3.1.1).

Table 4-20. Pond 997 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin	
Boundary	

Stratum	Percentage		
Stratum	2017	2020	
1	3%	6%	
2 (CCG)	2%	4%	
3	89%	78%	
4	2%	N/A	
5	N/A	12%	
Upland	4%	N/A	

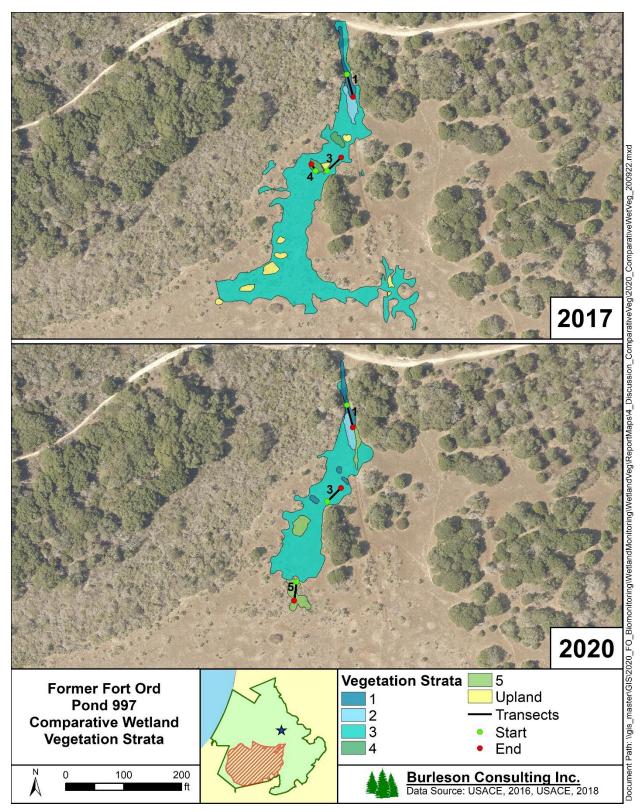


Figure 4-8. Pond 997 (Reference) Vegetation Strata and Transects for 2017 and 2020

The absolute percent vegetative cover observed in 2020 was comparable to previous years and most similar to 2019 (see Table 4-21). Vegetative cover ranged from 44.7% in 2018 to 73.3% in 2019, whereas thatch/bare ground ranged from 28.6% in 2019 to 55.4% in 2018.

Year	Vegetative Cover	Thatch/Bare Ground
2017	57.3%	43.7%
2018	44.7%	55.4%
2019	73.3%	28.6%
2020	70.2%	29.8%

Table 4-21. Pond 997 (Reference) Absolute Percent Cover

Species richness on transects increased between 2017 and 2019 and decreased slightly in 2020. Species richness in the overall basin was the same as 2019 and slightly less than 2018 at Pond 997. Species richness on transects was 27, 45, 48, and 42 species in 2017, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 65, 87, 82, and 82 species, respectively (see Table 4-22 and Appendix A Table A-3).

Species composition at Pond 997 was similar for all three years. Coyote thistle (*Eryngium armatum*) and brown-headed rush (*Juncus phaeocephalus*) were the dominant species in 2018, 2019, and 2020, while coyote thistle and California oatgrass (*Danthonia californica*) were dominant in 2017. A complete list of species observed at Pond 997 in 2017, 2018, 2019, and 2020, can be found in Appendix F. Figure 4-9 shows a subset of the observed species with a 2% cover or greater.

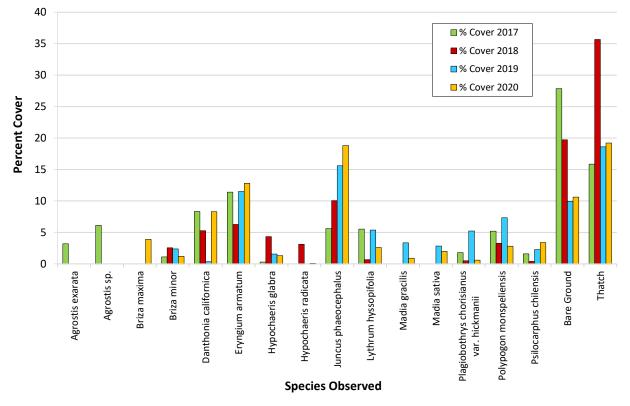


Figure 4-9. Percent Cover of Dominant Species at Pond 997 (Reference)

Native species richness on Pond 997 transects increased from 2017 to 2020 (see Table 4-22). Non-native species richness increased from 2017-2019 and decreased in 2020. Native relative percent cover was higher in 2020 than in previous years, while non-native cover was within the range of values observed in previous years (see Table 4-23).

Year	Native	Non-Native	Unidentified
2017	15	11	1
2018	24	19	2
2019	27	21	0
2020	27	14	1

Table 4-22. Pond 997 (Reference) Native and Non-Native Species Richness
---------------------------------	--

Table 4-23. Pond 997 (Reference) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
2017	66.3%	23.0%	10.7%
2018	56.3%	43.5%	0.2%
2019	68.5%	31.5%	0.0%
2020	76.3%	23.6%	0.1%

Wetland and non-wetland species richness on Pond 997 transects increased from 2017 to 2019 and was static in 2020 (see Table 4-24). The relative percent cover of wetland and non-wetland species fluctuated between 2017 and 2020. Cover values from 2020 were within the range of values in previous years (see Table 4-25).

Voor	Wetland			Non-Wetland		Not Listed
Year	OBL	FACW	FAC	FACU	UPL	Not Listed
2017	5	10	2	3	0	7
2018	8	10	5	8	0	14
2019	9	9	6	8	1	15
2020	9	10	5	5	0	13

Year	Wetland			Non-Wetland		Not Listed	
Tear	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
2017	19.3%	50.7%	16.5%	0.5%	0.0%	13.0%	
2018	4.6%	47.5%	20.7%	14.2%	0.0%	13.0%	
2019	18.7%	55.4%	4.6%	3.8%	0.3%	17.1%	
2020	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%	

4.3.1.1 Contra Costa Goldfields

Populations and cover estimates of CCG have been collected from 2017-2020, whereas in previous years its presence was noted (Burleson, 2018, 2019, 2020). The area of CCG at Pond 997 decreased from 0.02 acre in 2017 to 0.01 acre in 2018 and remained at 0.01 acre in 2019. The area increased in 2020 to 0.02 acre (see Figure 4-10). The density increased from 10% cover in 2017 to 25% cover in 2018 to 35% in 2019 and back to 10% cover in 2020. The CCG population was in a similar location in all survey years. Minor changes in population size can be attributed to natural fluctuation as no remediation has occurred in recent years.

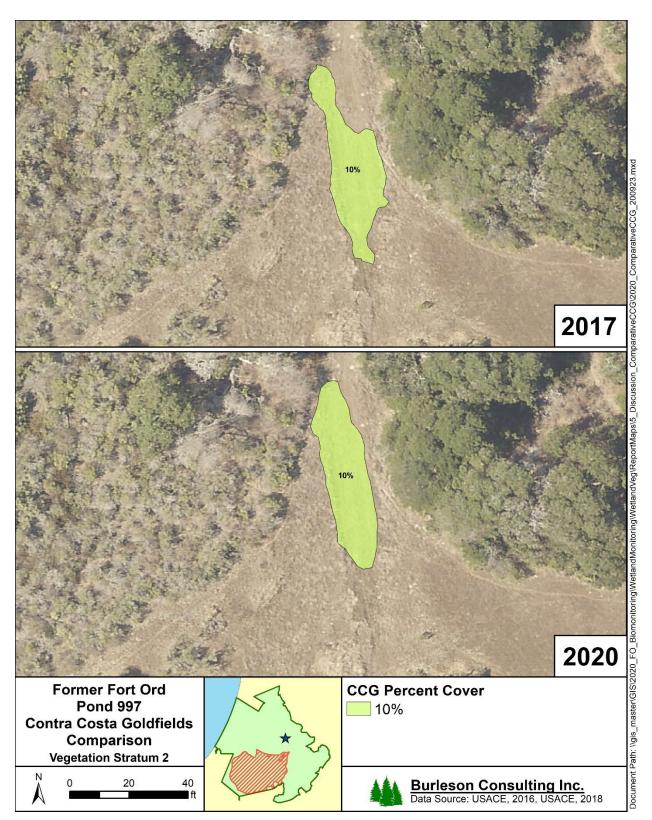


Figure 4-10. Contra Costa Goldfields Populations at Pond 997 (Reference) in 2017 and 2020

Not detected

4.3.1.2 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. As a reference vernal pool, Pond 997 was used for comparison to remediated vernal pools.

4.3.1.3 Performance Standard: Plant Cover and Species Diversity

Pond 997 is a reference vernal pool and not required to meet performance standards. The vernal pool provides a control for comparison to the remediated vernal pools.

4.3.2 Wildlife Monitoring

Wildlife data were collected at Pond 997 in 2017 and 2019 (Burleson, 2018). California tiger salamander and fairy shrimp were not detected. The vernal pool did not hold sufficient depth for surveys to be completed in 2018 or 2020.

Table 4-26. Pond 997 (Reference) Historic Wildlife Monitoring Results						
Sampling Year CTS Larvae Abundance (# Individuals) Fairy Shrimp Abundance (# Individuals						
2017	Not detected	Not detected				

4.3.2.1 Data Quality Objective 5

Pond 997 was not surveyed in 2020. In the years when surveys were completed, CTS and fairy shrimp were not detected. Pond 997 may not provide suitable habitat for CTS or fairy shrimp.

4.3.2.2 Performance Standard: Wildlife Usage

Pond 997 is a reference vernal pool and not required to meet performance standards. The vernal pool is used as a control for comparison to the remediated vernal pools.

Not detected

4.3.3 Conclusion

2019

S

Pond 997 is used for comparison to remediated vernal pools (see Table 4-27).

Table 4-27. Success at Pond 997 (Reference) Based on Performance Standards and Applicable DataQuality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Suitable for Comparison
Wildlife Usage	DQO 5	Suitable for Comparison

4.4 Pond 101 East (West) – Year 2

Pond 101 East (West) was monitored in 2020 as a year 2 post-mastication vernal pool. Pond 101 East (West) was monitored in previous years as a reference vernal pool. Vegetation in Pond 101 East (West) was masticated in 2018. Table 4-28 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 101 East (West) (see Figure 4-11). The 2015-2016, 2016-2017, and 2018-2019 water-

years were above normal. All other monitoring was conducted either in a normal or below-normal water-year, drought year, or consecutive drought year.

Table 4-28. Pond 101 East (West) (Year 2 Post-Mastication) Summary of Historic Surveys forHydrology, Vegetation, and Wildlife

	Water-Year								
Survey	1991-	2000-	2009-	2014-	2015-	2016-	2017-	2018-	2019-
	1992	2001	2010	2015	2016	2017	2018	2019	2020
Hydrology		•		•	•	•	•	•	•
Vegetation		•			•	•	•	•	٠
Wildlife	•	•	•		•	•		•	٠

Figure 4-11. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 101 East (West) (Year 2 Post-Mastication) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.4.1 Vegetation Monitoring

Vegetation data were collected at Pond 101 East (West) in 2001, 2016, 2017, 2018, 2019, and 2020 (Harding ESE, 2002; Burleson, 2017, 2018, 2019, 2020). In 2001, data were collected along two 41-foot transects using 0.25 m² quadrats at 10-foot intervals, which alternated from the right to left of the transect. Because 2001 data were collected differently than in other years, strata were combined across the vernal pool to allow for comparison. In years 2016-2020, data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2020 were compared stratum-to-stratum in Table 4-29 as well as visually in Figure 4-12.

Table 4-29. Pond 101 East (West) (Year 2 Post-Mastication) Vegetative Strata Percentage within theVernal Pool Basin Boundary

Stratum	Percentage			
Stratum	2016	2020		
1	13%	2%		
2	37%	10%		
3	12%	N/A		
4	22%	4%		
5	15%	44%		
6	N/A	11%		
8	N/A	4%		
9	N/A	25%		

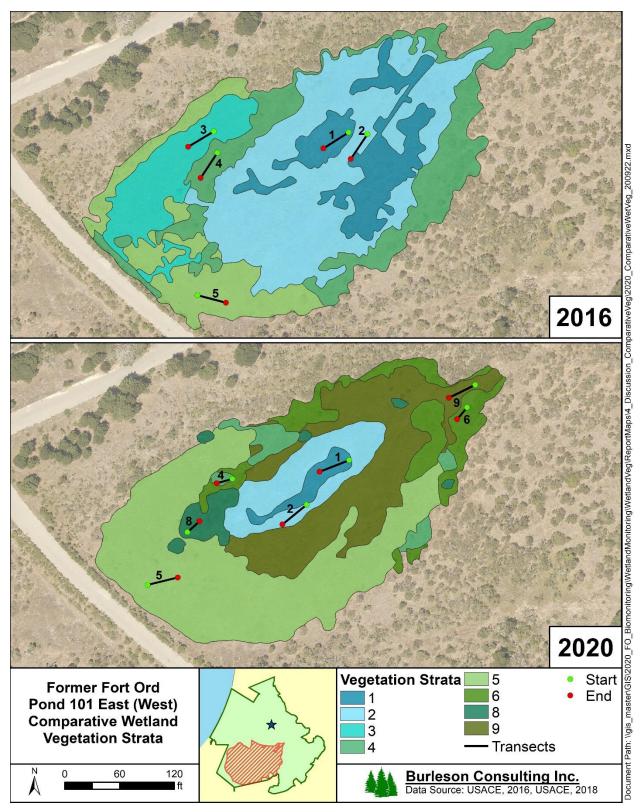


Figure 4-12. Pond 101 East (West) (Year 2 Post-Mastication) Vegetation Strata and Transects for 2016 and 2020

The absolute percent vegetative cover observed in 2020 was slightly less than baseline years and most similar to 2018 (see Table 4-30). Vegetative cover ranged in baseline years from 66.5% in 2001 to 75.9.0% in 2016, whereas thatch/bare ground ranged from 25.5.0% in 2016 to 34.3% in 2001. The 2020 Pond 101 East (West) values were within the ranges observed at the reference vernal pools (see Table 4-31).

Year	Vegetative Cover	Thatch/Bare Ground
2001*	66.5%	34.3%
2016*	75.9%	25.5%
2017*	69.0%	30.5%
2018*	58.1% 42.3%	
2019	76.0%	24.0%
2020	55.4%	44.6%

Table 4-30. Pond 101 East (West) (Year 2 Post-Mastication) Absolute Percent Cover

*baseline year

Table 4-31. Pond 101 East (West) (Year 2 Post-Mastication) and Reference Vernal Pool AbsolutePercent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground		
5	47.6%	52.4%		
101 East (East)	63.4%	36.6%		
997	997 70.2% 29.8%			
101 East (West) 55.4%		44.6%		

Species richness in 2020 was greater than in baseline years. Species richness on transects was 31, 30, 36, 50, 49, and 41 species in 2001, 2016, 2017, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 58, 68, 88, 85, and 75 species in 2016, 2017, 2018, 2019, and 2020, respectively (see Table 4-32 and Appendix A Table A-4). The 2001 survey only included species observed on the transects and total vernal pool species richness was not recorded. Pond 101 East (West) species richness was similar to the reference vernal pools (see Table 4-32 and Appendix E Tables E-21 and E42).

Species composition at Pond 101 East (West) was variable through time, and the dominant species differed between years. Sand spikerush (*Eleocharis montevidensis*) was the dominant species in 2001, Italian rye grass (*Festuca perennis*) and pale spikerush (*Eleocharis macrostachya*) were dominant species in 2016, 2018, and 2020, while pale spikerush and grass poly (*Lythrum hyssopifolia*) were the dominant species in 2017. Pale spikerush, Italian rye grass, and coast tarweed (*Madia sativa*) were the dominant species in 2019. A complete comparison of species composition observed at Pond 101 East (West) in 2001, 2016, 2017, 2018, 2019, and 2020 can be found in Appendix F. Figure 4-13 shows a subset of this comparison for species observed with a 2% cover or greater.

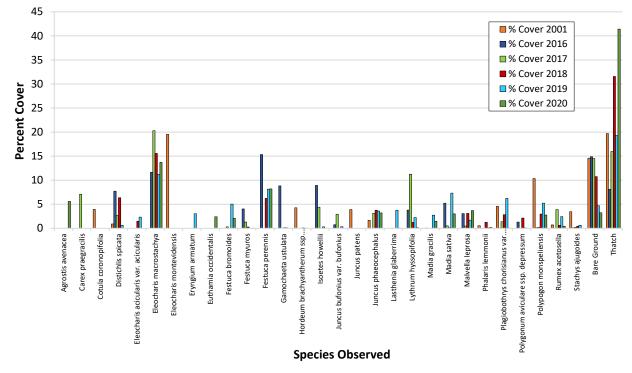


Figure 4-13. Percent Cover of Dominant Species at Pond 101 East (West) (Year 2 Post-Mastication)

Native and non-native species richness on Pond 101 East (West) transects was within the range of values observed in baseline years and most similar to 2018 (see Table 4-32). Native species richness in 2020 was within the range observed at reference vernal pools (see Table 4-33). However, non-native species richness was slightly greater than the values observed at reference vernal pools. The relative percent cover of native and non-native species varied through time, with less native species cover and slightly higher non-native species cover in 2020, than the values observed in baseline years of monitoring and reference vernal pools (see Table 4-34 and Table 4-35).

Year	Native	Non-Native	Unidentified
2001*	15	16	0
2016*	17	12	1
2017*	23	12	1
2018*	26	21	3
2019	29	19	1
2020	21	20	0

Table 4-32. Pond 101 East (West) (Year 2 Post-Mastication) Native and Non-Native Species Richness

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
101 East (West)	21	20	0

Table 4-33. Pond 101 East (West) (Year 2 Post-Mastication) and Reference Vernal Pool Native andNon-Native Species Richness in 2020

Table 4-34. Pond 101 East (West) (Year 2 Post-Mastication) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
2001*	62.5%	37.5%	0.0%
2016*	65.6%	34.4%	0.0%
2017*	70.3%	29.6%	0.1%
2018*	67.1%	32.5%	0.3%
2019	63.4%	36.5%	0.1%
2020	56.4%	43.6%	0.0%

*baseline year

Table 4-35. Pond 101 East (West) (Year 2 Post-Mastication) and Reference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
101 East (West)	56.4%	43.6%	0.0%

Wetland and non-wetland species richness on Pond 101 East (West) transects were within the range of values in baseline years and values observed at reference vernal pools in 2020 (see Table 4-36 and Table 4-37). The relative percent cover of wetland species was generally lower in 2020 than observed in baseline years; however, non-wetland cover was within the range of values observed in baseline years (see Table 4-38). The wetland species relative percent cover was slightly lower than the ranges observed at the reference vernal pools in 2020 (see Table 4-39).

Veer	Wetland			Non-We	Notlistod	
Year	OBL	FACW	FAC	FACU	UPL	Not Listed
2001*	4	8	7	5	2	5
2016*	7	5	5	4	0	9
2017*	8	12	4	6	0	6
2018*	8	11	9	8	2	12
2019	7	15	10	4	3	10
2020	6	11	6	4	3	11

Table 4-36. Pond 101 East (West) (Year 2 Post-Mastication) Wetland and Non-Wetland SpeciesRichness

*baseline year

Table 4-37. Pond 101 East (West) (Year 2 Post-Mastication) and Reference Vernal Pool Wetland and
Non-Wetland Species Richness in 2020

Vernal Pool		Wetland			/etland	Notlistad
Vernal POOI	OBL	FACW	FAC	FACU	UPL	Not Listed
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
101 East (West)	6	11	6	4	3	11

Table 4-38. Pond 101 East (West) (Year 2 Post-Mastication) Relative Percent Cover of Wetland and Non-Wetland Species

Year	Wetland			Non-Wetland		Not Listed
rear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2001*	20.9%	62.0%	5.1%	4.6%	2.2%	5.2%
2016*	34.5%	11.7%	22.8%	10.0%	0.0%	21.0%
2017*	55.1%	29.6%	4.2%	8.6%	0.0%	2.5%
2018*	38.6%	29.0%	17.0%	8.4%	1.0%	6.1%
2019	35.2%	20.2%	14.4%	5.7%	1.3%	23.2%
2020	25.3%	17.0%	19.9%	7.6%	1.0%	29.3%

*baseline year

Table 4-39. Pond 101 East (West) (Year 2 Post-Mastication) and Reference Vernal Pool RelativePercent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool	Wetland		Non-Wetland		Not Listed	
Vernai POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
101 East (West)	25.3%	17.0%	19.9%	7.6%	1.0%	29.3%

4.4.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 101 East (West) was dominated by native and wetland plant species during year 2 post-mastication monitoring in 2020. Pond 101 East (West) was generally within range of the baseline and reference vernal pools, except that the relative percent cover of native species was less, whereas non-native was slightly more than the values observed in baseline years of monitoring and reference vernal pools. Similarly, the relative percent cover of wetland species was less than the values observed in baseline years and at reference vernal pools.

4.4.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 101 East (West), a post-mastication vernal pool, is not on track to meet the performance standard for year 2 in 2020. The species composition was similar to baseline years in 2016 and 2018, native and wetland species relative abundances were similar to baseline and reference vernal pool conditions; however, relative dominance as measured by cover of native species and wetland species were lower at Pond 101 East (West) than in baseline years and at reference vernal pools. This could be related to the unusual rainfall patterns in the 2019-2020 water-year which may have created a unique combination of environmental conditions favorable for non-native and non-wetland species. This vernal pool will continue to be monitored as specified in the PBO (USFWS, 2017).

4.4.2 Wildlife Monitoring

Wildlife data were collected at Pond 101 East (West) in 1992, 2001, 2010, 2016, 2017, 2019, and 2020 (Jones and Stokes, 1992; Harding ESE, 2002; Shaw, 2011; Burleson, 2017, 2018, 2019, 2020). California tiger salamander larvae were present in 1992, 2010, 2016, 2017, and 2019. Fairy shrimp were present in 2001 and 2019. Table 4-40 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1992	Present*	Not detected*
2001	Not detected*	Moderate (12, 100)*
2010	2010 Common* Not detected*	
2016	Common - Abundant (>101, 103, 100)	Not detected
2017	Common (21, 39, 47)	Not detected
2019	Common – Abundant (56, 132, 144)	High (181)
2020	Not detected	Not detected

Table 4-40. Pond 101 East (West) (Year 2 Post-Mastication) H	Historic Wildlife Monitoring Results
--	--------------------------------------

*Data do not differentiate between 101 East (East), 101 East (West), and 101 West. They are identified collectively as Pond 101.

4.4.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with one of the baseline monitoring years, 2001. In all other baseline monitoring years (1992, 2010, 2016, and 2017) California tiger salamanders were present. Results in 2020 were consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were not detected in 2020. Fairy shrimp presence in Pond 101 East (West) has been variable with more years of no detection than detection. Survey years with no detection were 1992,

99

2010, 2016, and 2017, while survey years with detection were 2001 and 2019. Results in 2020 were consistent with reference Pond 5. Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

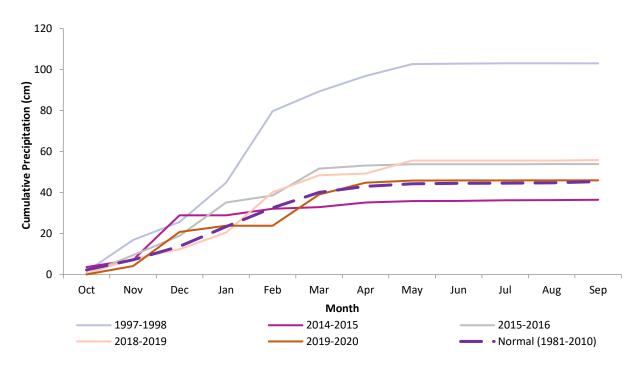
4.4.2.2 Performance Standard: Wildlife Usage

Pond 101 East (West) is a post-mastication remediation vernal pool in year 2 of monitoring and on track to meet DQO 5. DQOs 1 and 4 are analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021)

4.4.3 Conclusion

Pond 101 East (West), a post-mastication vernal pool, was in year 2 of monitoring in 2020. The vernal pool is on track to meet DQO 5 for wildlife usage, but not on track to meet the plant cover and species diversity performance standard (see Table 4-41). Pond 101 East (West) will continue to be monitored in the future.

Table 4-41. Success at Pond 101 East (West) (Year 2 Post-Mastication) Based on PerformanceStandards and Applicable Data Quality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Not on track
Wildlife Usage	DQO 5	On track

4.5 Pond 41 – Year 2

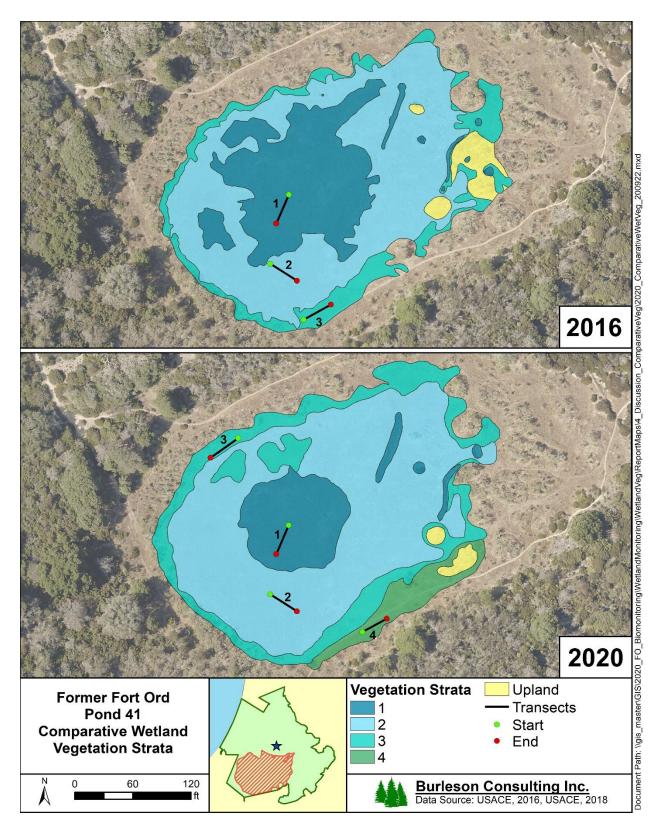
Pond 41 was monitored in 2020 as a year 2 post-subsurface munitions remediation vernal pool. Pond 41 was monitored for baseline conditions in 1998, 2015, and 2016 and cleared of munitions in 2018. Table 4-42 summarizes surveys conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 41 (see Figure 4-14). The normal or above-normal water-years were 1997-1998, 2015-2016, and 2018-2019. Monitoring in 2014-2015 was conducted in a below-normal water-year. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-42. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

Survoy	Water-Year				
Survey	1997-1998	2014-2015	2015-2016	2018-2019	2019-2020
Hydrology	•	•	•	•	•
Vegetation			•	•	•
Wildlife	•		•	•	•

Figure 4-14. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.5.1 Vegetation Monitoring


Vegetation data were collected at Pond 41 in 2016, 2019, and 2020 (Burleson, 2017, 2020). Data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2020 were compared stratum-to-stratum in Table 4-43 as well as visually in Figure 4-15.

Stratum	Percentage		
Stratum	2016	2020	
1	29%	14%	
2	52%	59%	
3	27%	21%	
4	N/A	5%	
Upland	3%	1%	

101

 Table 4-43. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage

 within the Vernal Pool Basin Boundary

Figure 4-15. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2016 and 2020

The absolute percent vegetative cover observed in 2020 was slightly less than baseline but was within the range of values observed at the reference vernal pools (see Table 4-44). Pond 41 was most similar to reference vernal pool 997 (see Table 4-45).

Table 4-44. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Co	ver
--	-----

Year	Vegetative Cover	Thatch/Bare Ground
2016*	71.7%	28.3%
2019	69.7%	30.3%
2020	68.9%	31.2%

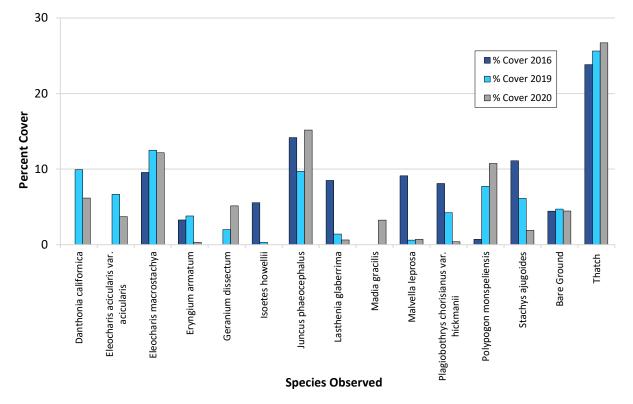

*baseline year

Table 4-45. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal PoolAbsolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
41	68.9%	31.2%

Species richness in 2020 was greater than the baseline year of monitoring. Species richness on transects was 16, 33, and 35 species in 2016, 2019, and 2020 respectively. Basin species richness was 28, 75, and 60 species in 2016, 2019, and 2020, respectively (see Table 4-46 and Appendix A Table A-5). Pond 41 overall species richness was slightly lower than observed at the reference vernal pools but similar for transect values (see Table 4-47 and Appendix E Tables E-21 and E-42).

Species composition at Pond 41 was similar for all three monitoring years; the dominant species was either pale spikerush (*Eleocharis macrostachya*) or brown-headed rush (*Juncus phaeocephalus*). Other important species in 2016 were hedge nettle (*Stachys ajugoides*), alkali mallow (*Malvella leprosa*), Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*), and smooth goldfields (*Lasthenia glaberrima*). California oatgrass (*Danthonia californica*) and rabbitfoot grass (*Polygonum monspeliensis*) were prevalent in 2019 and 2020. A complete comparison of species composition observed at Pond 41 in 2016, 2019, and 2020 can be found in Appendix F. Figure 4-16 shows a subset of this comparison for species observed with a 2% cover or greater.

Figure 4-16. Percent Cover of Dominant Species at Pond 41 (Year 2 Post-Subsurface Munitions Remediation)

Native and non-native species richness on Pond 41 transects increased in 2020 (see Table 4-46). Native and non-native species richness in 2020 were within the range of values observed at the reference vernal pools (see Table 4-47). The relative percent cover of native species decreased and non-native species increased between 2016 and 2020 (see Table 4-48). The relative percent cover values of native and non-native species in Pond 41 were within 1.1% of the range of values observed in reference vernal pools (see Table 4-49).

Table 4-46. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Native and Non-Native
Species Richness

Year	Native	Non-Native	Unidentified
2016*	9	7	0
2019	21	12	0
2020	21	14	0

104

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
41	21	14	0

Table 4-47. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-48. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
2016*	97.1%	2.9%	0.0%
2019	82.8%	17.2%	0.0%
2020	71.1%	28.9%	0.0%

*baseline year

Table 4-49. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal PoolRelative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
41	71.1%	28.9%	0.0%

Wetland and non-wetland species richness on Pond 41 transects was greater in 2020 than baseline (see Table 4-50). The wetland and non-wetland species richness were within the range of values observed at the reference vernal pools (see Table 4-51). The relative percent cover of wetland and non-wetland species were less than the baseline values (see Table 4-52). The wetland and non-wetland species relative percent cover values were within the ranges observed at the reference vernal pools (see Table 4-53).

Table 4-50. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

Voor		Wetland		Non-W	/etland	Not Listed
Year	OBL	FACW	FAC	FACU	UPL	Not Listed
2016*	6	3	1	3	0	3
2019	7	7	5	6	2	6
2020	5	8	6	7	1	8

Vernal Pool	Wetland			Non-Wetland		Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	4	7	3	3	1	5	
101 East (East)	5	8	7	6	3	14	
997	9	10	5	5	0	13	
41	5	8	6	7	1	8	

Table 4-51. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Table 4-52. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year	Wetland			Non-Wetland		Not Listed	
Tear	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
2016*	59.8%	25.4%	0.2%	12.9%	0.0%	1.7%	
2019	45.1%	32.5%	15.7%	1.6%	0.5%	4.5%	
2020	27.3%	42.3%	11.4%	2.4%	0.7%	15.8%	

*baseline year

Table 4-53. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal PoolRelative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool	Wetland			Non-We	etland	Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
41	27.3%	42.3%	11.4%	2.4%	0.7%	15.8%

4.5.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 41 was dominated by native and wetland plant species during year 2 post-subsurface munitions remediation monitoring in 2020. Pond 41 wetland vegetation results were generally within range of either baseline and/or reference vernal pools, except that the species richness as well as native and non-native cover results differed. Richness was greater than baseline years and less than the range of values at the reference vernal pools. Additionally, native cover was less than baseline and the reference vernal pools and non-native cover was greater than baseline years and reference. Both native and non-native cover were within 1.1% of the range of values observed at the reference vernal pools. Results are considered similar to reference.

4.5.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 41, a post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for year 2 in 2020. The species composition and native and wetland species relative abundances were similar to baseline and/or reference vernal pool conditions. Species richness was greater than baseline, and less than the range of values observed at reference vernal pools. This is an acceptable difference since species richness has increased from baseline. In addition, native and non-native cover was within 1.1% of the range of values of the reference vernal pools. Pond 41 provided suitable wetland habitat in 2020.

4.5.2 Wildlife Monitoring

Wildlife data were collected at Pond 41 in 1998, 2016, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2020). California tiger salamander larvae were observed in 2016 and 2019. Fairy shrimp were detected in 1998, 2019, and 2020. Table 4-54 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Low
2016*	Few (3)	Not detected
2019	Few – Common (2, 13, 9)	Low – High (122, 6)
2020	Not detected	Moderate (15)

Table 4-54. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring Results

*baseline year

4.5.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with one of the baseline monitoring years. California tiger salamanders were present in 2016 but were not detected in 1998. Results in 2020 were consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020, which was consistent with one of the baseline monitoring years. Fairy shrimp were present in 1998 but were not detected in 2016. It was possible that survey event timing prevented detection in 2016 because surveys occurred later in the year (April and May). However, in 2020, a very dry February followed by above-normal March and April rain events may have been favorable for later fairy shrimp detection. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

4.5.2.2 Performance Standard: Wildlife Usage

Pond 41 is a post-mastication remediation vernal pool in year 2 of monitoring and on track to meet DQO 5. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021)

4.5.3 Conclusion

Pond 41, a post-subsurface munitions remediation vernal pool, was in year 2 of monitoring in 2020. The vernal pool is on track to meet the plant cover and species diversity performance standard and DQO 5 for wildlife usage (see Table 4-55). Pond 41 will continue to be monitored in the future.

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track

Table 4-55. Success at Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Based on Performance Standards and Applicable Data Quality Objectives

4.6 Pond 3 North – Year 3 and Year 2

Pond 3 North was monitored in 2020 as a year 3 post-burn and year 2 post-subsurface munitions remediation vernal pool. Pond 3 North was monitored for baseline conditions in 1998, 2015, and 2016. Vegetation in Pond 3 North and within its watershed was burned in October 2017 as part of the prescribed burn of BLM Area B Subunit B. Pond 3 North had intrusive anomaly investigations in 2018. Table 4-56 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 3 North (see

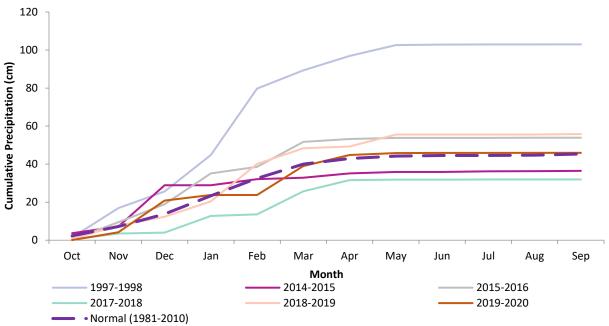
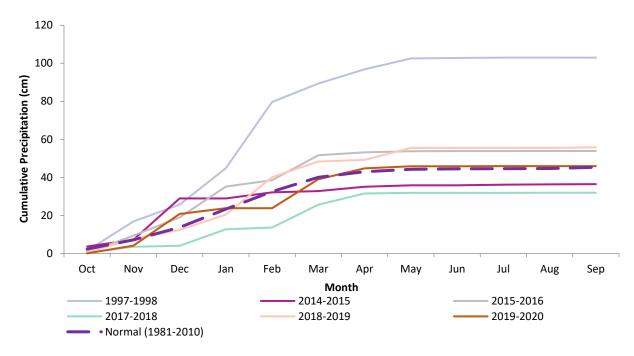
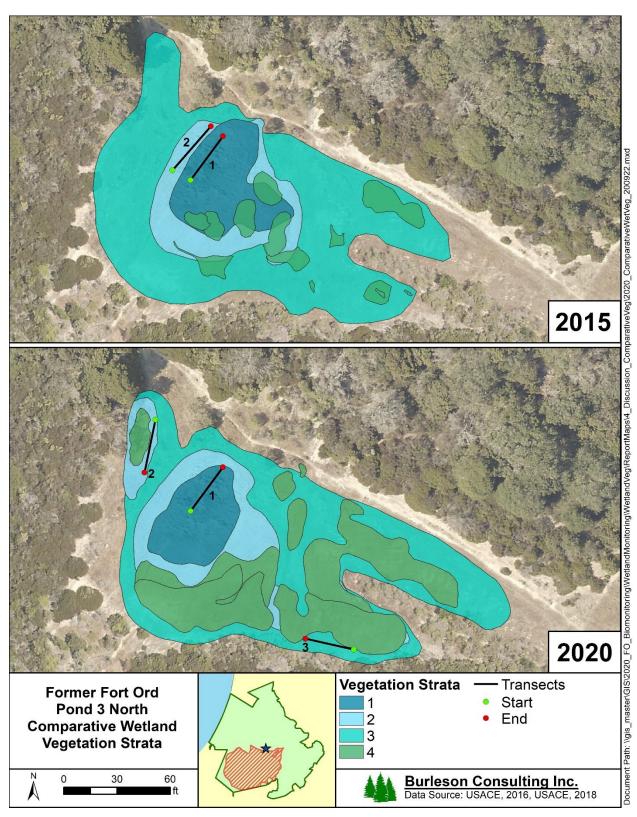



Figure 4-17). The 1997-1998, 2015-2016, and 2018-2019 water-years were above normal, whereas 2014-2015 and 2017-2018 water-years were below normal. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-56. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

Survey		Water-Year				
Survey	1997-1998	2014-2015	2015-2016	2017-2018	2018-2019	2019-2020
Hydrology	•	•	•	•	•	•
Vegetation	٠	•		•	•	•
Wildlife	•	•	•	•	•	•

Figure 4-17. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)


4.6.1 Vegetation Monitoring

Vegetation data were collected at Pond 3 North in 1998, 2015, 2018, 2019, and 2020 (HLA, 1998; Burleson, 2016, 2019, 2020). In 1998, data were collected along one transect with a length of 116 feet. Quadrats were placed at 10-foot intervals, alternating from right to left along the transect. Because 1998 data were collected differently than in other years, strata were combined across the vernal pool to allow for comparison. In 2015, 2018, 2019, and 2020, data were collected using the methodology described in the Methods section of this report. Data from 2015 and 2020 were compared stratum-tostratum in Table 4-57 as well as visually in Figure 4-18.

Pond 3 North also supports a CCG population located in stratum 4. The population was mapped and a visual estimate of percent cover was recorded in 2020 to compare to 2015, 2016, 2018, and 2019 (see Figure 4-20 in Section 4.6.1.1). In 2015, vegetation monitoring was completed on April 22 and CCG monitoring was completed later May 19. The CCG was mapped as an overlay on top of the other strata, not as a separate stratum. Therefore, the acreage percentages for the basin did not include CCG.

Stratum	Percentage		
Stratum	2015	2020	
1	16%	11%	
2	14%	14%	
3	70%	37%	
4 (CCG)	N/A	38%	

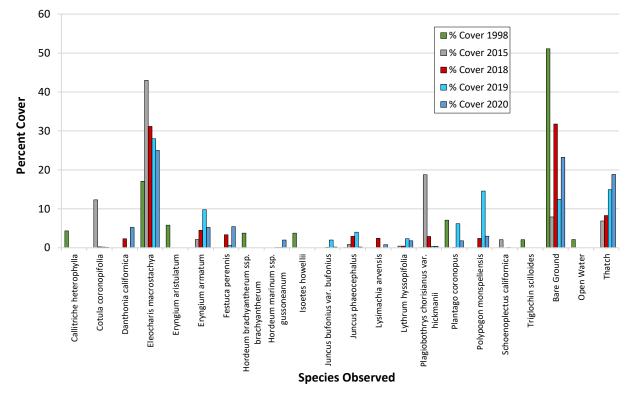
Table 4-57. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)
Vegetative Strata Percentage within the Vernal Pool Basin Boundary

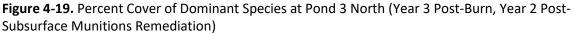
Figure 4-18. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2015 and 2020

The absolute percent vegetative cover observed in 2020 was within the range of values in baseline years and most similar to 1998 (see Table 4-58). Vegetative cover ranged in baseline years from 46.1% in 1998 to 80.6% in 2015, whereas thatch/bare ground ranged from 14.8% in 2015 to 54.0% in 1998. These values were also within the ranges observed at the reference vernal pools, and Pond 3 North was most similar to reference vernal pool 101 East (East) (see Table 4-59).

Table 4-58. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover

Year	Vegetative Cover	Thatch/Bare Ground
1998*	46.1%	54.0%
2015*	80.6%	14.8%
2018	60.2%	40.1%
2019	72.7%	27.3%
2020	57.9%	42.1%


*baseline year


Table 4-59. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
3 North	57.9%	42.1%

Species richness in 2020 was greater than in baseline years. Species richness on transects was 16, 9, 38, 22, and 40 species in 1998, 2015, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 24, 82, 90, and 74 species in 2015, 2018, 2019, and 2020, respectively (see Table 4-60 and Appendix A Table A-6). The 1998 survey was limited to species observed on the transect and overall basin species richness was not recorded. Pond 3 North species richness was similar to the reference vernal pools (see Table 4-61 and Appendix E Tables E-21 and E-42).

Species composition at Pond 3 North was similar between monitoring years; the dominant species in all monitoring years was pale spikerush (*Eleocharis macrostachya*). Other important species in 2015 were brass buttons (*Cotula coronopifolia*) and Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*). Coyote thistle (*Eryngium armatum*) and rabbitfoot grass (*Polygonum monspeliensis*) provided moderate cover in 2019. In 2020, coyote thistle (*Eryngium armatum*), California oatgrass (*Danthonia californica*), and Italian ryegrass (*Festuca perennis*) were other important contributors. A complete comparison of species composition observed at Pond 3 North in 1998, 2015, 2018, 2019, and 2020 can be found in Appendix F. Figure 4-19 shows a subset of this comparison for species observed with a 2% cover or greater.

Native and non-native species richness in 2020 were greater than baseline and very similar to 2018 (see Table 4-60). Native and non-native species richness was within the range of values observed in reference vernal pools (see Table 4-61). The relative percent cover of native species was less, and non-native species was more than the values observed in baseline years of monitoring (see Table 4-62). The relative percent cover values of native and non-native species in Pond 3 North were within 1.3% of the range of values observed in reference vernal pools (see Table 4-63).

Table 4-60. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Native and Non-Native Species Richness

Year	Native	Non-Native	Unidentified
1998*	9	6	1
2015*	7	2	0
2018	22	16	0
2019	13	9	0
2020	23	16	1

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
3 North	23	16	1

Table 4-61. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-62. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
1998*	81.9%	17.7%	0.4%
2015*	84.2%	15.8%	0.0%
2018	79.0%	21.0%	0.0%
2019	66.3%	33.7%	0.0%
2020	70.9%	28.9%	0.2%

*baseline year

Table 4-63. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
3 North	70.9%	28.9%	0.2%

Wetland and non-wetland species richness on Pond 3 North transects was greater than the baseline years and within the range of values observed at reference vernal pools (see Table 4-64 and Table 4-65). The relative percent cover of wetland species was less than the values observed in baseline, and non-wetland cover was greater than baseline (see Table 4-66). Wetland and non-wetland relative percent cover were within the range of values observed at reference vernal pools (see Table 4-67).

Table 4-64. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

Voor	Wetland			Non-W	Not Listed	
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	6	2	1	1	0	6
2015*	7	2	0	0	0	0
2018	10	8	5	6	0	9
2019	6	6	5	0	1	4
2020	7	10	6	5	1	11

Vernal Pool	Wetland			Non-Wetland		Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	4	7	3	3	1	5	
101 East (East)	5	8	7	6	3	14	
997	9	10	5	5	0	13	
3 North	7	10	6	5	1	11	

Table 4-65. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Table 4-66. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Voor	Wetland Non-Wetland				Not Listed	
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	71.9%	8.2%	15.4%	0.2%	0.0%	4.4%
2015*	96.4%	3.6%	0.0%	0.0%	0.0%	0.0%
2018	59.9%	17.1%	15.1%	3.6%	0.0%	4.3%
2019	45.2%	42.0%	10.9%	0.0%	0.2%	1.7%
2020	48.6%	18.4%	26.8%	2.2%	0.1%	3.8%

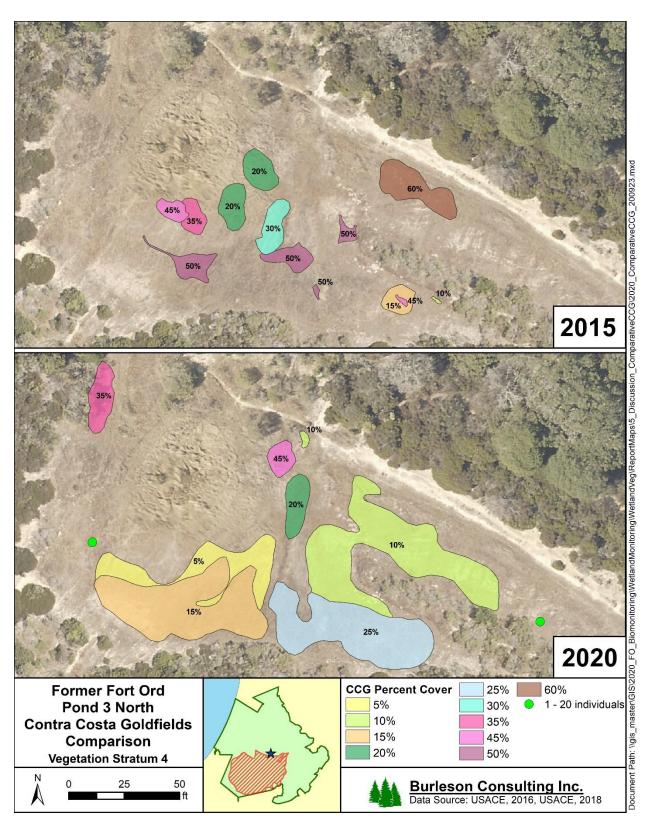

*baseline year

Table 4-67. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool	Wetland Non-Wetland				Notlistad	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	Not Listed
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
3 North	48.6%	18.4%	26.8%	2.2%	0.1%	3.8%

4.6.1.1 Contra Costa Goldfields

The area of CCG at Pond 3 North increased between 2015 and 2019 and decreased slightly in 2020 (Burleson, 2016, 2017, 2019, 2020). The population occupied 0.04 acre in 2015, 0.13 acre in 2016, 0.14 acre in 2018, 0.18 acre in 2019, and 0.16 acre in 2020 (see Figure 4-20). The densities ranged between 5-75% cover. In 2020, the CCG population was in similar locations to previous years. This suggests that remedial burn activities in 2017 and post-subsurface munitions remediation in 2018 likely did not affect the population. Minor changes in population size can be attributed to natural fluctuation.

Figure 4-20. Contra Costa Goldfields Populations at Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) in 2015 and 2020

4.6.1.2 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 3 North was dominated by native and wetland plant species during year 3 post-burn and year 2 post-subsurface munitions remediation monitoring in 2020. Pond 3 North wetland vegetation results were generally within range of either baseline and/or reference vernal pools, except that the native and non-native cover was greater than baseline years and reference. Both native and non-native cover were within 1.3% of the range of values observed at the reference vernal pools. Results are considered similar to reference.

4.6.1.3 Performance Standard: Plant Cover and Species Diversity

Pond 3 North, a post-burn and post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for years 3 and 2, respectively, in 2020. The species composition, richness, and native and wetland species relative abundances were similar to baseline and/or reference vernal pool conditions. However, native and non-native cover was within 1.3% of the range of values of the reference vernal pools. Pond 3 North provided suitable wetland habitat in 2020.

4.6.2 Wildlife Monitoring

Wildlife data were collected at Pond 3 North in 1998, 2015, 2016, 2018, 2019, and 2020 (HLA, 1998; Burleson, 2016, 2017, 2019, 2020). California tiger salamander larvae were not detected in 2020 or previous survey years. Fairy shrimp were present in 1998, 2019, and 2020. Table 4-68 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	High
2015*	Not detected	Not detected
2016*	Not detected	Not detected
2018	Not detected	Not detected
2019	Not detected	Low – Moderate (36, 72, 3)
2020	Not detected	Low (6)

Table 4-68. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring Results

*baseline year

4.6.2.1 *Data Quality Objective 5*

California tiger salamanders were not detected in 2020, which was consistent with baseline monitoring. No recorded observations of California tiger salamanders exist at Pond 3 North in any baseline year (1998, 2015, 2016). Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020. Baseline monitoring results were variable for the species. Fairy shrimp were present in 1998 but were not detected in 2015 or 2016. It was possible survey event timing prevented detection in 2015 and 2016 because surveys occurred later in the year (late March through

May). However, in 2020, a very dry February followed by above-normal March and April rain events may have been favorable for later fairy shrimp detection. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

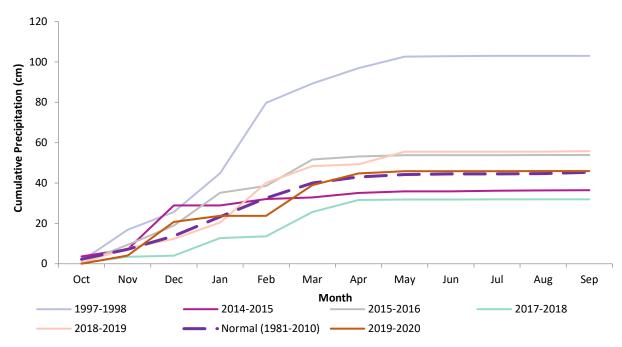
4.6.2.2 Performance Standard: Wildlife Usage

Pond 3 North was a post-burn and post-subsurface munitions remediation vernal pool in years 1 and 2 of monitoring and is on track to meet DQO 5. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021)

4.6.3 Conclusion

Pond 3 North, a post-burn and post-subsurface munitions remediation vernal pool, was in years 3 and 2 of monitoring in 2020. The vernal pool is on track to meet the plant cover and species diversity performance standard and DQO 5 for wildlife usage (see Table 4-69). Pond 3 North will continue to be monitored in the future.

Table 4-69. Success at Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface MunitionsRemediation) Based on Performance Standards and Applicable Data Quality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track

4.7 Pond 3 South – Year 3 and Year 2

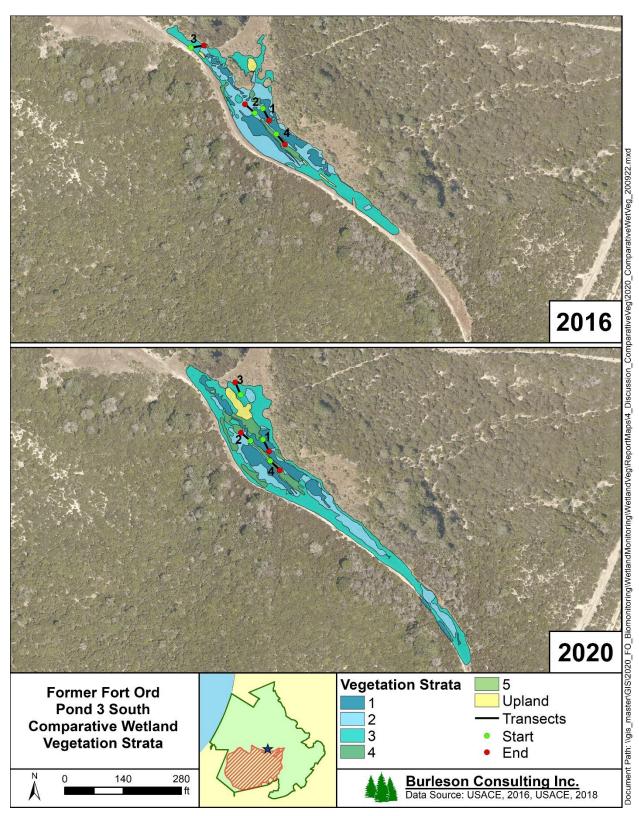
Pond 3 South was monitored in 2020 as a year 3 post-burn and year 2 post-subsurface munitions remediation vernal pool. Pond 3 South was monitored for baseline conditions in 1998, 2015, and 2016. Vegetation in Pond 3 South and within its watershed was burned in October 2017 as part of the prescribed burn of BLM Area B Subunit B. Pond 3 South had intrusive anomaly investigations in 2018. Table 4-70 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 3 South (see Figure 4-21). The 1997-1998, 2015-2016, and 2018-2019 water-years were above-normal, whereas the 2014-2015 and 2017-2018 water-years were below-normal. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-70. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

Company	Water-Year						
Survey	1997-1998	2014-2015	2015-2016	2017-2018	2018-2019	2019-2020	
Hydrology	•	•	•	•	•	•	
Vegetation	•		•	•	•	•	
Wildlife	•		•		•	•	

Figure 4-21. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.7.1 Vegetation Monitoring


Vegetation data were collected at Pond 3 South in 1998, 2016, 2018, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2019, 2020). In 1998, data were collected along one transect with a length of 116 feet. Quadrats were placed at 10-foot intervals, alternating from right to left along the transect. Because 1998 data were collected differently than in other years, strata were combined across the vernal pool to allow for comparison. In 2016, 2018, 2019, and 2020 data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2020 were compared stratum-tostratum in Table 4-71 as well as visually in Figure 4-22.

Pond 3 South also supports a CCG population, located in stratum 5. The population was mapped and a visual estimate of percent cover was recorded in 2020 to compare to 2018 and 2019 (see Figure 4-24 in Section 4.7.1.1).

Stratum	Perce	ntage
Stratum	2016	2020
1	20%	17%
2	38%	22%
3	35%	47%
4	5%	10%
5 (CCG)	N/A	0.1%
Upland	2%	4%

118

Table 4-71. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Figure 4-22. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2016 and 2020

The absolute percent vegetative cover observed in 2020 was less than baseline years (see Table 4-72). Vegetative baseline cover ranged from 82.8% in 2016 to 90.2% in 1998, whereas thatch/bare ground ranged from 13.9% in 1998 to 15.1% in 2016. Pond 3 South 2020 values were within the ranges observed at the reference vernal pools (Table 4-73).

Table 4-72. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover

Year	Vegetative Cover	Thatch/Bare Ground
1998*	90.2%	13.9%
2016*	82.8%	15.1%
2018	59.4%	41.0%
2019	68.9%	31.2%
2020	69.8%	30.6%

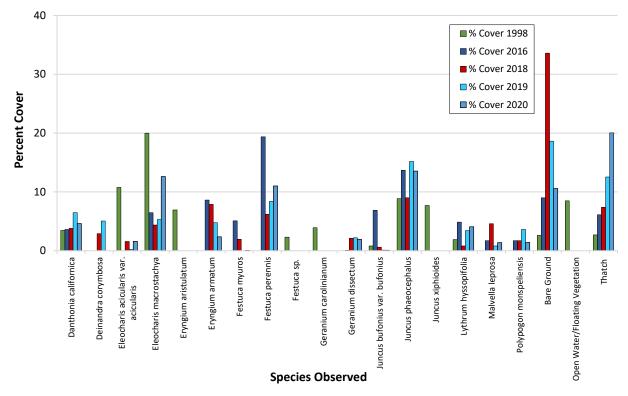

*baseline year

Table 4-73. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground		
5	47.6%	52.4%		
101 East (East)	63.4%	36.6%		
997	70.2%	29.8%		
3 South	69.8%	30.6%		

Species richness in 2020 was greater than baseline years. Species richness on transects was 38, 30, 49, 55, and 54 species in 1998, 2016, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 69, 106, 105, and 92 species in 2016, 2018, 2019, and 2020, respectively (see Table 4-74 and Appendix A Table A-7). The 1998 survey was limited to species on the transect and total vernal pool species richness was not recorded. Pond 3 South species richness was greater than the values observed at the reference vernal pools (see Table 4-75 and Appendix E Tables E-21 and E-42).

Species composition at Pond 3 South varied between monitoring years. Brown-headed rush (*Juncus phaeocephalus*) was an abundant species in all years. Pale spikerush (*Eleocharis macrostachya*) was the dominant species in 1998, whereas Italian rye grass (*Festuca perennis*) was dominant in 2016. Coyote thistle (*Eryngium armatum*) and Italian rye grass were the dominant species in 2018. Pale spikerush and Italian ryegrass were also major contributors to cover in 2020. A complete comparison of species composition observed at Pond 3 South in 1998, 2016, 2018, 2019, and 2020 can be found in Appendix F. Figure 4-23 shows a subset of this comparison for species observed with a 2% cover or greater.

Figure 4-23. Percent Cover of Dominant Species at Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)

Native species richness on Pond 3 South transects has been variable. Species richness in 2020 was greater than in baseline years and at 2020 reference vernal pools (see Table 4-74 and Table 4-75). The relative percent cover of native and non-native species was within the range of baseline years; however, native species cover was less, and the non-native was greater than the values observed at the reference vernal pools (see Table 4-76 and Table 4-77).

Year	Native	Non-Native	Unidentified
1998*	26	9	3
2016*	16	13	1
2018	26	23	0
2019	34	20	1
2020	33	21	0

Table 4-74. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Native
and Non-Native Species Richness

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
3 South	33	21	0

Table 4-75. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-76. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
1998*	84.1%	10.4%	5.5%
2016*	55.0%	44.9%	0.1%
2018	65.7%	34.3%	0.0%
2019	65.9%	34.0%	0.2%
2020	61.7%	38.3%	0.0%

*baseline year

Table 4-77. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
3 South	61.7%	38.3%	0.0%

Wetland and non-wetland species richness in Pond 3 South was greater than baseline and reference vernal pools (see Table 4-78 and Table 4-79). The relative percent cover of wetland and non-wetland species were within the range of values observed in baseline years and at reference vernal pools (see Table 4-80 and Table 4-81).

Table 4-78. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)
Wetland and Non-Wetland Species Richness

Voor		Wetland		Non-Wetland		Netlisted
Year	OBL	FACW	FAC	FACU	UPL	Not Listed
1998*	9	6	5	4	0	14
2016*	5	7	5	5	0	8
2018	9	11	6	10	1	12
2019	10	13	9	9	1	13
2020	9	12	8	10	1	14

Vernal Pool		Wetland		Non-Wetland		Not Listed	
Vernai POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	4	7	3	3	1	5	
101 East (East)	5	8	7	6	3	14	
997	9	10	5	5	0	13	
3 South	9	12	8	10	1	14	

Table 4-79. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Table 4-80. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year	Wetland			Non-Wetland		Not Listed
	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	55.8%	14.5%	10.0%	3.8%	0.0%	15.9%
2016*	14.8%	39.5%	32.4%	10.1%	0.0%	3.2%
2018	14.1%	33.6%	22.5%	16.1%	0.2%	13.5%
2019	15.4%	37.9%	25.8%	2.4%	1.3%	17.2%
2020	27.9%	27.2%	28.0%	6.3%	1.2%	9.4%

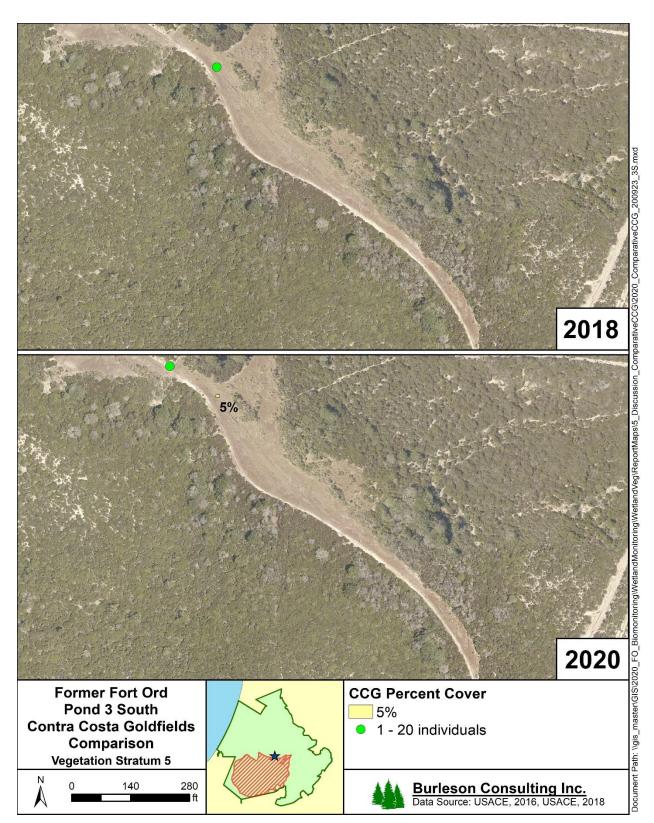

*baseline year

Table 4-81. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool	Wetland			Non-Wetland		Not Listed
	OBL	FACW	FAC	FACU	UPL	Not Listed
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
3 South	27.9%	27.2%	28.0%	6.3%	1.2%	9.4%

4.7.1.1 Contra Costa Goldfields

The area of CCG at Pond 3 South increased between 2018 and 2019 then decreased slightly in 2020 (Burleson, 2019, 2020). A single CCG plant was documented at Pond 3 South for the first time in 2018. The population occupied 0.003 acre in 2019 and 0.002 acre in 2020. The densities ranged between 5-10% (see Figure 4-24). In 2020, the CCG population was in a similar location to previous years indicating that post-subsurface munitions remediation likely did not affect the population. Minor changes in population size can be attributed to natural fluctuation.

Figure 4-24. Contra Costa Goldfields Populations at Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) in 2018 and 2020

4.7.1.2 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 3 South was dominated by native and wetland plant species during year 3 post-burn and year 2 post-subsurface munitions remediation monitoring in 2020. Pond 3 South wetland vegetation results were generally within range of either baseline and/or reference vernal pools; however, species richness in 2020 was greater than baseline and reference vernal pools. This occurred in 2019 (Yr 2/Yr 1) as well.

4.7.1.3 Performance Standard: Plant Cover and Species Diversity

Pond 3 South, a post-burn and post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for years 3 and 2, respectively, in 2020. The species composition, richness, and native and wetland species relative abundances were similar to baseline and reference vernal pool conditions; however, native species richness was greater. Pond 3 South provided suitable wetland habitat in 2020.

4.7.2 Wildlife Monitoring

Wildlife data were collected at Pond 3 South in 1998, 2016, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2020). California tiger salamander larvae were not detected in 2020 or any previous year. Fairy shrimp were present in 1998, 2019, and 2020. Table 4-82 shows historic wildlife monitoring results.

Table 4-82. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring Results

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)		
1998*	Not detected	Moderate		
2016*	Not detected	Not detected		
2019	Not detected	Low – Moderate (21, 44, 5)		
2020	Not detected	Moderate (13)		

*baseline year

4.7.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with baseline monitoring. No recorded observations of California tiger salamanders exist at Pond 3 South in any baseline year (1998, 2016). Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020. Baseline monitoring results were variable for the species. Fairy shrimp were present in 1998 but were not detected in 2016. It was possible survey event timing prevented detection in 2016 because surveys occurred later in the year (late March through May). However, in 2020, a very dry February followed by above-normal March and April rain events may have been favorable for later fairy shrimp detection. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

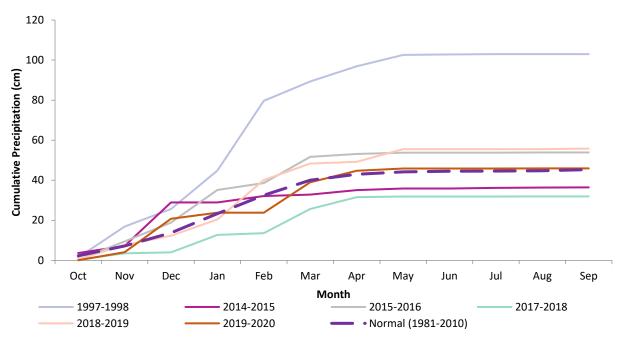
4.7.2.2 Performance Standard: Wildlife Usage

Pond 3 South is a post-burn and post-subsurface munitions remediation vernal pool in years 1 and 2 on track to meet DQO 5. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021)

4.7.3 Conclusion

Pond 3 South, a post-burn and post-subsurface munitions remediation vernal pool, was in years 3 and 2 of monitoring in 2020. The vernal pool is on track to meet the plant cover and species diversity performance standard and DQO 5 for wildlife usage (see Table 4-83). Pond 3 South will continue to be monitored in the future.

Table 4-83. Success at Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Based on Performance Standards and Applicable Data Quality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track

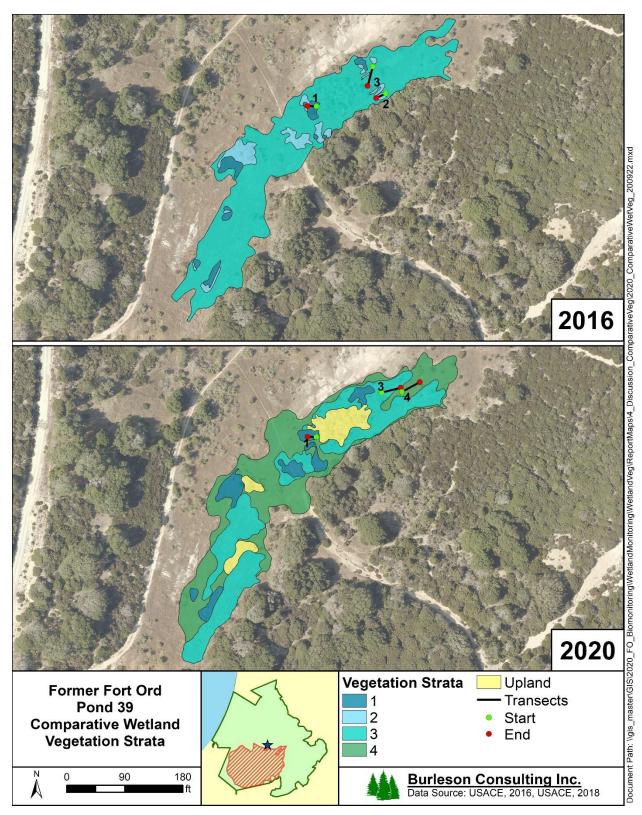
4.8 Pond 39 – Year 3 and Year 2

Pond 39 was monitored in 2020 as a year 3 post-burn and year 2 post-subsurface munitions remediation vernal pool. Pond 39 was monitored for baseline conditions in 1998, 2015, and 2016. Vegetation in Pond 39 and within its watershed was burned in October 2017 as part of the prescribed burn of BLM Area B Subunit B. Pond 39 had intrusive anomaly investigations in 2018. Table 4-84 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 39 (see Figure 4-25). The 1997-1998, 2015-2016, and 2018-2019 water-years were above normal, whereas the 2014-2015 and 2017-2018 water-years were below normal. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-84. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

Cumiou.	Water-Year					
Survey	1997-1998	2014-2015	2015-2016	2017-2018	2018-2019	2019-2020
Hydrology	•	•	•	•	•	•
Vegetation	•		•	•	•	•
Wildlife	•		•	•	•	•

Figure 4-25. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)


4.8.1 Vegetation Monitoring

Vegetation data were collected at Pond 39 in 1998, 2016, 2018, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2019, 2020). In 1998, data were collected along one transect with a length of 239 feet. Quadrats were placed at 10-foot intervals, alternating from right to left along the transect. Because 1998 data were collected differently than in other years, strata were combined across the vernal pool to allow for comparison. In 2016, 2018, 2019, and 2020, data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2020 were compared stratum-to-stratum in Table 4-85 as well as visually in Figure 4-26.

Stratum	Perce	ntage
Stratum	2016	2020
1	5%	9%
2	8%	N/A
3	87%	38%
4	N/A	44%
Upland	N/A	9%

 Table 4-85. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetative

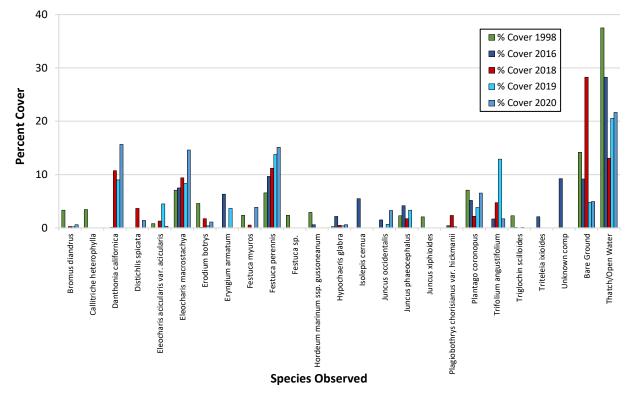
 Strata Percentage within the Vernal Pool Basin Boundary

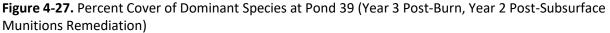
Figure 4-26. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2016 and 2020

Absolute percent vegetative cover was greater in 2020 than in baseline years (see Table 4-86). Vegetative cover ranged in baseline years from 48.7% in 1998 to 61.9% in 2016, whereas thatch/bare ground ranged from 37.4% in 2016 to 51.8% in 1998. The absolute percent vegetative cover of Pond 39 in 2020 was also greater than values observed at the reference vernal pools and was most similar to Pond 997 (see Table 4-87).

Table 4-86. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Absolute
Percent Cover

Year	Vegetative Cover	Thatch/Bare Ground
1998*	48.7%	51.8%
2016*	61.9%	37.4%
2018	59.1%	41.3%
2019	75.2%	25.3%
2020	73.4%	26.6%


*baseline year


Table 4-87. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground	
5	47.6%	52.4%	
101 East (East)	63.4%	36.6%	
997	70.2%	29.8%	
39	73.4%	26.6%	

Species richness in 2020 was greater than in baseline years. Species richness on transects was 22, 30, 35, 46, and 32 species in 1998, 2016, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 61, 90, 98, and 85 species in 2016, 2018, 2019, and 2020, respectively (see Table 4-88 and Appendix A Table A-8). The 1998 survey was limited to species on the transect and overall basin species richness was not recorded. Pond 39 species richness was similar to reference vernal pools (see Table 4-89 and Appendix E Tables E-21 and E-42).

Species composition at Pond 39 was similar between monitoring years; two of the dominant species were pale spikerush (*Eleocharis macrostachya*) and Italian rye grass (*Festuca perennis*) in all monitoring years. Cut-leaved plantain (*Plantago coronopus*) and California oat grass (*Danthonia californica*) were also dominant in 1998, 2018, 2019, and 2020. Narrow-leaved clover (*Trifolium angustifolium*) was dominant in 2019. A complete comparison of species composition observed at Pond 39 in 1998, 2016, 2018, and 2019 can be found in Appendix F. Figure 4-27 shows a subset of this comparison for species observed with a 2% cover or greater.

Native species richness on Pond 39 transects was within the range of values observed in baseline years and values at reference vernal pools. Non-native richness was greater than baseline and reference richness (see Table 4-88 and see Table 4-89). The relative percent cover of native species cover was greater than the values observed in baseline, while non-native cover was within the range of values observed in baseline years (see Table 4-90). Pond 39 native cover was less than and non-native cover was greater than the values observed at reference vernal pools (see Table 4-91).

Year	Native	Non-Native	Unidentified
1998*	10	11	1
2016*	14	13	3
2018	16	19	0
2019	25	19	2
2020	12	20	0

130

Table 4-88. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Native and
Non-Native Species Richness

*baseline year

Vernal Pool	Native	Non-Native	Unidentified	
5	12	11	0	
101 East (East)	24	19	0	
997	27	14	1	
39	12	20	0	

Table 4-89. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-90. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
1998*	39.8%	60.2%	0.0%
2016*	47.1%	37.1%	15.7%
2018	54.3%	45.7%	0.0%
2019	46.8%	53.0%	0.2%
2020	52.0%	48.0%	0.0%

*baseline year

Table 4-91. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
39	52.0%	48.0%	0.0%

Wetland species richness on Pond 39 transects was less than baseline and non-wetland species richness was greater than baseline (see Table 4-92). Pond 39 wetland species richness was generally lower than reference vernal pools and non-wetland species richness was generally within the range of reference vernal pools in 2020 (see Table 4-93). The relative percent cover of wetland species was greater than baseline years and non-wetland cover was within the range of baseline (see Table 4-94). The relative percent cover of wetland and non-wetland species were within the range of values observed at the reference vernal pools (Table 4-95).

Voor		Wetland	tland Non-Wetland		Not Listed	
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	7	2	6	3	0	4
2015*	5	5	7	3	0	10
2018	4	7	6	5	1	12
2019	6	9	6	4	2	19
2020	2	2	5	7	2	14

Table 4-92. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

*baseline year

Table 4-93. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Vernal Pool		Wetland		Non-Wetland		Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
39	2	2	5	7	2	14

Table 4-94. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year	Wetland		Non-Wetland		Not Listed	
rear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	32.8%	5.8%	38.9%	14.5%	0.0%	7.9%
2015*	24.2%	20.1%	28.9%	2.4%	0.0%	24.4%
2018	23.0%	12.4%	41.9%	6.1%	1.2%	15.3%
2019	18.2%	14.7%	36.4%	2.1%	1.3%	27.3%
2020	20.3%	6.4%	51.7%	10.3%	0.3%	11.1%

*baseline year

Table 4-95. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool		Wetland		Non-Wetland		Not Listed	
Vernarroor	OBL	FACW	FAC	FACU	UPL	Not Listed	
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%	
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%	
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%	
39	20.3%	6.4%	51.7%	10.3%	0.3%	11.1%	

4.8.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations and possibly historic disturbance to this area. Some variability is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 39 was dominated by native and wetland plant species during year 3 post-burn and year 2 post-subsurface munitions remediation monitoring in 2020. For Pond 39, most of the wetland vegetation results were outside of the range of either baseline and/or reference vernal pools. Non-native richness were slightly more than the values observed in baseline years of monitoring and reference vernal pools, and wetland species richness was less than baseline and reference. Native cover was greater than baseline but less than reference.

4.8.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 39, a post-burn and post-subsurface munitions remediation vernal pool, is not on track to meet the performance standard for years 3 and 2, respectively, in 2020. The species composition was similar to baseline and/or reference vernal pool conditions. However, there was an increase in non-native and non-wetland species and a decrease in wetland richness. The valley in Unit B where Pond 39 is located has historically been heavily disturbed which is likely why, in some years, non-native and non-wetland richness is high. Additionally, unusual patterns in rainfall in the 2019-2020 water-year may have created a unique combination of environmental conditions favorable for non-native and non-wetland species at Pond 39. Fortunately, the relative abundance of native and wetland species, although less than reference, increased when compared to baseline. This vernal pool should continue to be monitored as recommended in the PBO (see USFWS, 2017).

4.8.2 Wildlife Monitoring

Wildlife data were collected at Pond 39 in 1998, 2016, 2018, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2019, 2020). California tiger salamander larvae were not detected in 2020 or previous survey years. Fairy shrimp were present in 1998, 2018, 2019, and 2020. Table 4-96 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Moderate
2016*	Not detected	Not detected
2018	Not detected	Low (8)
2019	Not detected	Low – Moderate (71, 37, 7)
2020	Not detected	Low (5)

Table 4-96. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Historic
Wildlife Monitoring Results

*baseline year

4.8.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with baseline monitoring conducted in 1998 and 2016. Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020, which was consistent with the 1998 baseline monitoring year. It was possible that survey event timing prevented detection in 2016 because surveys occurred later in the year (April and May). However, in 2020, a very dry February followed by above-normal March and April rain events may have been favorable for later fairy shrimp detection. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

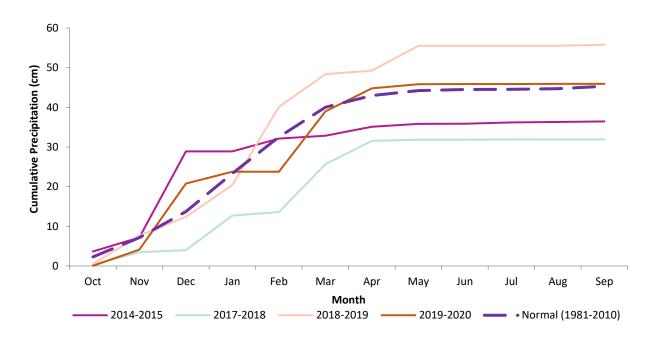
4.8.2.2 Performance Standard: Wildlife Usage

Pond 39 was a post-burn and post-subsurface munitions remediation vernal pool in years 2 and 3 of monitoring and is on track to meet DQO 5. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021)

4.8.3 Conclusion

Pond 39, a post-burn and post-subsurface munitions remediation vernal pool, was in years 3 and 2 of monitoring in 2020. The vernal pool is on track to meet DQO 5 for wildlife usage, but not on track to meet the plant cover and species diversity performance standard (see Table 4-97). Pond 39 will continue to be monitored in the future.

Table 4-97. Success at Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Based on Performance Standards and Applicable Data Quality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Not on track
Wildlife Usage	DQO 5	On track

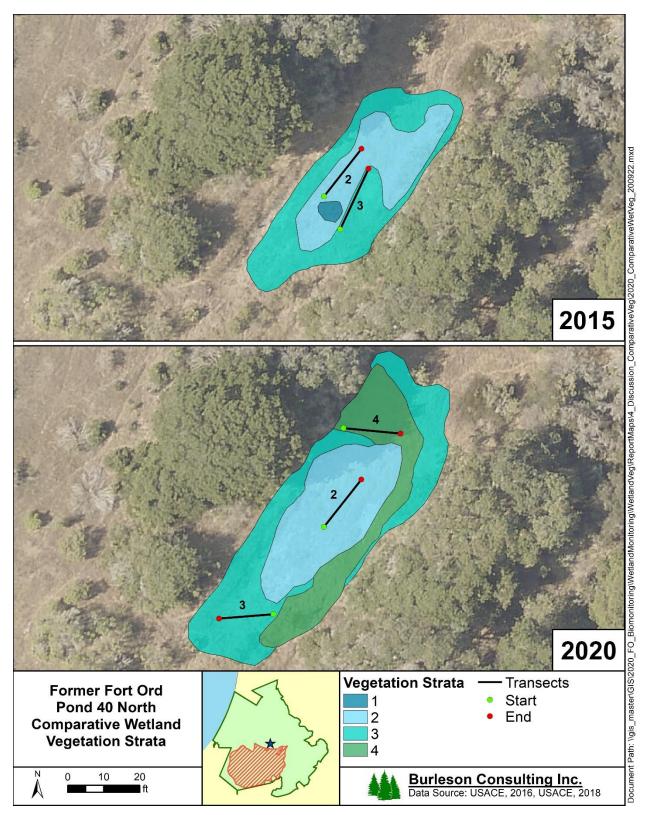
4.9 Pond 40 North – Year 3

Pond 40 North was monitored in 2020 as a year 3 post-burn vernal pool. Pond 40 North was monitored for baseline conditions in 2015. Vegetation in Pond 40 North and within its watershed was burned in October 2017 as part of the prescribed burn of BLM Area B Subunit B. Pond 40 North had anomaly investigations and it was determined no subsurface remediation was necessary at that pond. Year 3 is the final year of monitoring for Pond 40 North. Table 4-98 summarizes the years that monitoring occurred and surveys conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 40 North (see Figure 4-28). The 2014-2015 and 2017-2018 water-years were below normal, while 2018-2019 was above normal. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-98. Pond 40 North (Year 3 Post-Burn) Summary of Historic Surveys for Hydrology,Vegetation, and Wildlife

Survey	Water-Year				
Survey	2014-2015	2017-2018	2017-2018 2018-2019		
Hydrology	•	•	•	•	
Vegetation	•	•	•	•	
Wildlife	•		•	•	

Figure 4-28. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 40 North (Year 3 Post-Burn) North Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)


4.9.1 Vegetation Monitoring

Vegetation data were collected at Pond 40 North in 2015, 2018, 2019, and 2020 (Burleson., 2016, 2019, 2020). In 2015, 2018, and 2019, data were collected using the methodology described in the Methods section of this report. Data from 2015 and 2020 were compared stratum-to-stratum in Table 4-99 as well as visually in Figure 4-29.

Stratum	Percentage		
Stratum	2015	2020	
1	2%	N/A	
2	40%	33%	
3	58%	41%	
4	N/A	26%	

135

Table 4-99. Pond 40 North (Year 3 Post-Burn) Vegetative Strata Percentage within the Vernal Pool
Basin Boundary

Figure 4-29. Pond 40 North (Year 3 Post-Burn) Vegetation Strata and Transects for 2015 and 2020. The 2020 transect 2 in stratum 2 was identified as transect 1 in 2015 (Burleson *et* al., 2016). The transect number was edited for the comparison map.

Absolute percent vegetative cover observed in 2020 at Pond 40 North was greater than the baseline year and was within the range of values observed at the reference vernal pools (see Table 4-100 and Table 4-101).

Year	Vegetative Cover	Thatch/Bare Ground
2015*	42.5%	55.8%
2018	49.2%	49.7%
2019	59.6%	40.8%
2020	56.1%	43.9%

Table 4-100. Pond 40 North (Year 3 Post-Burn) Absolute Percent Cover

*baseline year

Table 4-101. Pond 40 North (Year 3 Post-Burn) and Reference Vernal Pool Absolute Percent Cover in2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
40 North	56.1%	43.9%

Species richness in 2020 was greater than the baseline year. Species richness on transects was 5, 17, 22, and 15 species in 2015, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 27, 57, 59, and 59 species, in 2015, 2018, 2019, and 2020, respectively (see Table 4-102 and Appendix A Table A-9). Despite the increase in overall basin species richness, Pond 40 North species richness was lower than reference vernal pool ranges on transects and for the entire basin (see Table 4-103 and Appendix E Tables E-21 and E-42).

Species composition at Pond 40 North was similar across monitoring years. Pale spikerush (*Eleocharis macrostachya*) was the dominant species in 2015 and 2020, whereas brown-headed rush (*Juncus phaeocephalus*) was the dominant species in 2018 and 2019. Pale spikerush was still an important species that provided moderate cover in 2018 and 2019. A complete comparison of species composition observed at Pond 40 North in 2015, 2018, and 2019 can be found in Appendix F. Figure 4-30 shows a subset of this comparison for species observed with a 2% cover or greater.

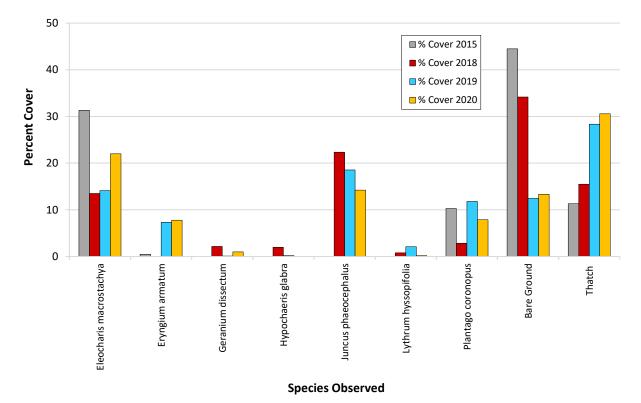


Figure 4-30. Percent Cover of Dominant Species at Pond 40 North (Year 3 Post-Burn)

Native and non-native species richness on Pond 40 North transects increased between baseline and 2020 (Yr 3) with the greatest number in 2019 (Yr 2). More non-native species than native species were observed in follow-up years than in baseline (see Table 4-102). This is likely due to consecutive years of drought prior to the baseline year of monitoring. Pond 40 North native and non-native species richness were lower than the ranges observed at the reference vernal pools in 2020 (Yr 3), 2019 (Yr 2), and 2018 (Yr 3) (see Table 4-103, Burleson, 2019, 2020). Vegetation in reference vernal pools was not monitored in 2015, the baseline year for Pond 40 North. The relative percent cover of native species was greater than baseline, while non-native cover was less than baseline in 2020 (Yr 3). There were minor fluctuations of cover values between follow-up monitoring years but all values were within 6% or less of baseline (see Table 4-104). Pond 40 North was within the range of native and non-native relative percent cover values observed at the reference vernal pools in 2020 (Yr 3), 2019 (Yr 2), and 2018 (Yr 1) (see Table 4-105 Burleson, 2019, 2020).

Year	Native	Non-Native	Unidentified
2015*	2	2	1
2018	6	11	0
2019	9	12	1
2020	7	8	0

Table 4-102. Pond 40 North (Year 3 Post-Burn) Native and Non-Native Species Richness

*baseline year

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
40 North	7	8	0

Table 4-103. Pond 40 North (Year 3 Post-Burn) and Reference Vernal Pool Native and Non-NativeSpecies Richness in 2020

Table 4-104. Pond 40 North (Year 3 Post-Burn) Relative Percent Cover of Native and Non-NativePlants

Year	Native	Non-Native	Unidentified
2015*	74.9%	24.6%	0.5%
2018	76.3%	23.7%	0.0%
2019	70.9%	28.4%	0.7%
2020	79.8%	20.2%	0.0%

*baseline year

Table 4-105. Pond 40 North (Year 3 Post-Burn) and Reference Vernal Pool Relative Percent Cover ofNative and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
40 North	79.8%	20.2%	0.0%

Wetland species richness values on Pond 40 North transects were greater in 2020 (Yr 3), 2019 (Yr 2), and 2018 (Yr 1) than baseline, whereas non-wetland species richness was slightly higher than baseline in 2019 (Yr 2) and 2018 (Yr 1) and the same in 2020 (Yr 3) (see Table 4-106). Wetland and non-wetland species richness at the vernal pool was lower than the ranges observed at the reference vernal pools in 2020 (see Table 4-107). The relative percent cover of wetland species was slightly less than the value observed in the baseline year of monitoring. This was true in 2019 (Yr 2) and 2018 (Yr 1) as well, by 2020 (Yr) the wetland cover was within 2.7% of baseline. Non-wetland species cover was the same as baseline in 2020 (see Table 4-108). The wetland relative percent cover values in 2020 (Yr 3) were most similar to those observed at reference Pond 5 (see Table 4-109).

Voor		Wetland		Non-W	Not Listed	
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2015*	2	1	1	0	0	1
2018	3	2	2	4	1	5
2019	4	4	4	2	1	7
2020	2	4	4	0	0	5

*baseline year

Vernal Pool		Wetland		Non-W	/etland	Not Listed	
Vernai POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	4	7	3	3	1	5	
101 East (East)	5	8	7	6	3	14	
997	9	10	5	5	0	13	
40 North	2	4	4	0	0	5	

Table 4-107. Pond 40 North (Year 3 Post-Burn) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Table 4-108. Pond 40 North (Year 3 Post-Burn) Relative Percent Cover of Wetland and Non-WetlandSpecies

Year		Wetland		Non-W	/etland	Not Listed
rear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2015*	74.1%	1.2%	24.2%	0.0%	0.0%	0.5%
2018	30.8%	46.4%	6.8%	4.4%	0.3%	11.2%
2019	29.7%	45.5%	20.9%	0.4%	0.4%	3.2%
2020	39.6%	41.2%	16.0%	0.0%	0.0%	3.2%

*baseline year

Table 4-109. Pond 40 North (Year 3 Post-Burn) and Reference Vernal Pool Relative Percent Cover ofWetland and Non-Wetland Species in 2020

Vernal Pool		Wetland		Non-W	etland	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	Not Listed	
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%	
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%	
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%	
40 North	39.6%	41.2%	16.0%	0.0%	0.0%	3.2%	

4.9.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations and possibly historic disturbance to this area. Some variability is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Despite slightly higher non-native species richness than native, vegetative cover in Pond 40 North was dominated by native and wetland plant species during year 3 post-burn monitoring in 2020. Pond 40 North wetland vegetation results were generally similar to baseline and reference vernal pools. Although there has been an increase in non-native species richness compared to baseline, there has also been an increase in native species richness for Pond 40 North has been lower than reference vernal pools, likely due to its small size, rather than from the effects of remediation.

4.9.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 40 North, a post-burn vernal pool, met the performance standard for year 3 in 2020. The species composition, richness, and native and wetland species relative abundances were generally similar to baseline and reference vernal pool conditions. The ratio of non-native species richness to native was similar to baseline conditions. In the baseline year, two native and two non-native species were observed, but by 2020, seven native and eight non-native species were observed. Additionally, native cover in 2020 was greater than baseline. Pond 40 North provided suitable wetland habitat in 2020 and was not impacted by burning.

4.9.2 Wildlife Monitoring

Wildlife data were collected at Pond 40 North in 2015, 2019, and 2020 (Burleson *et al.*, 2016, 2020). California tiger salamander larvae were not detected any year. Fairy shrimp were present at Pond 40 North in 2019 and 2020. Table 4-110 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)	
2015*	Not detected	Not detected	
2019	Not detected	Moderate – High (121, 57, 259)	
2020	Not detected Moderate (36)		

Table 4-110. Pond 40 North (Year 3 Post-Burn) Historic Wildlife Monitoring Results

*baseline year

4.9.2.1 *Data Quality Objective 5*

California tiger salamanders were not detected in 2020, which was consistent with baseline monitoring. Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020, which was not consistent with baseline monitoring in 2015 where they were not detected. It was possible that late survey event timing combined with a below-normal consecutive drought year prevented detection in 2015. In 2019, early fairy shrimp surveys occurred, whereas in 2020, a very dry February followed by above-normal March and April rain events may have been favorable for later fairy shrimp detection. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

4.9.2.2 Performance Standard: Wildlife Usage

Pond 40 North was a post-burn vernal pool in the final year of monitoring. Pond 40 North met DQO 5. Fairy shrimp were present in 2019 and 2020 but not in baseline, likely because the 2015 survey occurred too late in the season during a below normal, consecutive drought water-year. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.9.3 Conclusion

Pond 40 North, a post-burn vernal pool, was in the final year (Yr 3) of monitoring in 2020. The vernal pool met the plant cover and species diversity performance standard and met DQO 5 for wildlife usage (see Table 4-111). No further monitoring is recommended for Pond 40 North.

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Met
Wildlife Usage	DQO 5	Met

Table 4-111. Success at Pond 40 North (Year 3 Post-Burn) Based on Performance Standards andApplicable Data Quality Objectives

4.10 Pond 40 South – Year 3 and Year 2

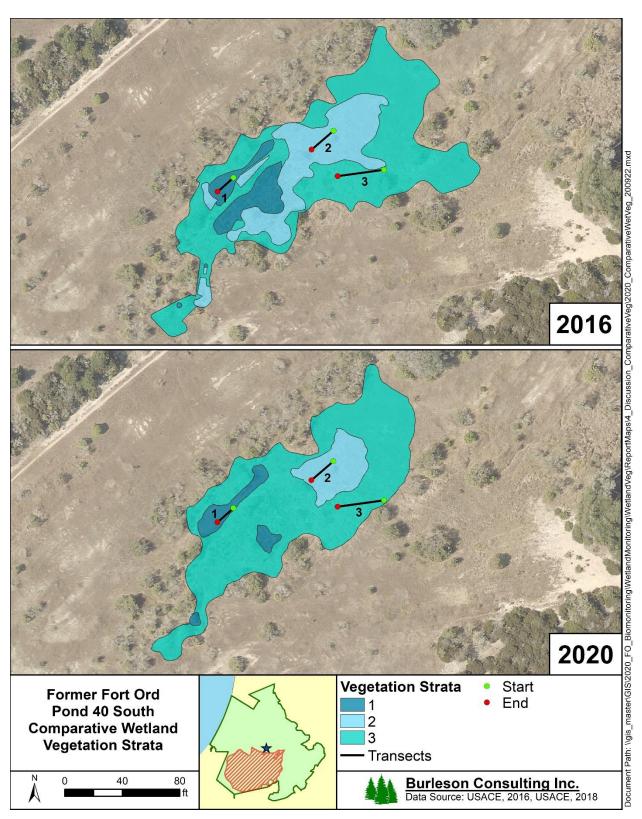
Pond 40 South was monitored in 2020 as a year 3 post-burn and year 2 post-subsurface munitions remediation vernal pool. Pond 40 South was monitored for baseline conditions in 1998, 2015, 2016, and 2017. Vegetation in Pond 40 South and within its watershed was burned in October 2017 as part of the prescribed burn of BLM Area B Subunit B. Pond 40 South had intrusive anomaly investigations in 2018. Table 4-112 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 40 South (see Figure 4-31). The 1997-1998, 2015-2016, 2016-2017, and 2018-2019 water-years were above normal, whereas 2014-2015 and 2017-2018 water-years were below normal. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-112. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

Survey			Water-Year						
Survey		1997-:	1998	2014-2015	2015-2016	2016-2017	2017-2018	2018-2019	2019-202
Hydrolog	SY .	٠		•	•	•	•	•	•
Vegetatic	on	•			•		•	•	•
Wildlife		•			•			•	•
120 100 - 08 0 0 0 0 0 0 0 0									
0	ct	Nov	Dec	Jan I	Feb Mar	Apr N	lay Jun	Jul Aug	g Sep
_	20	997-1998 016-2017			2014-2 2017-2			- 2015-2016 - 2018-2019	

2019-2020

• Normal (1981-2010)


Figure 4-31. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.10.1 Vegetation Monitoring

Vegetation data were collected at Pond 40 South in 1998, 2016, 2018, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2019). In 1998, data were collected along one transect with a length of 135 feet. Quadrats were placed at 10-foot intervals, alternating from right to left along the transect. Because 1998 data were collected differently than in other years, strata were combined across the vernal pool to allow for comparison. In 2016, 2018, 2019, and 2020 data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2020 were compared stratum-tostratum in Table 4-113 as well as visually in Figure 4-32.

Table 4-113. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage			
Stratum	2016	2020		
1	9%	6%		
2	26%	12%		
3	65%	82%		

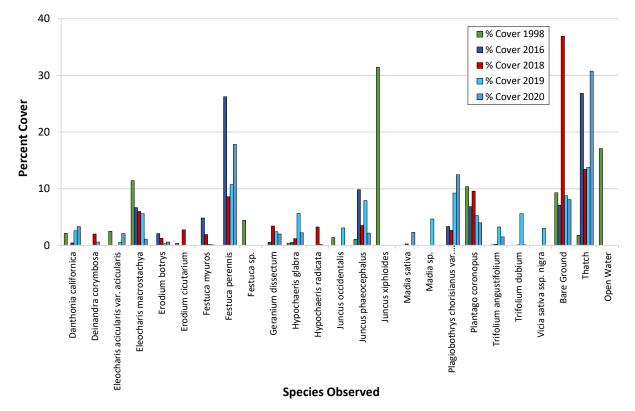
Figure 4-32. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2016 and 2020

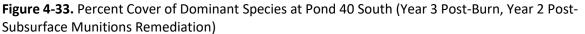
Absolute percent vegetative cover observed in 2020 was less than the range of values observed in the baseline years of monitoring (see Table 4-114). The 2020 Pond 40 South cover and bare ground values were within the ranges observed at the reference vernal pools and most similar to Pond 101 East (East) (see Table 4-115).

 Table 4-114. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)

 Absolute Percent Cover

Year	Vegetative Cover	Thatch/Bare Ground
1998*	72.7%	27.1%
2016*	66.7%	33.9%
2018	51.9%	50.3%
2019	78.6%	22.6%
2020	61.2%	38.8%


*baseline year


Table 4-115. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
40 South	61.2%	38.8%

Overall species richness in 2020 was greater than the baseline years of monitoring. Species richness on transects was 21, 20, 32, 41, and 26 species in 1998, 2016, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 27, 55, 75, and 66, species in 2016, 2018, 2019, and 2020, respectively (see Table 4-116 and Appendix A Table A-10). The 1998 survey was limited to species on the transect and overall basin species richness was not recorded. Pond 40 South species richness was within the range observed on transects at the reference vernal pools but below the ranges observed for the entire basin (see Table 4-117 and Appendix E Tables E-21 and E-42).

Species composition in Pond 40 South varied between monitoring years, as did the dominant species. The dominant species included iris-leaved rush (*Juncus xiphioides*) in 1998, Italian rye grass (*Festuca perennis*) in 2016, and cut-leaved plantain (*Plantago coronopus*) and Italian rye grass co-dominance in 2018. In 2019 and 2020, Italian rye grass and Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*) were the dominant species. Pale spikerush (*Eleocharis macrostachya*) and cut-leaved plantain were present at moderate cover in all four years. A complete comparison of species composition observed at Pond 40 South in 1998, 2016, and 2018 can be found in Appendix F. Figure 4-33 shows a subset of this comparison for species observed with a 2% cover or greater.

Native species richness on Pond 40 South transects was within the range of values observed in baseline years, while non-native species richness was greater than baseline (see Table 4-116). Pond 40 South native species richness in 2020 was less than reference pools, whereas non-native species richness was within the range observed at reference vernal pools (see Table 4-117). The relative percent cover of native species and non-native species was within the range of previous years (see Table 4-118). However, Pond 40 South was well below the range of native relative percent cover at the reference vernal pools in 2020 and above the range of non-native relative percent cover (see Table 4-119).

 Table 4-116. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)

 Native and Non-Native Species Richness

Year	Native	Non-Native	Unidentified
1998*	12	6	3
2016*	5	14	1
2018	9	22	1
2019	17	23	1
2020	8	18	0

146

*baseline year

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
40 South	8	18	0

Table 4-117. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-118. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
1998*	75.7%	15.7%	8.5%
2016*	30.1%	69.0%	0.9%
2018	29.4%	70.5%	0.2%
2019	41.5%	52.6%	5.9%
2020	39.0%	61.0%	0.0%

*baseline year

Table 4-119. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
40 South	39.0%	61.0%	0.0%

Wetland species richness on Pond 40 South transects was greater in 2020 than baseline years, while non-wetland species were within the baseline year range (see Table 4-120). The wetland species richness at Pond 40 South was less than the values observed at the reference vernal pools, while non-wetland species were within the range observed at reference vernal pools (see Table 4-121). The relative percent cover of wetland species was lower in 2020 than baseline years, whereas non-wetland species cover was within the range observed in baseline (see Table 4-122). The relative percent cover of wetland species were within the range of values observed at the reference vernal pools in 2020 (see Table 4-123).

Voor		Wetland			/etland	Not Listed
Year	OBL	FACW	FAC	FACU	UPL	Not Listed
1998*	4	4	3	1	0	9
2016*	3	2	3	5	1	6
2018	3	5	6	7	2	9
2019	4	6	5	8	2	16
2020	4	3	5	6	0	8

Table 4-120. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

*baseline year

Table 4-121. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Vernal Pool		Wetland		Non-W	etland	Not Listed
Verhar POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
40 South	4	3	5	6	0	8

Table 4-122. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Voor	Wetland			Non-W	Not Listed	
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	62.6%	4.9%	18.6%	0.2%	0.0%	13.8%
2016*	15.3%	14.9%	50.1%	14.8%	1.1%	3.9%
2018	17.2%	9.3%	36.6%	14.9%	2.2%	19.7%
2019	19.7%	15.7%	24.9%	9.7%	3.9%	26.1%
2020	26.0%	4.1%	44.1%	7.5%	0.0%	18.3%

*baseline year

Table 4-123. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool	al Pool		Wetland		Non-Wetland		Not Listed
Verharroon	OBL	FACW	FAC	FACU	UPL	Not Listed	
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%	
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%	
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%	
40 South	26.0%	4.1%	44.1%	7.5%	0.0%	18.3%	

4.10.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 40 South was dominated by non-native and wetland plant species during year 3 post-burn and year 2 post-subsurface munitions remediation monitoring in 2020. Pond 40 South wetland vegetation results were generally within range of baseline and/or reference vernal pools, however, non-native species richness was greater than baseline and non-native cover was greater than reference vernal pools. Additionally, wetland species richness was greater than baseline but less than reference.

4.10.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 40 South, a post-burn and post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for years 3 and 2, respectively, in 2020. The species composition, richness, and native and wetland species relative abundances were similar to baseline in 2016 but Pond 40 South was different from the reference vernal pools in regard to non-native species richness and relative percent cover. Non-native species richness increased between 2016 and 2020. The valley in Unit B where Pond 40 South is located has historically been heavily disturbed which is likely why non-native richness and cover is high. Additionally, unusual patterns in rainfall in the 2019-2020 water-year may have created a unique combination of environmental conditions favorable for non-native species at Pond 40 South.

4.10.2 Wildlife Monitoring

Wildlife data were collected at Pond 40 South in 1998, 2016, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2020). California tiger salamander larvae were not detected in 2020 or any previous year. Fairy shrimp were present in 2019 and 2020. Table 4-124 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Not detected
2016*	Not detected	Not detected
2019	Not detected	Moderate (13, 12)
2020	Not detected	Low (1)

 Table 4-124. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)

 Historic Wildlife Monitoring Results

*baseline year

4.10.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with baseline monitoring conducted in 1998 and 2016. Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020, which was not consistent with baseline monitoring. Fairy shrimp were not detected in 1998 or 2016. It was possible that survey timing prevented detection in 2016 because surveys occurred later in the year (April and May). However, in 2020, a very dry February followed by above-normal March and April rain events may have been favorable for later fairy shrimp

detection. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

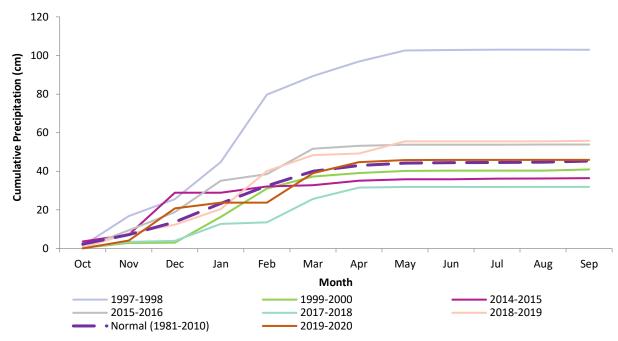
4.10.2.2 Performance Standard: Wildlife Usage

Pond 40 South, a post-burn and post-subsurface munitions remediation vernal pool, is on track to meet DQO 5. Fairy shrimp were present in 2019 and 2020 but not baseline, likely because the 2016 survey occurred too late in the season for detection (April and May). It is unclear, however, why fairy shrimp were not detected in 1998. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.10.3 Conclusion

Pond 40 South, a post-burn and post-subsurface munitions remediation vernal pool, was in years 3 and 2 of monitoring in 2020. The vernal pool is on track to meet the plant cover and species diversity performance standard and DQO 5 for wildlife usage (see Table 4-125). Pond 40 South will continue to be monitored in the future.

Table 4-125. Success at Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Based on Performance Standards and Applicable Data Quality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track

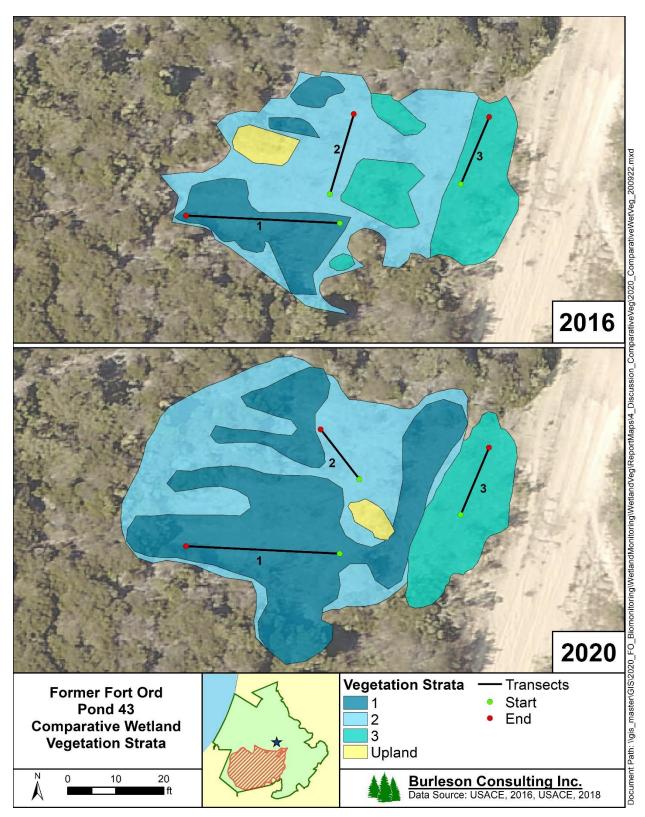
4.11 Pond 43 – Year 3 and Year 2

Pond 43 was monitored in 2020 as a year 3 post-burn and year 2 post-subsurface munitions remediation vernal pool. Pond 43 was monitored for baseline conditions in 1998, 2000, 2015, and 2016. Vegetation in Pond 43 and within its watershed was burned in October 2017 as part of the prescribed burn of BLM Area B Subunit B. Pond 43 had intrusive anomaly investigations in 2018. Table 4-126 summarizes the years that monitoring occurred and surveys conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 43 (see Figure 4-34). The 1997-1998, 2015-2016, and 2018-2019 water-years were above normal, whereas the, 2014-2015 and 2017-2018 water-years were below normal. This year 2019-2020, as well as the 1999-2000 water-year, were similar to the cumulative normal.

Table 4-126. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

6	Water-Year							
Survey	1997-1998	1999-2000	2014-2015	4-2015 2015-2016 2017-2018 2018-2019 2019-2				
Hydrology	•	٠	•	•	•	•	•	
Vegetation	•			•	•	•	•	
Wildlife	•	٠		•		•	•	

Figure 4-34. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)


4.11.1 Vegetation Monitoring

Vegetation data were collected at Pond 43 in 1998, 2016, 2018, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2019). In 1998, data were collected along one transect with a length of 75 feet. Quadrats were placed at 10-foot intervals, alternating from right to left along the transect. Because 1998 data were collected differently than in other years, strata were combined across the vernal pool to allow for comparison. In 2016, 2018, 2019, and 2020, data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2020 were compared stratum-to-stratum in Table 4-127 as well as visually in Figure 4-35.

Table 4-127. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetative
Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage			
	2016	2020		
1	19%	46%		
2	50%	37%		
3	27%	15%		
Upland	3%	2%		

151

Figure 4-35. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2016 and 2020

Absolute percent vegetative cover and thatch/bare ground cover in 2020 were very similar to the 2016 baseline values (see Table 4-128). The absolute percent vegetative cover of Pond 43 in 2020 was within the range of values observed at the reference vernal pools and most similar to Pond 101 East (East) (see Table 4-129).

Table 4-128. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover

Year	Vegetative Cover	Thatch/Bare Ground
1998*	55.9%	54.4%
2016*	66.5%	33.3%
2018	56.1%	44.1%
2019	63.9%	37.3%
2020	66.3%	33.8%

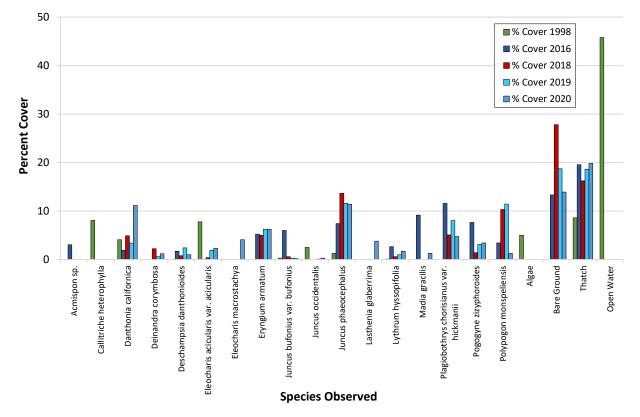

*baseline year

Table 4-129. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground		
5	47.6%	52.4%		
101 East (East)	63.4%	36.6%		
997	70.2%	29.8%		
43	66.3%	33.8%		

Species richness in 2020 was greater than in baseline years. Species richness on transects was 22, 24, 37, 45, and 41 species in 1998, 2016, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 35, 51, 103, and 86 species in 2016, 2018, 2019, and 2020, respectively (see Table 4-130 and Appendix A Table A-11). The 1998 survey was limited to species on the transect and overall basin species richness was not recorded. The 2020 species richness results for transects and the overall basin were greater than baseline years. Pond 43 species richness was within the range observed on transects at the reference vernal pools but greater than the values observed for the entire basin (see Table 4-131 and Appendix E Tables E-21 and E-42).

Species composition and dominant species at Pond 43 were variable across monitoring years. Flowering quillwort (*Triglochin scilloides*) was the dominant species in 1998, Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*) was the dominant species in 2016, and brown-headed rush (*Juncus phaeocephalus*) and rabbitfoot grass (*Polypogon monspeliensis*) were the dominant species in 2018 and 2019. In 2020, brown-headed rush and California oatgrass (*Danthonia californica*) were the dominant species. A complete comparison of species composition observed at Pond 43 in 1998, 2016, 2018, and 2019 can be found in Appendix F. Figure 4-36 shows a subset of this comparison for species observed with a 2% cover or greater.

Figure 4-36. Percent Cover of Dominant Species at Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)

Native and non-native species richness on Pond 43 transects increased between baseline and 2020 (see Table 4-130). Native and non-native species richness were within the range of values observed at the reference vernal pools (see Table 4-131). The relative percent cover of native species was greater than the baseline values, whereas the relative percent cover of non-native species was within the range of baseline values (see Table 4-132). Pond 43 was within the range of native and non-native relative percent cover values observed at the reference vernal pools in 2020 and was most similar to reference Pond 5 (see Table 4-133).

 Table 4-130. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Native and

 Non-Native Species Richness

Year	Native	Non-Native	Unidentified
1998*	13	7	2
2016*	13	8	2
2018	22	14	1
2019	30	14	1
2020	26	15	0

*baseline year

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
43	26	15	0

Table 4-131. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-132. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
1998*	83.7%	4.5%	11.8%
2016*	80.3%	14.9%	4.8%
2018	71.2%	28.7%	0.1%
2019	73.2%	26.7%	0.1%
2020	87.0%	13.0%	0.0%

*baseline year

Table 4-133. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
43	87.0%	13.0%	0.0%

Wetland and non-wetland species richness on Pond 43 transects were greater in 2020 than in baseline years and within the range of values observed at reference vernal pools (see Table 4-134 and Table 4-135). Relative percent cover of wetland species was greater in 2020 than in baseline years and non-wetland relative percent cover was within the range of values observed in baseline years (see Table 4-136). Relative percent cover values were within the ranges observed at the reference vernal pools in 2020 (see Table 4-137).

Table 4-134. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland
and Non-Wetland Species Richness

Year		Wetland		Non-Wetland		Not Listed
	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	6	5	4	1	0	6
2016*	4	6	3	3	0	7
2018	7	8	6	6	0	10
2019	8	10	7	5	0	15
2020	9	11	4	4	1	12

*baseline year

Vernal Pool		Wetland		Non-Wetland		Not Listed
Vernai Pool	OBL	FACW	FAC	FACU	UPL	Not Listeu
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
43	9	11	4	4	1	12

Table 4-135. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Table 4-136. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year	Wetland			Non-W	Not Listed	
rear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	64.6%	8.6%	8.6%	0.2%	0.0%	18.1%
2016*	34.2%	36.0%	4.1%	3.8%	0.0%	21.9%
2018	16.5%	57.2%	13.1%	5.1%	0.0%	8.2%
2019	24.2%	56.3%	6.6%	4.8%	0.0%	8.1%
2020	31.6%	35.8%	19.7%	3.1%	0.4%	9.3%

*baseline year

Table 4-137. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool	Wetland			Non-We	etland	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%	
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%	
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%	
43	31.6%	35.8%	19.7%	3.1%	0.4%	9.3%	

4.11.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 43 was dominated by native and wetland plant species during year 3 post-burn and year 2 post-subsurface munitions remediation monitoring in 2020. Pond 43 wetland vegetation results were within range of baseline and/or reference vernal pools.

4.11.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 43, a post-burn and post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for years 3 and 2, respectively, in 2020. The species composition, richness, and native and wetland species relative abundances were similar to baseline and/or reference vernal pool conditions. Pond 43 provided suitable wetland habitat in 2020.

4.11.2 Wildlife Monitoring

Wildlife data were collected at Pond 43 in 1998, 2000, 2016, 2019, and 2020 (HLA, 1998, 2000; Burleson, 2017, 2020). California tiger salamander larvae were not detected in any survey year. Fairy shrimp were present in 1998, 2019, and 2020. Table 4-138 shows historic wildlife monitoring results.

Table 4-138. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Historic				
Wildlife Monitoring Results				

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Moderate
2000*	Not detected	Not detected
2016*	Not detected	Not detected
2019	Not detected	High (135, 210)
2020	Not detected	Moderate (40)

*baseline year

4.11.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with baseline monitoring conducted in 1998 and 2000. Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020. Baseline monitoring results varied by year. Fairy shrimp were present in 1998 but were not detected in 2000 or 2016. It was possible survey timing prevented detection in 2016 because surveys occurred later in the year (April and May). However, in 2020, a very dry February followed by above-normal March and April rain events may have been favorable for later fairy shrimp detection. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

4.11.2.2 Performance Standard: Wildlife Usage

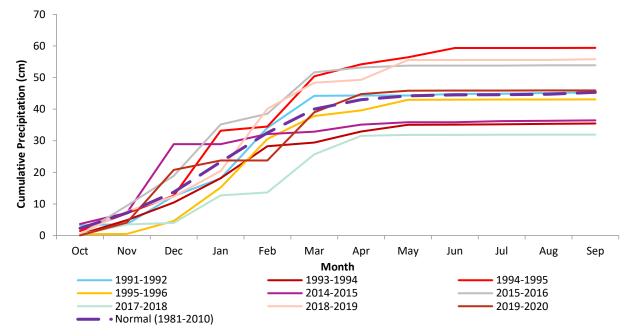
Pond 43, a post-burn and post-subsurface munitions remediation vernal pool, is on track to meet DQO 5. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.11.3 Conclusion

Pond 43, a post-burn and post-subsurface munitions remediation vernal pool, was in years 3 and 2 of monitoring in 2020. The vernal pool is on track to meet the plant cover and species diversity performance standard and DQO 5 for wildlife usage (see Table 4-139). Pond 43 will continue to be monitored in the future.

Table 4-139. Success at Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)
Based on Performance Standards and Applicable Data Quality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track


*Fairy shrimp and CTS depth requirements were not met in 2019, but fairy shrimp were present.

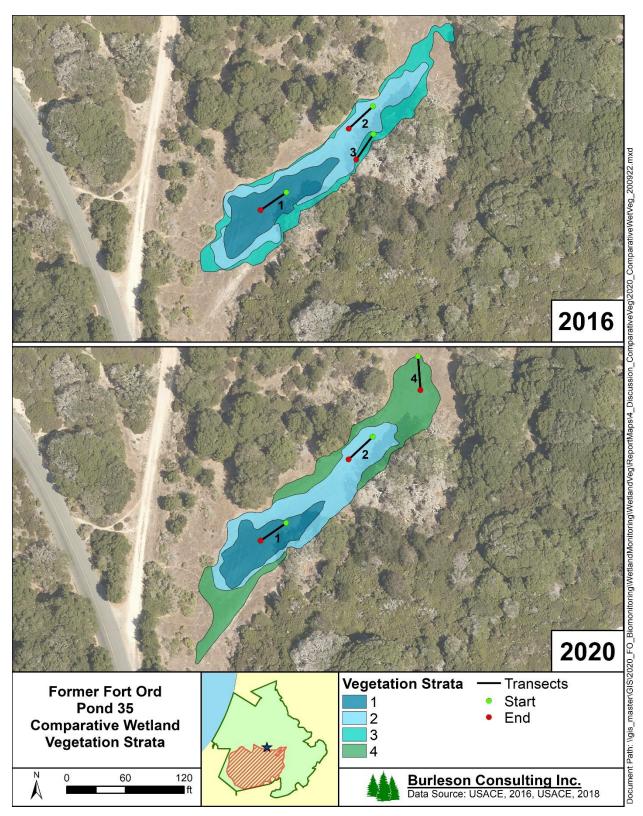
4.12 Pond 35 – Year 3 and Year 2

Pond 35 was monitored in 2020 as a year 3 post-mastication and year 2 post-subsurface munitions remediation vernal pool. Pond 35 was monitored for baseline conditions in 1992, 1994, 1995, 1996, 2015, and 2016. Vegetation within the Pond 35 watershed was masticated in summer of 2017 in preparation for a prescribed burn of BLM Area B Subunit B. Vegetation within and immediately around Pond 35 was not burned, although parts of the Pond 35 watershed were burned in October 2017. Pond 35 had intrusive anomaly investigations in 2018. Table 4-140 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph indicates precipitation for the years that monitoring was conducted at Pond 35 (see Figure 4-37). The 1994-1995, 1995-1996, 2015-2016, 2018-2019, and 2019-2020 water-years were either normal or above-normal, whereas all other monitoring was conducted during a below-normal water-year, drought year, or consecutive drought year.

Table 4-140. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

		Water-Year							
Survey	1991-	1993-	1994-	1995-	2014-	2015-	2017-	2018-	2019-
	1992	1994	1995	1996	2015	2016	2018	2019	2020
Hydrology	•	•	•	•	•	•	•	•	•
Vegetation		•	•	•		•	•	•	•
Wildlife		•	•	•				•	•

Figure 4-37. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)


158

4.12.1 Vegetation Monitoring

Vegetation data were collected at Pond 35 in 2016, 2018, 2019, and 2020 (Burleson, 2017, 2019). Data from 1994, 1995, and 1996 only represent dominant species and are not included in the following analyses because the data were collected using a different methodology than was used in more recent years (Jones and Stokes, 1996). In 2016, 2018, 2019, and 2020, data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2020 were compared stratum-to-stratum in Table 4-141 as well as visually in Figure 4-38.

Table 4-141. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage			
	2016	2020		
1	28%	20%		
2	39%	36%		
3	33%	N/A		
4	N/A	44%		

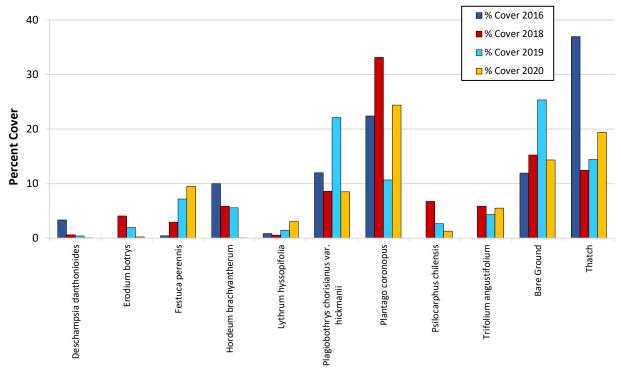
Figure 4-38. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2016 and 2020

Absolute percent vegetative cover observed in 2020 was greater than the baseline year and within the range of values observed at the reference vernal pools. (see Table 4-142 and Table 4-143).

Table 4-142. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover

Year	Vegetative Cover	Thatch/Bare Ground
2016*	52.1%	48.9%
2018	74.3%	27.7%
2019	59.5%	39.8%
2020	66.3%	33.7%

*baseline year


Table 4-143. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
35	66.3%	33.7%

Species richness in 2020 was greater than the baseline year of monitoring. Species richness on transects was 12, 38, 25, and 26 species in 2016, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 35, 64, 79, and 60 species, respectively (see Table 4-144 and Appendix A Table A-12). Pond 35 species richness was within the range observed on transects at the reference vernal pools but below the ranges observed for the entire basin (see Table 4-145 and Appendix E Tables E-21 and E-42).

Species composition at Pond 35 was similar across years, and the dominant species was either cutleaved plantain (*Plantago coronopus*) or Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*) with fluctuations between years. Other dominant species included meadow barley (*Hordeum brachyantherum*) in 2016 and Italian rye grass (*Festuca perennis*) in 2020. A complete comparison of species composition observed at Pond 35 in 2016, 2018, 2019, and 2020 can be found in Appendix F. Figure 4-39 shows a subset of this comparison for species observed with a 2% cover or greater.

161

Species Observed

Figure 4-39. Percent Cover of Dominant Species at Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)

Native and non-native species richness on Pond 35 transects increased from baseline to 2020 (see Table 4-144). Pond 35 native species richness was less than reference vernal pool values in 2020, and nonnative species richness was in the range of values at reference vernal pools (see Table 4-145). The relative percent cover of native species was less than baseline, and non-native cover was greater than baseline. Pond 35 native relative percent cover was less than reference vernal pools in 2020 and nonnative relative percent cover was greater than reference vernal pools (see Table 4-146 and Table 4-147).

Table 4-144. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)
Native and Non-Native Species Richness

Year	Native Non-Native		Unidentified
2016*	6	6	0
2018	14	23	1
2019	10	15	0
2020	10	16	0

162

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
35	10	16	0

Table 4-145. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-146. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
2016*	52.0%	48.0%	0.0%
2018	33.2%	66.7%	0.1%
2019	53.8%	46.2%	0.0%
2020	31.4%	68.6%	0.0%

*baseline year

Table 4-147. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
35	31.4%	68.6%	0.0%

Wetland and non-wetland species richness on Pond 35 transects were greater in 2020 than baseline (see Table 4-148). The relative percent cover of wetland species was lower and the non-wetland cover was greater than the baseline values (see Table 4-150). The wetland species richness was slightly less than values observed at reference vernal pools, but non-wetland species richness, and relative cover of wetland and non-wetlands species were within the ranges observed at the reference vernal pools (see Table 4-149 and Table 4-151).

Table 4-148. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

Voor		Wetland		Non-W	Not Listed	
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2016*	5	2	3	0	0	2
2018	7	5	6	7	0	13
2019	6	3	5	4	0	7
2020	6	3	4	5	0	8

Vernal Pool		Wetland		Non-W	/etland	Not Listed	
vernal Pool	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	4	7	3	3	1	5	
101 East (East)	5	8	7	6	3	14	
997	9	10	5	5	0	13	
35	6	3	4	5	0	8	

Table 4-149. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Table 4-150. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year		Wetland		Non-W	/etland	Not Listed	
real	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
2016*	28.1%	25.6%	45.7%	0.0%	0.0%	0.5%	
2018	14.4%	18.0%	50.8%	7.0%	0.0%	9.8%	
2019	41.7%	14.5%	30.9%	4.0%	0.0%	9.0%	
2020	19.8%	2.1%	65.5%	1.8%	0.0%	10.9%	

*baseline year

Table 4-151. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool		Wetland		Non-We	etland	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%	
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%	
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%	
35	19.8%	2.1%	65.5%	1.8%	0.0%	10.9%	

4.12.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations and possibly historic disturbance to this area. Some variability is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 35 was dominated by non-native and wetland plant species during year 3 post-mastication and year 2 post-subsurface munitions remediation monitoring in 2020. Pond 35 had higher non-native cover compared to baseline and reference vernal pools, and higher non-native richness compared to baseline. These results were similar to those observed in 2018 (Yr 1). It is unclear whether mastication or subsurface munitions remediation caused these changes. More likely it is related to a prolonged drought prior to baseline monitoring as well as historic disturbance. Pond 35 may have high non-native cover and richness due to close proximity to Parker Flats Road and Watkin's Gate Road. The 1996 Annual Wetland Monitoring Report noted Pond 35 as slightly to moderately disturbed, that it may have silt from erosion of adjacent roads, and that it ponded in old tire depressions (Jones and Stokes, 1996). Pale spikerush, an obligate native species, and

English plantain (*Plantago lanceolata*), a facultative non-native species, were noted as the two dominant species in 1994. English plantain is indicative of disturbance (Cal-IPC, 2020).

4.12.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 35, a post-mastication and post-subsurface munitions remediation vernal pool, is not on track to meet the performance standard for years 3 and 2, respectively, in 2020. Species composition and wetland species relative abundances were similar to baseline in 2016, but Pond 35 was different from baseline and reference vernal pools regarding non-native species richness and relative percent cover. Non-native species richness and cover increased between 2016 and 2020 and should be closely monitored in future years. The valley in Unit B where Pond 35 is located has historically been heavily disturbed which is likely why, in some years, non-native richness and cover are high. Additionally unusual rainfall patterns in the 2019-2020 water-year may have created a unique combination of environmental conditions favorable for non-native species at Pond 35. However, it is more likely related to historic disturbance and proximity to roads.

4.12.2 Wildlife Monitoring

Wildlife data were collected at Pond 35 in 1992, 1994, 1995, 1996, 2019, and 2020 (Jones and Stokes, 1992, 1996; Burleson, 2020). California tiger salamander larvae were not detected in any previous survey year. Fairy shrimp were present in 1994, 1995, 1996, 2019, and 2020. Table 4-152 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1992*	Not detected	Not detected
1994*	Not detected	Low-High
1995*	Not detected	Moderate-High
1996*	Not detected	Low (1)
2019	Not detected	Moderate (74, 50)
2020	Not detected	High (186)

Table 4-152. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring Results

*baseline year

4.12.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with baseline monitoring conducted in 1992, 1994, 1995, and 1996. Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020, which was generally consistent with baseline monitoring. Fairy shrimp were present in 1994, 1995, and 1996, but were not detected in 1992. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

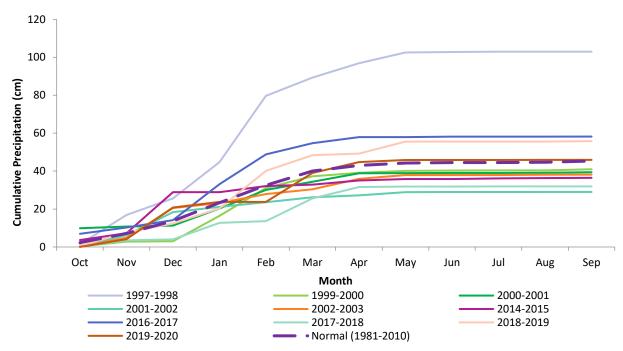
4.12.2.2 Performance Standard: Wildlife Usage

Pond 35, a post-mastication and post-subsurface munitions remediation vernal pool, is on track to meet DQO 5. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.12.3 Conclusion

Pond 35, a post-mastication and post-subsurface munitions remediation vernal pool, was in years 3 and 2 of monitoring in 2020. The vernal pool is on track to meet DQO 5 for wildlife usage but not on track for the plant cover and species diversity performance standard (see Table 4-153). This is due to high non-native richness and cover. Pond 35 will continue to be monitored in the future.

Table 4-153. Success at Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface MunitionsRemediation) Based on Performance Standards and Applicable Data Quality Objectives

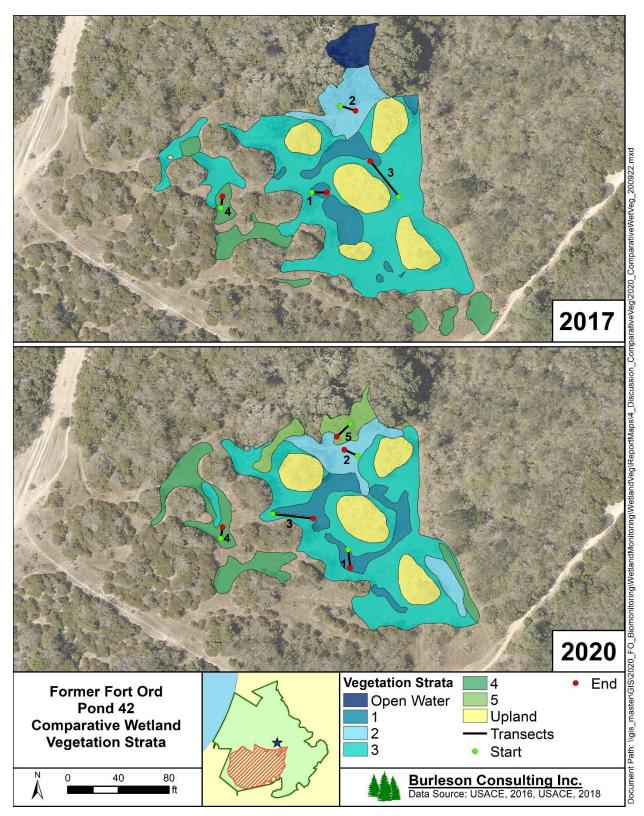

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Not on track
Wildlife Usage	DQO 5	On track

4.13 Pond 42 – Year 3 and Year 2

Pond 42 was monitored in 2020 as a year 3 post-mastication and post-burn and year 2 post-subsurface munitions remediation vernal pool. Vegetation in Pond 42 and within its watershed was masticated in the summer of 2018 and burned in October 2017 as part of the prescribed burn of BLM Area B Subunit B. Pond 42 had intrusive anomaly investigations in 2018. Pond 42 was first monitored for baseline in 1998. Following MEC remediation activities, Pond 42 was monitored annually from 2000 to 2003. Additional baseline surveys occurred in 2015 and 2017. Table 4-154 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph indicates precipitation for the years that monitoring was conducted at Pond 42 (see Figure 4-40). The above-normal water-years were 1997-1998, 2016-2017, and 2018-2019. This year, 2019-2020, was similar to the cumulative normal water-year. Other monitoring years were below-normal water-year, drought year, or consecutive drought year.

Table 4-154. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface MunitionsRemediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

	Water-Year									
Survey	1997-	1999-	2000-	2001-	2002-	2014-	2016-	2017-	2018-	2019-
	1998	2000	2001	2002	2003	2015	2017	2018	2019	2020
Hydrology	•	•	•	•	•	•	•	•	•	•
Vegetation	•	•	•	•	•		•	•	•	•
Wildlife	٠	٠	•	•	•			•	•	•


Figure 4-40. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.13.1 Vegetation Monitoring

Vegetation data were collected at Pond 42 in 1998, 2000, 2001, 2002, 2003, 2017, 2018, 2019, and 2020 (HLA, 1998, 2001; Harding ESE, 2002; MACTEC, 2003, 2004; Burleson, 2018, 2019, 2020). In 1998, 2000, 2001, 2002, and 2003 data were collected along transects in lengths varying from 50 to 241 feet. In 2000, 0.25 m² quadrats were placed at intervals ranging from 10 to 20 feet, whereas in 1998, 2001, 2002, and 2003, quadrats were placed at 10-foot intervals. Quadrats were placed at the given intervals, alternating from right to left along the transect. In 1998, 2000, 2001, 2002, and 2003, transects of varying lengths were in areas of representative transitional and emergent habitats. Due to differing methodologies, data for all strata in each respective year before 2017 were combined to compare to 2017 through 2020. In 2017, 2018, 2019, and 2020, data were collected using the methodology described in the Methods section of this report. Data from 2017 and 2020 were compared stratum-to-stratum in Table 4-155 as well as visually in Figure 4-41.

Table 4-155. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface MunitionsRemediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

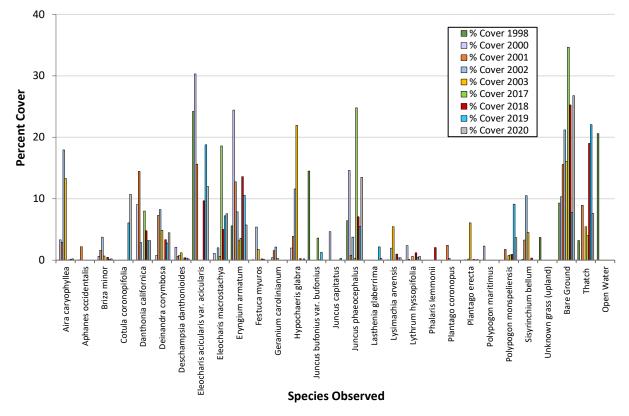
Stratum	Percentage				
Stratum	2017	2020			
Open Water	4%	N/A			
1	8%	11%			
2	9%	10%			
3	52%	41%			
4	10%	14%			
5	N/A	7%			
Upland	17%	17%			

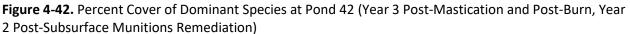
Figure 4-41. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2017 and 2020

Absolute percent vegetative cover and thatch/bare ground cover were very similar to the 1998 and 2017 baseline years of monitoring (see Table 4-156). The absolute percent vegetative cover of Pond 42 in 2020 was within the range of values observed at the reference vernal pools and most similar to Pond 101 East (East) (see Table 4-157).

Year	Vegetative Cover	Thatch/Bare Ground
1998*	69.6%	33.1%
2000	101.5%	10.3%
2001	77.5%	24.5%
2002	83.5%	21.2%
2003	84.6%	16.1%
2017*	61.9%	38.7%
2018	55.8%	44.3%
2019	70.2%	29.8%
2020	65.1%	34.4%

Table 4-156. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover


*baseline year


Table 4-157. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface MunitionsRemediation) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
42	65.1%	34.4%

Species richness in 2020 was within the range of values observed in the baseline years of monitoring. Species richness on transects was 20, 31, 28, 24, 32, 14, 40, 27, and 28 in 1998, 2000, 2001, 2002, 2003, 2017, 2018, 2019, and 2020, respectively. Overall basin species richness values were only recorded in 2017-2020 and were 78, 126, 77, and 93 species, respectively (see Table 4-158 and Appendix A Table A-13). Pond 42 species richness was within the range observed on transects at the reference vernal pools but greater than the ranges observed for the entire basin (see Table 4-159 and Appendix E Tables E-21 and E-42).

Species composition and dominant species at Pond 42 were variable across monitoring years. Pale spikerush (*Eleocharis macrostachya*) and brown-headed rush (*Juncus phaeocephalus*) were the two dominant species in 2017, whereas needle spikerush (*Eleocharis acicularis* var. *acicularis*) and coyote thistle (*Eryngium armatum*) were the dominant species in 2018 and 2019. Rabbitfoot grass (*Polypogon monspeliensis*) was another important species in 2019. In 2020, the dominant species were brown-headed rush, needle spike rush, and brass buttons (*Cotula coronopifolia*). A complete comparison of species composition observed during the surveys at Pond 42 in 1998, 2000, 2001, 2002, 2003, 2017, 2018 and 2019, can be found in Appendix F. Figure 4-42 shows a subset of this comparison for species observed with a 2% cover or greater.

Native and non-native species richness on Pond 42 transects was greater in 2020 than baseline (see Table 4-158). Pond 42 native species richness was within the range of values observed at reference vernal pools, whereas non-native species richness was less than the values observed at the reference vernal pools (see Table 4-159). The relative percent cover of native species was less than baseline years and the non-native cover was greater than baseline (see Table 4-160). Pond 42 native vegetation percent cover was less than reference vernal pools and non-native percent cover was within the range of values observed at reference vernal pools (see Table 4-160).

Year	Native	Non-Native	Unidentified
1998*	12	5	3
2000	20	11	1
2001	14	13	1
2002	16	8	0
2003	19	12	1
2017*	10	4	0
2018	24	15	1
2019	16	11	0
2020	18	10	0

Table 4-158. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Native and Non-Native Species Richness

*baseline year

Table 4-159. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface MunitionsRemediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
42	18	10	0

Table 4-160. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
1998*	87.7%	4.4%	7.9%
2000	84.4%	15.6%	0.0%
2001	77.4%	22.4%	0.3%
2002	49.0%	51.0%	0.0%
2003	40.4%	58.7%	1.0%
2017*	97.8%	2.2%	0.0%
2018	90.0%	9.7%	0.4%
2019	75.5%	24.5%	0.0%
2020	74.8%	25.2%	0.0%

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
42	74.8%	25.2%	0.0%

Table 4-161. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface MunitionsRemediation) and Reference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in2020

Wetland and non-wetland species richness on Pond 42 transects were greater in 2020 than the baseline year of monitoring and within the range of values observed at the reference vernal pools (see Table 4-162 and Table 4-163). The relative percent cover of wetland species was within ranges of previous baseline years, whereas non-wetland cover was slightly greater than baseline (see Table 4-164). Relative percent cover of wetland and non-wetland species were within the range of values observed at reference vernal pools (see Table 4-165).

Year		Wetland		Non-We	Not Listed	
rear	OBL	FACW	FAC	FACU	UPL	Not Listed
1998*	6	4	4	1	0	5
2000	5	5	4	6	0	11
2001	3	5	4	6	0	10
2002	3	4	4	2	1	10
2003	5	6	3	4	0	14
2017*	5	4	1	2	0	2
2018	9	10	3	7	1	10
2019	6	7	3	5	0	6
2020	7	7	4	2	1	7

Table 4-162. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions
Remediation) Wetland and Non-Wetland Species Richness

*baseline year

 Table 4-163. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Vernal Pool	Wetland			Non-We	etland	Not Listed	
VernarPOOr	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	4	7	3	3	1	5	
101 East (East)	5	8	7	6	3	14	
997	9	10	5	5	0	13	
42	7	7	4	2	1	7	

Year		Wetland		Non-We	Not Listed	
Tear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	42.2%	38.6%	8.7%	0.5%	0.0%	10.0%
2000	35.7%	40.9%	10.3%	8.4%	0.0%	4.7%
2001	20.7%	24.8%	24.0%	7.2%	0.0%	23.3%
2002	3.1%	27.4%	10.6%	27.9%	0.2%	30.7%
2003	5.8%	12.2%	7.5%	19.5%	0.0%	55.0%
2017*	30.9%	53.0%	12.9%	0.4%	0.0%	2.7%
2018	33.0%	44.8%	11.2%	2.3%	0.4%	8.4%
2019	50.3%	38.5%	5.3%	1.3%	0.0%	4.6%
2020	49.0%	36.0%	5.8%	0.9%	0.1%	8.2%

Table 4-164. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

*baseline year

Table 4-165. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface MunitionsRemediation) and Reference Vernal Pool Relative Percent Cover of Wetland and Non-WetlandSpecies in 2020

Vernal Pool	Wetland			Non-W	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	Not Listed
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
42	49.0%	36.0%	5.8%	0.9%	0.1%	8.2%

4.13.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 42 was dominated by native and wetland plant species during year 3 post-mastication and post-burn and year 2 post-subsurface munitions remediation monitoring in 2020. Pond 42 wetland vegetation results were within range of baseline and/or reference vernal pools.

4.13.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 42, a post-mastication, post-burn, and post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for years 3, 3, and 2, respectively, in 2020. The species composition, richness, and native and wetland species relative abundances were similar to baseline and/or reference vernal pool conditions. Pond 42 provided suitable wetland habitat in 2020.

4.13.2 Wildlife Monitoring

Wildlife data were collected at Pond 42 in 1998, 2000, 2001, 2002, 2003, 2018, 2019, and 2020 (HLA, 1998, 2001, 2002; MACTEC, 2003, 2004, Burleson, 2019, 2020). California tiger salamander larvae were observed in 2000. Fairy shrimp were present in all years. Table 4-166 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Low-Moderate
2000	Common (13)	High – Very High (318, 123)
2001	Not detected	Low (2)
2002	Not detected	High-Very High (250, 1000s)
2003	Not detected	High (low 100s)
2018	Not detected	Low
2019	Not detected	High (217)
2020	Not detected	High (125)

Table 4-166. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring Results

*baseline year

4.13.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with baseline monitoring. Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020, which was consistent with previous baseline monitoring. Fairy shrimp were observed in 1998, 2000, 2001, 2002, and 2003. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

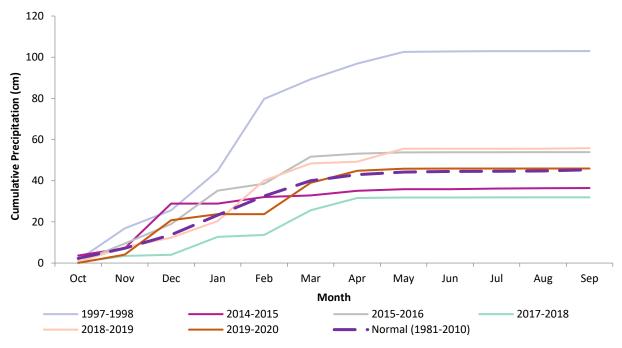
4.13.2.2 Performance Standard: Wildlife Usage

Pond 42, a post-mastication, post-burn, and post-subsurface munitions remediation vernal pool, is on track to meet DQO 5. California tiger salamanders were present in one of the five previous years but were not detected in 2020. If there is no detection of CTS in future monitoring years, this vernal pool may have been impacted by remediation and steps should be considered for corrective action. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.13.3 Conclusion

Pond 42, a post-mastication, post-burn, and post-subsurface munitions remediation vernal pool, was in years 3, 3, and 2 of monitoring in 2020. The vernal pool is on track to meet the plant cover and species diversity performance standard and the DQO 5 for wildlife usage (see Table 4-167). Pond 42 will continue to be monitored in the future.

Table 4-167. Success at Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Based on Performance Standards and Applicable Data Quality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track

4.14 Pond 44 – Year 3 and Year 2

Pond 44 was monitored in 2020 as a year 2 post-subsurface munitions remediation and year 3 postmastication vernal pool. Pond 44 was monitored for baseline conditions in 1998, 2015, and 2016. Vegetation in Pond 44 and within its watershed was masticated in the summer of 2017 in preparation for a prescribed burn of BLM Area B Subunit B. Pond 44 had intrusive anomaly investigations in 2018. Table 4-168 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph indicates precipitation for the years that monitoring was conducted at Pond 44 (see Figure 4-43). The 1997-1998, 2015-2016, and 2018-2019, water-years were above normal, whereas the 2014-2015 and 2017-2018 water-years were below normal. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-168. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

Survey	Water-Year					
Survey	1997-1998	2014-2015	2015-2016	2017-2018	2018-2019	2019-2020
Hydrology	•	•	•	•	•	•
Vegetation	•		•	•	•	•
Wildlife	•				•	٠

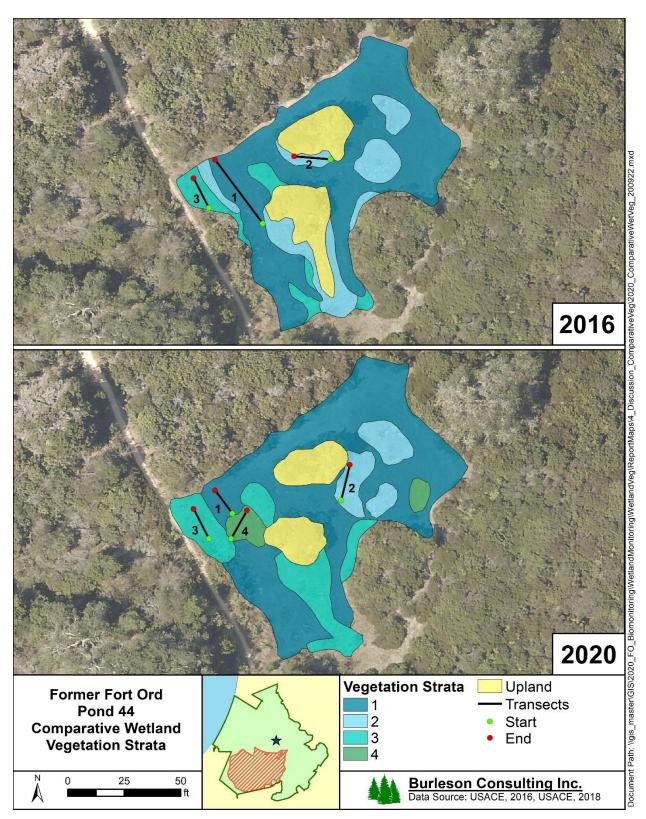


Figure 4-43. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.14.1 Vegetation Monitoring

Vegetation data were collected at Pond 44 in 1998, 2016, 2018, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2019, 2020). In 1998, data were collected along two transects close to 50 feet in length. Quadrats were placed at 10-foot intervals, alternating from right to left along the transect. Because 1998 data

were collected differently than in other years, strata were combined across the vernal pool to allow for comparison. In 2016, 2018, 2019, and 2020, data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2020 were compared stratum-to-stratum in Table 4-169 as well as visually in Figure 4-44.

Figure 4-44. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2016 and 2020

Stratum	Percentage		
Stratum	2016	2020	
1	60%	59%	
2	17%	9%	
3	7%	18%	
4	N/A	4%	
Upland	16%	10%	

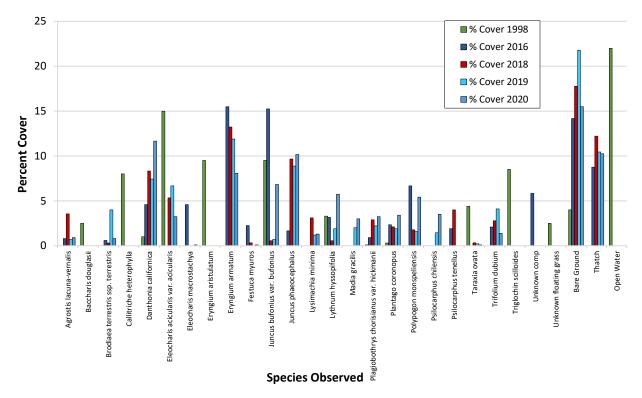
Table 4-169. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

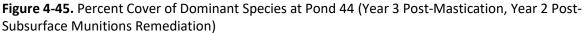
The absolute percent vegetative cover and thatch/bare ground cover of Pond 44 were very similar to the 1998 baseline year of monitoring (see Table 4-170). The absolute percent vegetative cover of Pond 44 in 2020 was greater than the values observed at the reference vernal pools (see Table 4-171).

Table 4-170. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover

Year	Vegetative Cover	Thatch/Bare Ground
1998*	72.8%	26.0%
2016*	78.6%	22.9%
2018	70.9%	30.0%
2019	67.7%	32.2%
2020	74.4%	25.8%

*baseline year


Table 4-171. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2020


Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
44	74.4%	25.8%

Species richness in 2020 was greater than in baseline years. Species richness on transects was 26, 36, 44, 44, and 39 species in 1998, 2016, 2018, 2019, and 2020 respectively, whereas overall basin species richness was 47, 71, 74, and 67 species in 2016, 2018, 2019, and 2020, respectively (see Table 4-172 and Appendix A Table A-14). Pond 44 species richness was within the range observed on transects at the reference vernal pools but was slightly less than the values observed for the entire basin (see Table 4-173 and Appendix E Tables E-21 and E-42).

Species composition at Pond 44 differed among the monitoring years, however, the dominant species were fairly similar. The dominant species in 1998 was needle spikerush. In 2016, 2017, 2018, and 2020 the dominant species was coyote thistle (*Eryngium armatum*). In 2020, California oatgrass (*Danthonia californica*) and brown-headed rush (*Juncus phaeocephalus*) were also dominant species. A complete

comparison of species composition observed at Pond 44 in 1998, 2016, and 2018 can be found in Appendix F. Figure 4-45 shows a subset of this comparison for species observed with a 2% cover or greater.

Native and non-native species richness on Pond 44 transects were greater in 2020 than in baseline years (see Table 4-172). Pond 44 native and non-native species richness in 2020 were within the range of values observed at the reference vernal pools (see Table 4-173). The relative percent cover of native and non-native species were within the range observed in the baseline years and the range observed at reference vernal pools (see Table 4-175).

Table 4-172. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)
Native and Non-Native Species Richness

Year	Native	Non-Native	Unidentified
1998*	17	8	2
2016*	21	14	1
2018	28	15	1
2019	28	15	1
2020	22	17	0

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
44	22	17	0

Table 4-173. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-174. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
1998*	87.6%	8.8%	3.4%
2016*	66.5%	26.1%	7.4%
2018	82.1%	17.7%	0.2%
2019	78.2%	21.7%	0.2%
2020	74.0%	26.0%	0.0%

*baseline year

Table 4-175. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
44	74.0%	26.0%	0.0%

Wetland species richness and relative percent cover on Pond 44 transects were greater in 2020 than in baseline years, while the non-wetland species richness and cover were within the range of values observed in baseline years (see Table 4-176 and Table 4-178). The wetland and non-wetland species richness and relative percent cover at Pond 44 were within the ranges observed at the reference vernal pools in 2020 (see Table 4-177 and Table 4-179).

Voor		Wetland	Noi		/etland	Notlistad
Year	OBL	FACW	FAC	FACU	UPL	Not Listed
1998*	7	4	5	1	0	9
2016*	5	9	5	6	0	10
2018	8	9	4	7	1	15
2019	7	10	6	4	1	16
2020	7	8	5	6	0	13

Table 4-176. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

*baseline year

Table 4-177. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Vernal Pool	Wetland			Non-Wetland		Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
44	7	8	5	6	0	13

Table 4-178. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year	Wetland			Non-Wetland		Not Listed	
Teal	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
1998*	63.5%	15.2%	3.3%	0.4%	0.0%	14.1%	
2016*	15.8%	53.8%	9.7%	8.7%	0.0%	4.7%	
2018	20.7%	46.9%	16.8%	8.0%	0.3%	7.4%	
2019	19.9%	39.9%	17.4%	8.2%	0.2%	14.4%	
2020	17.6%	49.3%	22.1%	2.9%	0.0%	8.2%	

*baseline year

Table 4-179. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool		Wetland			etland	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%	
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%	
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%	
44	17.6%	49.3%	22.1%	2.9%	0.0%	8.2%	

4.14.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 44 was dominated by native and wetland plant species during year 3 post-mastication and year 2 post-subsurface munitions remediation monitoring in 2020. Pond 44 wetland vegetation results were greater or within range of baseline and/or reference vernal pools.

4.14.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 44, a post-mastication and post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for years 3 and 2, respectively, in 2020. The species composition, richness, and native and wetland species relative abundances were similar to baseline and/or reference vernal pool conditions. Pond 44 provided suitable wetland habitat in 2020.

4.14.2 Wildlife Monitoring

Wildlife data were collected at Pond 44 in 1998, 2019, and 2020 (HLA, 1998; Burleson, 2020). California tiger salamanders were not detected in any year, whereas fairy shrimp were present in all years. Table 4-180 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Moderate
2019	Not detected	Very High (650, 370)
2020	Not detected	High (258)

Table 4-180. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring Results

*baseline year

4.14.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with baseline monitoring. Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020, which was consistent with previous baseline monitoring. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

4.14.2.2 Performance Standard: Wildlife Usage

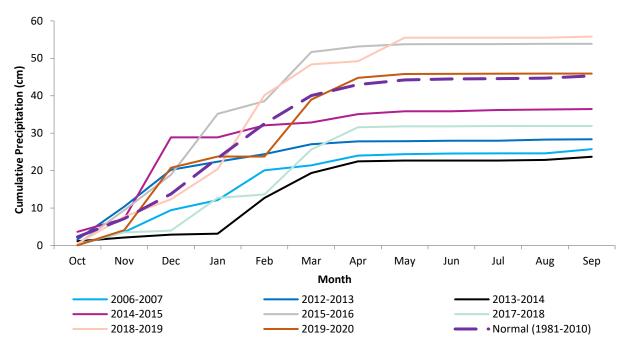
Pond 44, a post-burn and post-subsurface munitions remediation vernal pool, is on track to meet DQO 5. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.14.3 Conclusion

Pond 44, a post-mastication and post-subsurface munitions remediation vernal pool, was in years 3 and 2 of monitoring in 2020. The vernal pool is on track to meet the plant cover and species diversity

performance standard and DQO 5 for wildlife usage (see Table 4-181). Pond 44 will continue to be monitored in the future.

Table 4-181. Success at Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface MunitionsRemediation) Based on Performance Standards and Applicable Data Quality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track

4.15 Pond 56 – Year 3

Pond 56 was monitored in 2020 as a year 3 post-mastication vernal pool. Pond 56 was monitored for baseline conditions in 2007, 2013, 2014, 2015, and 2016. Vegetation within the watershed of Pond 56 was masticated in the summer of 2017 in preparation for a prescribed burn in 2017 and to support MEC remediation in BLM Area B Subunit B-3 East. Vegetation within the watershed was masticated in 2017 to support MEC remediation activities and prepare areas for prescribed burning. Prior to the 2017 mastication, Pond 56 was used as a reference vernal pool. Year 3 is the final year of monitoring for Pond 56. Table 4-182 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph indicates precipitation for the years that monitoring was conducted at Pond 56 (see Figure 4-46). The 2015-2016 and 2018-2019 water-years were above normal, whereas all other monitoring was conducted during a normal or below-normal water-year, drought year, or consecutive drought year. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-182. Pond 56 (Year 3 Post-Mastication) Summary of Historic Surveys for Hydrology,Vegetation, and Wildlife

		Water-Year						
Survey	2006-	2012-	2013-	2014-	2015-	2017-	2018-	2019-
	2007	2013	2014	2015	2016	2018	2019	2020
Hydrology	٠	•	•	•	•	•	•	•
Vegetation	•			•	•		•	•
Wildlife	٠	•	•	•	•		•	•

Figure 4-46. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 56 (Year 3 Post-Mastication) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.15.1 Vegetation Monitoring

Vegetation data were collected at Pond 56 in 2007, 2015, 2016, 2019, and 2020 (Shaw, 2008; Burleson, 2016, 2017, 2020). In 2007, data were collected in three zones using a 1.0 m² quadrat placed at three locations within each zone, and data for all strata were combined for the entire pool to allow for comparison. In 2015, 2016, 2019, and 2020 data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2020 and were compared stratum-to-stratum in Table 4-183 as well as visually in Figure 4-47.

Stratum	Per	Percentage				
	2016	2020				
1	4%	6%				
2	6%	5%				
3	12%	16%				
4	50%	24%				
5	22%	46%				
6	3%	N/A				
Upland	3%	3%				

Table 4-183. Pond 56 (Year 3 Post-Mastication) Vegetative Strata Percentage within the Vernal PoolBasin Boundary

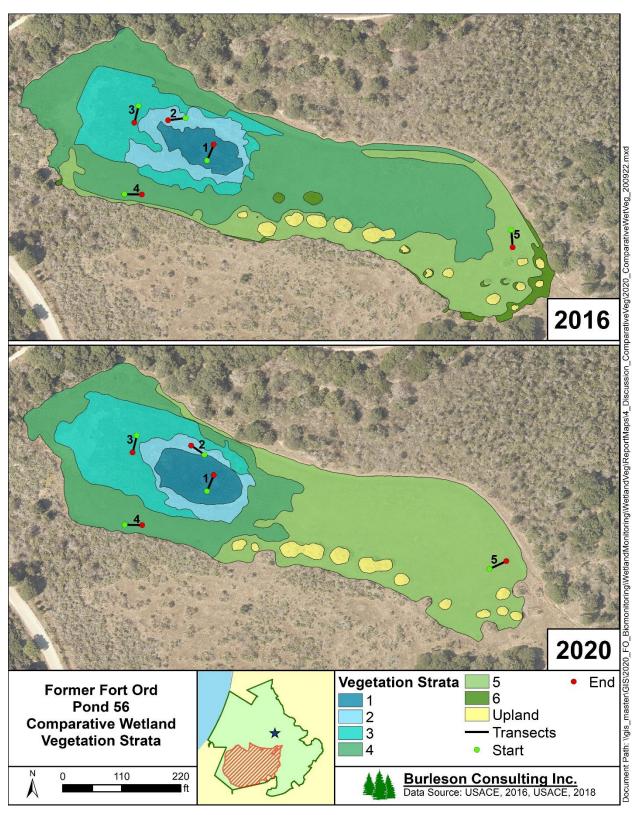


Figure 4-47. Pond 56 (Year 3 Post-Mastication) Vegetation Strata and Transects for 2016 and 2020

Absolute percent vegetative cover observed in 2020 was within the range of values in the baseline years of monitoring (see Table 4-184). The absolute percent vegetative cover of Pond 56 was less than values observed at the reference vernal pools while thatch/bare ground was greater (see Table 4-185).

Year	Vegetative Cover	Thatch/Bare Ground
2007*	34.5%	65.6%
2015*	74.4%	24.6%
2016*	70.2%	26.6%
2019	60.1%	39.9%
2020	41.1%	58.9%

Table 4-184. Pond 56 (Year 3 Post-Mastication) Absolute Percent Cover

*baseline year

Table 4-185. Pond 56 (Year 3 Post-Mastication) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
56	41.1%	58.9%

Species richness in 2020 was within the range of values observed in the baseline years of monitoring. Species richness on transects was 17, 18, 12, 15, and 18 species in 2007, 2015, 2016, 2019, and 2020, respectively, whereas overall basin species richness was 38, 41, 79, and 67 species in 2015, 2016, 2019, and 2020, respectively (see Table 4-186 and Appendix A Table A-15). Pond 56 species richness for transects as well as the overall basin was less than the values observed at the reference vernal pools (see Table 4-187 and Appendix E Tables E-21 and E-42).

Species composition at Pond 56 was fairly similar among the monitoring years with differing dominant species between the years. Salt grass (*Distichlis spicata*) and pale spikerush (*Eleocharis macrostachya*) were important species in all years. The dominant species in 2007 was saltgrass, and the dominant species in 2015 was bugle hedge nettle (*Stachys ajugoides*). In 2016, 2019, and 2020, the two dominant species were pale spikerush and brown-headed rush (*Juncus phaeocephalus*). A complete comparison of species composition observed at Pond 56 in 2007, 2015, 2016, and 2019 can be found in Appendix F. Figure 4-48 shows a subset of this comparison for species observed with a 2% cover or greater.

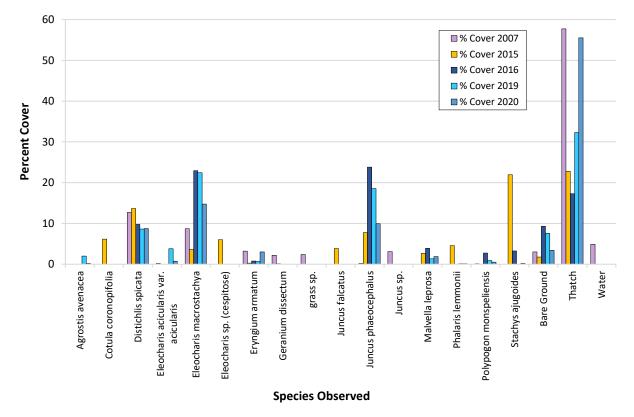


Figure 4-48. Percent Cover of Dominant Species at Pond 56 (Year 3 Post-Mastication)

Native species richness on Pond 56 transects was greater than baseline years in 2020 (Yr 3) and the same as baseline years in 2019 (Yr 2). Non-native species richness was within the range of values observed in baseline years of monitoring for both 2020 (Yr 3) and 2019 (Yr 2) (see Table 4-186). Pond 56 native species richness in 2020 was within the range of values observed at the reference vernal pools, whereas non-native richness was less (see Table 4-187). The relative percent cover of native species was greater than baseline and reference vernal pool values and non-native cover was lower in 2020 (Yr 3) (see Table 4-188 and Table 4-189).

	•	•	•
Year	Native	Non-Native	Unidentified
2007*	9	6	2
2015*	11	6	1
2016*	8	4	0
2019	11	4	0
2020	13	5	0

188

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
56	13	5	0

Table 4-187. Pond 56 (Year 3 Post-Mastication) and Reference Vernal Pool Native and Non-NativeSpecies Richness in 2020

Table 4-188. Pond 56 (Year 3 Post-Mastication) Relative Percent Cover of Native and Non-NativePlants

Year	Native	Non-Native	Unidentified
2007*	75.9%	8.1%	15.9%
2015*	80.7%	11.3%	8.1%
2016*	95.6%	4.4%	0.0%
2019	94.1%	5.9%	0.0%
2020	97.6%	2.4%	0.0%

*baseline year

Table 4-189. Pond 56 (Year 3 Post-Mastication) and Reference Vernal Pool Relative Percent Cover ofNative and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
56	97.6%	2.4%	0.0%

Wetland and non-wetland species richness on Pond 56 transects in 2020 (Yr 3) and 2019 (Yr 2) were similar to the values observed in previous baseline years but less than the values observed at the reference vernal pools (see Table 4-190 and Table 4-191). The relative percent cover of wetland species in 2020 (Yr 3) and 2019 (Yr 2) were within 0.1% of the 2016 baseline values. For non-wetland species, the relative percent cover in 2020 (Yr 3) and 2019 (Yr 2) were within 2.9% of the 2016 baseline values. (see Table 4-192). The relative percent cover of wetland and non-wetland species were within the range of values observed in 2020 (Yr 3) (see Table 4-193).

Voor		Wetland		Non-W	/etland	Not Listed
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2007*	6	4	2	2	0	3
2015*	5	5	2	1	0	5
2016*	5	4	1	2	0	0
2019	5	6	1	1	0	2
2020	6	6	1	2	0	3

Table 4-190. Pond 56 (Year 3 Post-Mastication) Wetland and Non-Wetland Species Richness

*baseline year

Table 4-191. Pond 56 (Year 3 Post-Mastication) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Vernal Pool	Wetland			Non-W	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
56	6	6	1	2	0	3

Table 4-192. Pond 56 (Year 3 Post-Mastication) Relative Percent Cover of Wetland and Non-Wetland Species

Voor		Wetland		Non-W	/etland	Not Listed
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2007*	29.3%	47.0%	0.6%	0.9%	0.0%	22.3%
2015*	44.7%	40.4%	2.5%	3.6%	0.0%	8.7%
2016*	41.4%	52.9%	0.1%	5.6%	0.0%	0.0%
2019	45.9%	48.2%	0.2%	2.2%	0.0%	3.5%
2020	39.4%	55.0%	0.1%	4.7%	0.0%	0.8%

*baseline year

Table 4-193. Pond 56 (Year 3 Post-Mastication) and Reference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool		Wetland		Non-Wetland		Not Listed
vernal Pool	OBL	FACW	FAC	FACU	UPL	Not Listed
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
56	39.4%	55.0%	0.1%	4.7%	0.0%	0.8%

4.15.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close

relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 56 was dominated by native and wetland plant species during year 3 post-mastication monitoring in 2020 as well as previous years of monitoring. Pond 56 wetland vegetation results were within range of baseline and/or reference vernal pools.

4.15.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 56, a post-mastication vernal pool, met the performance standard for year 3 in 2020. The species composition, richness, and native and wetland species relative abundances were similar to baseline and reference vernal pool conditions. Pond 56 provided suitable wetland habitat in 2020 and was not impacted by mastication efforts.

4.15.2 Wildlife Monitoring

Wildlife data were collected at Pond 56 in 2007, 2013, 2014, 2015, 2016, 2019, and 2020 (Shaw, 2008; Tetra Tech, 2014, 2015; Burleson, 2016, 2017, 2020). California tiger salamander larvae were observed in 2015, 2016, and 2019. Fairy shrimp were present in 2007, 2013, and 2019. Table 4-194 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
2007*	Not detected	Moderate (23, 20)
2013*	Not detected	Present
2014*	Not detected	Not detected
2015*	Few – Common (14, 13, 1)	Not detected
2016*	Common – Abundant (28, 101)	Not detected
2019	Common (20, 19, 10)	Moderate (22)
2020	Not detected	Not detected

Table 4-194. Pond 56 (Year 3 Post-Mastication) Historic Wildlife Monitoring Results

*baseline year

4.15.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with some baseline surveys. Baseline monitoring results varied where CTS were observed in 2015 and 2016 but were not detected in 2007, 2013, and 2014. Results in 2020 were consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were not detected in 2020, which was consistent with some baseline surveys. Baseline monitoring in 2007 and 2013 yielded detections, while the species was not detected in 2014, 2015, or 2016. Results in 2020 were consistent with reference Pond 5. Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

4.15.2.2 Performance Standard: Wildlife Usage

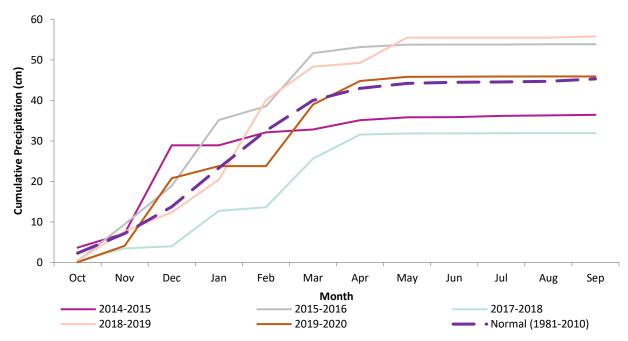
Pond 56, a post-mastication vernal pool, was in the final year of monitoring and met DQO 5. California tiger salamanders were present in 2019 (Yr 2) but were not detected in 2020 (Yr 3). This trend was also observed at reference vernal pools Pond 5 and 101 East (East). California tiger salamanders were present during baseline surveys in 2015 and 2016 but were not detected in 2007, 2013, or 2014. Fairy shrimp were present in 2019 (Yr 2) but were not detected in 2020 (Yr 3). In baseline surveys, fairy shrimp detection was variable; moderate numbers were observed in 2007 and presence noted in 2013. However, fairy shrimp were not detected in 2014, 2015, and 2016. Therefore, the 2020 result is similar

to baseline data. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.15.3 Conclusion

Pond 56, a post-mastication vernal pool, was in the final year (Yr 3) of monitoring in 2020. The vernal pool met the plant cover and species diversity performance standard and met DQO 5 for wildlife usage (see Table 4-195). No further monitoring is recommended for Pond 56.

Table 4-195. Success at Pond 56 (Year 3 Post-Mastication) Based on Performance Standards and Applicable Data Quality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Met
Wildlife Usage	DQO 5	Met

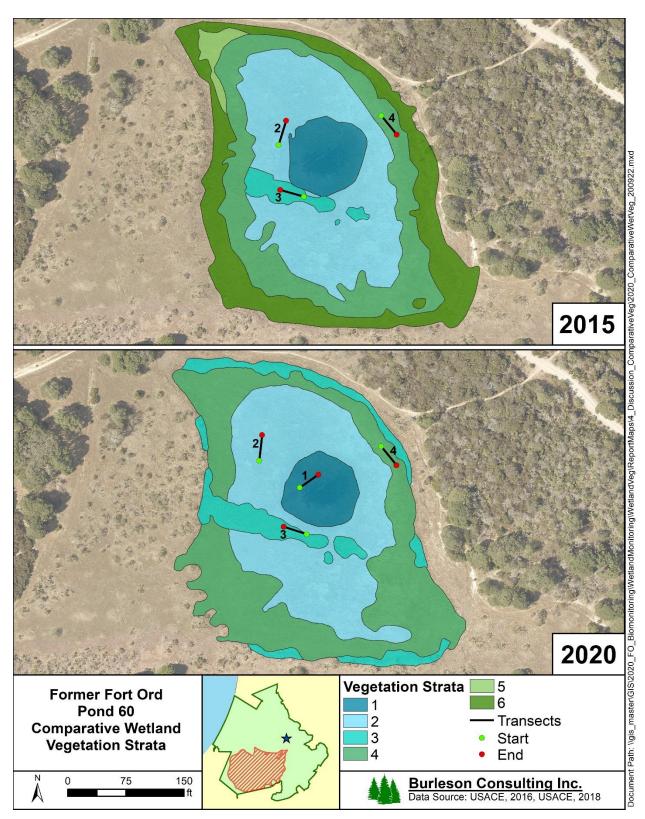
4.16 Pond 60 – Year 3 and Year 2

Pond 60 was monitored in 2020 as a year 3 post-mastication vernal pool and year 2 post-subsurface munitions remediation. Pond 60 was monitored for baseline conditions in 2015 and 2016. Grasses and shrubs in and around Pond 60 were masticated in the summer of 2017 to support MEC remediation activities. Pond 60 had intrusive anomaly investigations in 2018. Table 4-196 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 60 (see Figure 4-49). The 2015-2016 and 2018-2019 water-years were above normal, whereas the 2014-2015 and 2017-2018 water-years were below normal. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-196. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

Survey			Water-Year		
Survey	2014-2015	2015-2016	2017-2018	2018-2019	2019-2020
Hydrology	•	•	•	•	•
Vegetation	•		•	•	•
Wildlife	•	•	•	•	•

Figure 4-49. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)


4.16.1 Vegetation Monitoring

Vegetation data were collected at Pond 60 in 2015, 2018, 2019, and 2020 (Burleson, 2016, 2019, 2020). In 2015, 2018, 2019, and 2020, data were collected using the methodology described in the Methods section of this report. Data from 2015 and 2020 were compared stratum-to-stratum in Table 4-197 as well as visually in Figure 4-50.

Stratum	Percentage			
Stratum	2015	2020		
1	7%	7%		
2	35%	39%		
3	3%	13%		
4	27%	41%		
5	2%	N/A		
6	26%	N/A		

 Table 4-197. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)

 Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Figure 4-50. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2015 and 2020

Absolute percent vegetative cover at Pond 60 decreased between baseline and 2020 (see Table 4-198). The absolute percent vegetative cover of Pond 60 in 2020 was within the range of values observed at the reference vernal pools and most similar to Pond 5 (see Table 4-199).

Table 4-198. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover

Year	Vegetative Cover	Thatch/Bare Ground
2015*	61.8%	38.4%
2018	40.8%	59.7%
2019	77.5%	22.5%
2020	53.8%	45.5%

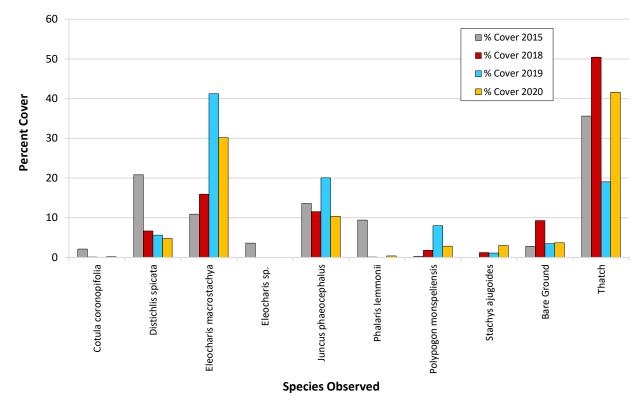

*baseline year

Table 4-199. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
60	53.8%	45.5%

Species richness in 2020 was greater than the baseline year of monitoring. Species richness on transects was 13, 19, 14, and 16 species in 2015, 2018, 2019, and 2020, respectively, whereas overall basin species richness increased and was 30, 59, 46, and 57 species, respectively (see Table 4-200 and Appendix A Table A-16). Pond 60 species richness was lower than the values observed at the reference vernal pools on transects and for the entire basin (see Table 4-201 and Appendix E Tables E-21 and E-42).

Species composition at Pond 60 was similar in 2015, 2018, 2019, and 2020. The dominant species in all years were salt grass (*Distichlis spicata*), brown-headed rush (*Juncus phaeocephalus*), and pale spikerush (*Eleocharis macrostachya*). A complete comparison of species composition observed at Pond 60 in 2015, 2018, 2019, and 2020 can be found in Appendix F. Figure 4-51 shows a subset of this comparison for species observed with a 2% cover or greater.

Figure 4-51. Percent Cover of Dominant Species at Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)

Native species richness on Pond 60 transects was greater than in the baseline year, whereas non-native species richness was the same as baseline (see Table 4-200). Pond 60 native and non-native species richness in 2020 were considerably less than the values observed in reference vernal pools (see Table 4-201). Pond 60 relative percent cover of native species was greater than in baseline years and at the reference vernal pools, whereas the non-native species cover was greater than baseline but less than reference (see Table 4-202 and Table 4-203).

Table 4-200. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Native and Non-Native Species Richness

Year	Native	Non-Native	Unidentified
2015*	4	7	2
2018	10	9	0
2019	7	7	0
2020	9	7	0

Vernal Pool	Native	Non-Native	Unidentified	
5	12	11	0	
101 East (East)	24	19	0	
997	27	14	1	
60	9	7	0	

Table 4-201. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-202. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified	
2015*	88.5%	5.5%	6.0%	
2018	92.8%	7.2%	0.0%	
2019	88.3%	11.7%	0.0%	
2020	93.3%	6.7%	0.0%	

*baseline year

Table 4-203. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified	
5	91.3%	8.7%	0.0%	
101 East (East)	72.2%	27.8%	0.0%	
997	76.3%	23.6%	0.1%	
60	93.3%	6.7%	0.0%	

Wetland and non-wetland species richness on Pond 60 transects were greater than in the baseline year (see Table 4-204). The wetland species richness was within the range observed at reference vernal pools, whereas the non-wetland richness was less than the reference vernal pool values (see Table 4-205). Relative percent cover of wetland and non-wetland species was greater in 2020 than the baseline year of monitoring (see Table 4-206). The relative percent cover of wetland species was greater than the values observed at the reference vernal pools while non-wetland species cover was less than reference (see Table 4-207).

Table 4-204. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)
Wetland and Non-Wetland Species Richness

Year	Wetland		Non-Wetland		Not Listed	
	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2015*	3	4	3	1	0	2
2018	5	6	3	2	1	2
2019	6	4	2	2	0	0
2020	6	5	3	1	1	0

Vernal Pool		Wetland	Wetland		Vetland	Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
60	6	5	3	1	1	0

Table 4-205. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Table 4-206. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year		Wetland			Non-Wetland	
rear	OBL	FACW	FAC	FACU	UPL	Not Listed
2015*	21.4%	71.4%	0.8%	0.4%	0.0%	6.0%
2018	45.8%	52.1%	0.5%	0.7%	0.1%	0.8%
2019	56.2%	43.5%	0.2%	0.1%	0.0%	0.0%
2020	64.5%	34.2%	0.9%	0.4%	0.1%	0.0%

*baseline year

Table 4-207. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool		Wetland		Non-We	etland	Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
60	64.5%	34.2%	0.9%	0.4%	0.1%	0.0%

4.16.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 60 was dominated by native and wetland plant species during year 3 post-mastication and year 2 post-subsurface munitions remediation monitoring in 2020. Pond 60 native and wetland vegetation covers were greater than baseline and reference. Additionally, native species richness was greater than baseline but less than reference.

4.16.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 60, a post-mastication and post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for year 3 and year 2. The species composition, richness, and native and wetland species relative abundances were similar to baseline and reference vernal pool conditions. Pond 60 provided suitable wetland habitat in 2020.

4.16.2 Wildlife Monitoring

Wildlife data were collected at Pond 60 in 2015, 2016, 2018, 2019, and 2020 (Burleson, 2016, 2017, 2019, 2020). California tiger salamander larvae were observed in 2015, 2016, 2019, and 2020. Fairy shrimp were present in 2019. Table 4-208 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
2015*	Common (23, 19, 28)	Not detected
2016*	Few – Common (3, 11, 7)	Not detected
2018	Not detected	Not detected
2019	Few – Common (5, 53, 18)	Low (6)
2020	Few (1, 5, 7)	Not detected

Table 4-208. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring Results

*baseline year

4.16.2.1 Data Quality Objective 5

California tiger salamanders were present in 2020, which is consistent with baseline monitoring. The species was observed in baseline years 2015 and 2016. Results in 2020 differed from the reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were not detected in 2020, which was consistent with baseline monitoring. Results in 2020 were also consistent with reference Pond 5. Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

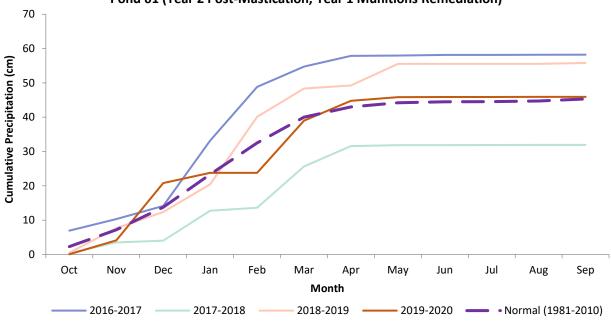
4.16.2.2 Performance Standard: Wildlife Usage

Pond 60, a post-mastication and post-subsurface munitions remediation vernal pool, is on track to meet DQO 5. Data quality objectives 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.16.3 Conclusion

Pond 60, a post-mastication and post-subsurface munitions remediation vernal pool, was in year 3 and year 2 of monitoring in 2020. The vernal pool is on track to meet the plant cover and species diversity performance standard and DQO 5 for wildlife usage standards (see Table 4-209). Pond 60 will continue to be monitored in the future.

Table 4-209. Success at Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface MunitionsRemediation) Based on Performance Standards and Applicable Data Quality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track

4.17 Pond 61 – Year 3 and Year 2

Pond 61 was monitored in 2020 as a year 3 post-mastication and year 2 post-subsurface munitions remediation vernal pool. Although limited subsurface remediation occurred at this vernal pool in 1999, the Army did not conduct monitoring prior to 2017 and it is assumed that 2017 represents baseline conditions. Less than 50 percent of the watershed of Pond 61 was masticated in the summer of 2017 to support MEC remediation in BLM Area B Subunits B-3 East and B2-A. Pond 61 had intrusive anomaly investigations in 2018. Table 4-210 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 61 (see Figure 4-52). The 2016-2017 and 2018-2019 water-years were above normal, whereas the 2017-2018 water-year was below normal. This year, 2019-2020, was similar to the cumulative normal water-year.

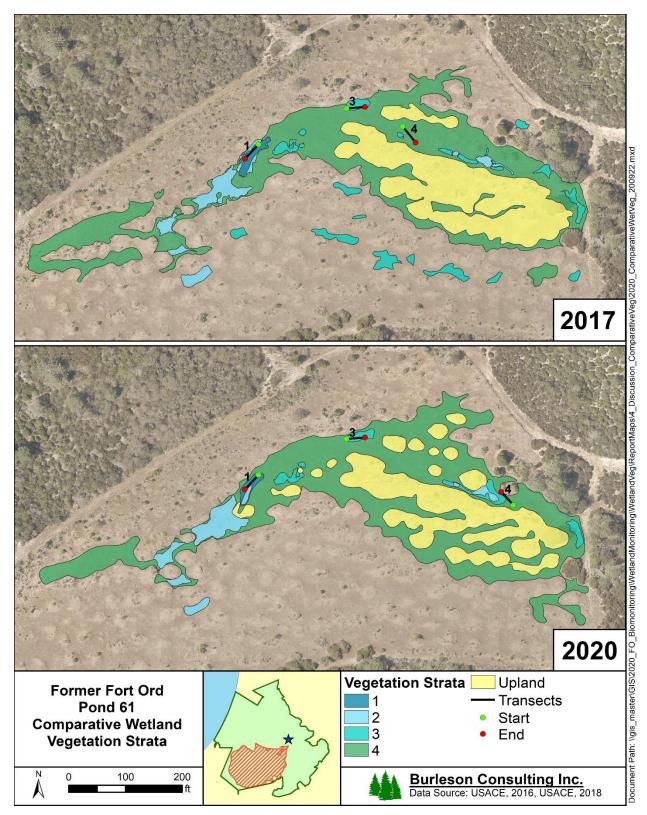
Table 4-210. Summary of Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Historic Surveys for Hydrology, Vegetation, and Wildlife

Curryov	Water-Year					
Survey	2016-2017 2017-2018 2018-2019 2019-					
Hydrology	•	•	•	•		
Vegetation	•	•	•	•		
Wildlife	•		•	•		

Pond 61 (Year 2 Post-Mastication, Year 1 Munitions Remediation)

Figure 4-52. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.17.1 Vegetation Monitoring


Vegetation data were collected at Pond 61 in 2017, 2018, 2019, and 2020 (Burleson, 2018, 2019, 2020). Baseline vegetation data were collected at Pond 61 in 2017. Data were collected using the methodology

described in the Methods section of this report. Data from 2017 and 2020 were compared stratum-tostratum in Table 4-211 as well as visually in Figure 4-53.

Pond 61 also supports a CCG population, which is represented by stratum 2. The population was mapped and a visual estimate of percent cover was recorded in 2020 to compare to 2017, 2018, and 2019 (see Figure 3-21 in Section 3.17.1.1).

Table 4-211. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

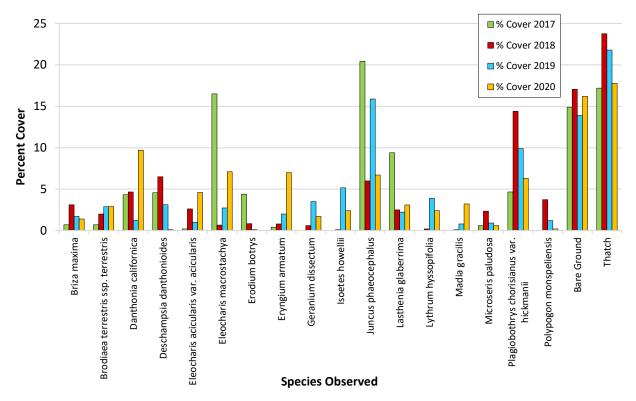
Stratum	Percentage		
Stratum	2017	2020	
1	1%	1%	
2 (CCG)	5%	6%	
3	7%	3%	
4	54%	59%	
Upland	33%	31%	

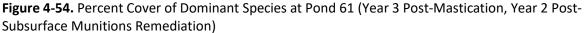
Figure 4-53. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2017 and 2020

Absolute percent vegetative cover decreased slightly between baseline and 2020 (see Table 4-212). Pond 61 vegetative cover was within the range of values observed at the reference vernal pools and was most similar to Pond 101 East (East) (see Table 4-213).

Table 4-212. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover

Year	Vegetative Cover	Thatch/Bare Ground
2017*	69.4%	32.1%
2018	60.6%	40.8%
2019	66.6%	35.7%
2020	66.1%	34.0%


*baseline year


Table 4-213. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6
997	70.2%	29.8%
61	66.1%	34.0%

Species richness on transects in 2020 was greater than the baseline year; however, the overall basin species richness was two species less than baseline. Species richness on transects was 23, 41, 47, and 36 species in 2017, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 100, 100, 119, and 98 species, respectively (see Table 4-214 and Appendix A Table A-17). Pond 61 species richness was within the range observed on transects at the reference vernal pools and greater than the values observed for the entire basin (see Table 4-215 and Appendix E Tables E-21 and E-42).

Species composition at Pond 61 varied in 2017, 2018, 2019, and 2020; however, the dominant species were similar. The dominant species in 2017 and 2018 were brown-headed rush (*Juncus phaeocephalus*) and pale spikerush (*Eleocharis macrostachya*), and Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*), respectively. In 2019, the dominant species was brown-headed rush. The dominant species in 2020 was California oatgrass (*Danthonia californica*) with pale spikerush, coyote thistle (*Eryngium armatum*), and brown-headed rush. A complete list of species composition observed during the surveys at Pond 61 in 2017, 2018, 2019, and 2020 can be found in Appendix F. Figure 4-54 shows a subset of this comparison for species observed with a 2% cover or greater.

Native and non-native species richness on Pond 61 transects were greater in 2020 than baseline (see Table 4-214). Native and non-native species richness were within the range observed at reference vernal pools (see Table 4-215). The relative percent cover of native and non-native species were within 2% of baseline values (see Table 4-216). Pond 61 native and non-native relative percent cover were within the range of values observed at the reference vernal pools (Table 4-217).

Year	Native	Non-Native	Unidentified
2017*	15	6	2
2018	24	16	1
2019	32	13	2
2020	24	12	0

204

Table 4-214. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Native and Non-Native Species Richness

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
61	24	12	0

Table 4-215. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-216. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
2017*	90.3%	9.4%	0.3%
2018	80.1%	19.8%	0.1%
2019	79.0%	18.3%	2.8%
2020	88.7%	11.3%	0.0%

*baseline year

Table 4-217. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
61	88.7%	11.3%	0.0%

Wetland and non-wetland species richness on Pond 61 transects were greater in 2020 than the baseline year (see Table 4-218). Wetland species richness was within the range of values observed at reference vernal pools (see Table 4-219). The relative percent cover of wetland and non-wetland species was lower than in the baseline year (see Table 4-220). However, the wetland relative and non-wetland relative percent cover were within the range of values observed at reference vernal pools (see Table 4-219).

Table 4-218. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

Year		Wetland		Non-W	/etland	Not Listed
real	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2017*	4	6	2	5	0	6
2018	10	10	3	7	1	10
2019	11	11	6	4	1	14
2020	9	9	4	5	1	8

Vernal Pool		Wetland		Non-Wetland		Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
61	9	9	4	5	1	8

Table 4-219. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Table 4-220. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Veer		Wetland		Non-Wetland		Not Listed	
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
2017*	44.3%	37.6%	6.5%	8.2%	0.0%	3.3%	
2018	40.6%	31.7%	9.3%	3.2%	0.5%	14.9%	
2019	39.0%	36.8%	3.6%	0.3%	0.3%	19.9%	
2020	42.2%	24.4%	15.3%	1.2%	0.3%	16.6%	

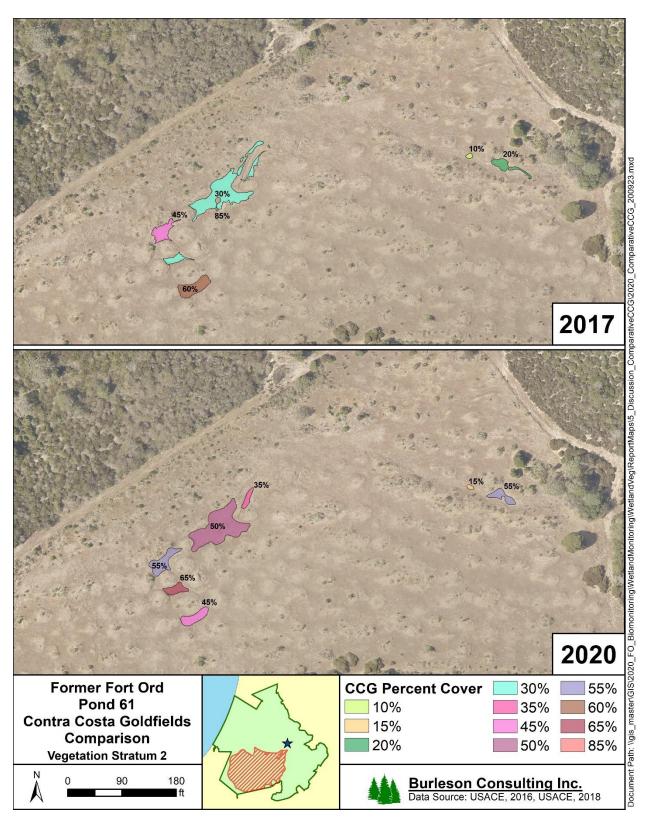

*baseline year

Table 4-221. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool		Wetland		Non-W	/etland	Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	Not Listed
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
61	42.2%	24.4%	15.3%	1.2%	0.3%	16.6%

4.17.1.1 Contra Costa Goldfields

The area of CCG at Pond 61 decreased slightly from 0.14 acre in 2017 to 0.12 acre in 2018 and 0.11 acre in 2019, but increased in 2020 to 0.15 acre (Burleson, 2018, 2019, 2020) (see Figure 4-55). The density ranged from 10-65% in 2017, 5-65% in 2018, 5-85% in 2019, and 15-65% in 2020. In 1999, 2000, 2002, 2017, 2018, and 2019 the CCG population was in similar locations as 2020 and within the range of 0.09-0.14 acre (HLA, 2000, 2001; MACTEC, 2003; Burleson, 2018, 2019, 2020). Results suggest that mastication activities in 2017 and post-subsurface munitions remediation in 2019 did not affect the population. Minor changes in population size can be attributed to natural fluctuation. In 2019, this area was disturbed by wild pig rooting. This disturbance does not appear to have had a negative impact on the CCG population at Pond 61.

Figure 4-55. Contra Costa Goldfields Populations at Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) in 2017 and 2020

4.17.1.2 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 61 was dominated by native and wetland plant species during year 3 post-mastication and year 2 post-subsurface munitions remediation monitoring in 2020. Pond 61 wetland vegetation results were generally within the range of baseline and reference vernal pools.

4.17.1.3 Performance Standard: Plant Cover and Species Diversity

Pond 61, a post-mastication and post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for years 3 and 2, respectively. The species composition, richness, and native and wetland species relative abundances were similar to baseline and reference vernal pool conditions. Pond 61 provided suitable wetland habitat in 2020.

4.17.2 Wildlife Monitoring

Wildlife data were collected at Pond 61 in 2017, 2019, and 2020 (Burleson, 2018, 2020). California tiger salamander larvae were not observed in any year. Fairy shrimp were present in 2019 and 2020. Table 4-222 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
2017*	Not detected	Not detected
2019	Not detected	High (162)
2020	Not detected	High (172)

Table 4-222. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring Results

*baseline year

4.17.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020, which was consistent with the baseline survey in 2017. Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020, which was not consistent with the baseline survey. Fairy shrimp were not detected in 2017. It was possible survey timing prevented detection in 2017 because surveys occurred later in the year (late March). However, in 2020 a very dry February followed by above-normal March and April rain events may have been favorable for later fairy shrimp detection. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

4.17.2.2 Performance Standard: Wildlife Usage

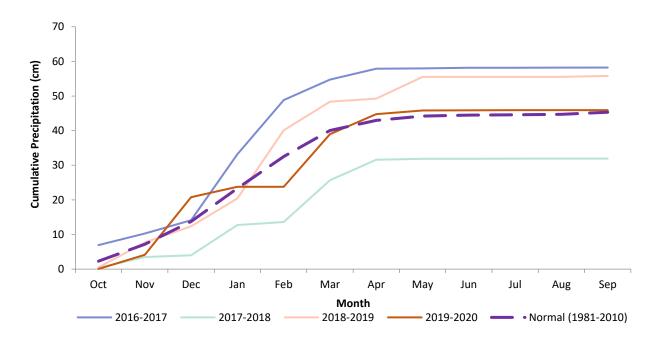
Pond 61, a post-mastication and post-subsurface munitions remediation vernal pool, is on track to meet DQO 5. Fairy shrimp were present in 2019 and 2020 but not baseline. DQOs 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.17.3 Conclusion

Pond 61, a post-mastication and post-subsurface munitions remediation vernal pool, was in years 3 and 2 of monitoring in 2020. The vernal pool is on track to meet the plant cover and species diversity performance standard and DQO 5 for wildlife usage (see Table 4-223). Pond 61 will continue to be monitored in the future.

Table 4-223. Success at Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface MunitionsRemediation) Based on Performance Standards and Applicable Data Quality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track


4.18 Pond 73 – Year 3 and Year 2

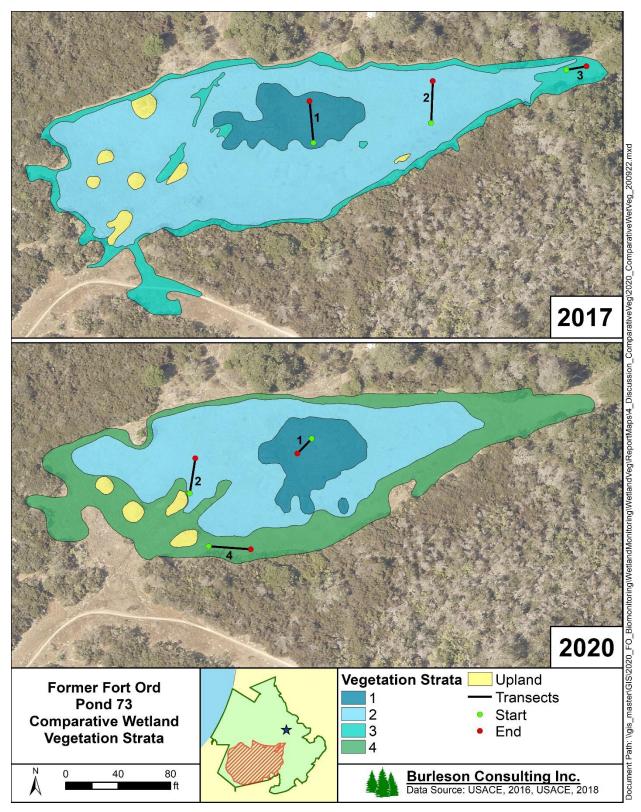
Pond 73 was monitored in 2020 as a year 3 post-mastication and year 2 post-subsurface munitions remediation vernal pool. Vegetation within the Pond 73 watershed was masticated in the summer of 2017 to support MEC remediation in BLM Area B Subunit B-3 East. Pond 73 had intrusive anomaly investigations in 2018. Baseline inundation and vegetation surveys were recorded in 2017 but no baseline depth, water quality, or wildlife monitoring had been conducted. Table 4-224 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 73 (see Figure 4-56). The 2016-2017 and 2018-2019 water-years were above-normal, whereas the 2017-2018 water-year was below normal. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-224. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

Survoy	Water-Year					
Survey	2016-2017	2017-2018	2018-2019	2019-2020		
Hydrology	•	•	•	•		
Vegetation	•	•	•	•		
Wildlife		•	•	•		

209

Figure 4-56. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)


4.18.1 Vegetation Monitoring

Vegetation data were collected at Pond 73 in 2017, 2018, 2019, and 2020 (Burleson, 2019, 2020). Baseline vegetation data were collected at Pond 73 in 2017 by DD&A and provided by the Army in 2018. Data were collected using the methodology described in the Methods section of this report. Data from 2017 and 2020 were compared stratum-to-stratum in Table 4-226 as well as visually in Figure 4-57.

Stratum	Percentage				
Stratum	2017	2020			
1	9%	11%			
2	71%	46%			
3	17%	N/A			
4	N/A	41%			
Upland	3%	2%			

 Table 4-225. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)

 Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Figure 4-57. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2017 and 2020

The absolute percent vegetative cover decreased between baseline and 2020 (see Table 4-226). Pond 73 vegetative cover was greater than the values observed in reference vernal pools with less thatch/bare ground cover (see Table 4-227).

Table 4-226. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover

Year	Vegetative Cover	Thatch/Bare Ground
2017*	82.6%	16.9%
2018	61.8%	39.7%
2019	65.9%	34.1%
2020	78.9%	21.2%

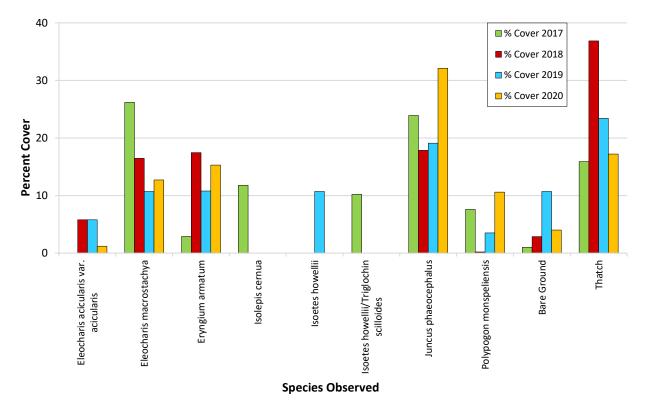

*baseline year

Table 4-227. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
73	78.9%	21.2%

Species richness in 2020 was greater than baseline. Species richness on transects was 6, 21, 17, and 23 species in 2017, 2018, 2019, and 2020, respectively, whereas overall basin species richness was 49, 68, 62, and 68 species, respectively (see Table 4-228 and Appendix A Table A-18). Pond 73 species richness was within the ranges observed at reference vernal pools and most similar to reference vernal pool Pond 5 (see Table 4-229 and Appendix E Tables E-21 and E-42).

Species composition at Pond 73 was similar between 2017, 2018, 2019, and 2020. The dominant species in all survey years were brown-headed rush (*Juncus phaeocephalus*) and pale spikerush (*Eleocharis macrostachya*). In 2018, 2019, and 2020 coyote thistle (*Eryngium armatum*) was a third dominant species. A complete comparison of species composition observed at Pond 73 in 2017, 2018, 2019, and 2020 can be found in Appendix F. Figure 4-58 shows a subset of this comparison for species observed with a 2% cover or greater.

Figure 4-58. Percent Cover of Dominant Species at Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)

Native and non-native species richness on Pond 73 transects was greater in 2020 than baseline (see Table 4-228). The native species richness was within the range of values observed at reference vernal pools, whereas non-native species richness was less than reference (see Table 4-229). The relative percent cover of native species was less than baseline and the non-native species cover was greater than baseline (see Table 4-230). Pond 73 relative percent cover of native and non-native species were within the range of values observed at reference vernal pools (see Table 4-231).

Table 4-228. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)
Native and Non-Native Species Richness

Year	Native	Non-Native	Unidentified
2017*	5	1	0
2018	15	5	1
2019	14	3	0
2020	14	9	0

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
73	14	9	0

Table 4-229. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-230. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
2017*	90.8%	9.2%	0.0%
2018	98.9%	1.0%	0.1%
2019	91.9%	8.1%	0.0%
2020	83.4%	16.6%	0.0%

*baseline year

Table 4-231. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
73	83.4%	16.6%	0.0%

Wetland and non-wetland species richness on Pond 73 transects were greater in 2020 than baseline (see Table 4-232). Pond 73 wetland species richness was within the range of values observed at the reference vernal pools, while non-wetland species richness was less than the reference vernal pools (see Table 4-233). The relative percent cover of wetland and non-wetland species was slightly greater in 2020 than the baseline year of monitoring (see Table 4-234). Pond 73 wetland species relative percent cover values were greater than reference vernal pools in 2020, whereas non-wetland species cover was lower than reference vernal pools (see Table 4-235).

Table 4-232. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

Year	Wetland			Non-W	Not Listed	
fedi	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2017*	3	3	0	0	0	0
2018	7	7	2	2	0	3
2019	7	7	1	0	0	2
2020	5	9	1	2	1	5

Vernal Pool		Wetland		Non-W	Not Listed	
Vernai POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
73	5	9	1	2	1	5

Table 4-233. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Table 4-234. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year		Wetland			Non-Wetland		
rear	OBL FACW FAC FA		FACU	UPL	Not Listed		
2017*	46.0%	41.6%	0.0%	0.0%	0.0%	12.3%	
2018	40.3%	58.3%	0.4%	0.2%	0.0%	0.8%	
2019	46.8%	52.6%	0.1%	0.0%	0.0%	0.5%	
2020	19.4%	77.0%	0.5%	0.3%	0.3%	2.4%	

*baseline year

Table 4-235. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) andReference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool		Wetland		Non-W	Not Listed	
Verhar POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
73	19.4%	77.0%	0.5%	0.3%	0.3%	2.4%

4.18.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 73 was dominated by native and wetland plant species during year 3 post-mastication and year 2 post-subsurface munitions remediation monitoring in 2020. Pond 73 wetland vegetation results were generally within range of baseline and/or reference vernal pools; however, relative percent cover of wetland species was greater in 2020 than baseline and reference vernal pools. Additionally, non-wetland cover was greater than baseline but less than the values observed at the reference vernal pools.

4.18.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 73, a post-mastication and post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for years 3 and 2, respectively. The species composition, richness, and native and wetland species relative abundances were similar to baseline and/or reference vernal pool

conditions, with minor differences in non-wetland cover and greater wetland cover. Pond 73 provided suitable wetland habitat in 2020.

4.18.2 Wildlife Monitoring

Wildlife data were collected at Pond 73 in 2018, 2019, and 2020. California tiger salamander larvae were not observed in any year. Fairy shrimp were present in 2019 and 2020. No baseline historic wildlife data were available for comparison. Table 4-236 shows historic wildlife monitoring results.

Table 4-236. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring Results

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
2018	Not detected	Not detected
2019	Not detected	Present*
2020	Not detected	Low (1)

*Fairy shrimp present during CTS survey, not during the fairy shrimp survey.

4.18.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020 at Pond 73. This was similar to 2019 (Yr 2/1) and 2018 (Yr 1); however, no baseline wildlife data were available for comparison. Results in 2020 were also consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020 at Pond 73, which was consistent with 2019 (Yr 2/1) results. No baseline wildlife data were available for comparison. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

4.18.2.2 Performance Standard: Wildlife Usage

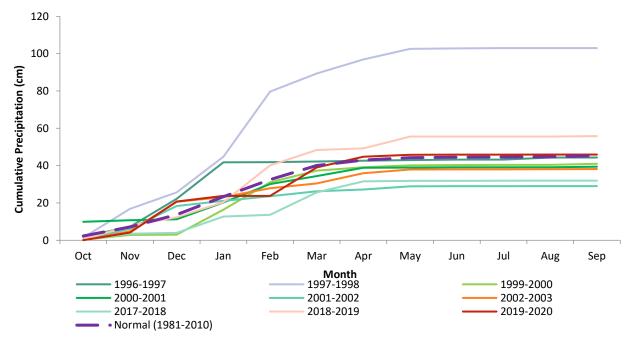
Pond 73, a post-mastication and post-subsurface munitions remediation vernal pool, is on track to meet DQO5. The vernal pool was only evaluated against the previous monitoring years as there were no baseline wildlife data.

4.18.3 Conclusion

Pond 73, a post-mastication and post-subsurface munitions remediation vernal pool, was in years 3 and 2 of monitoring in 2020. The vernal pool was evaluated for DQO 5 against previous monitoring years and reference vernal pools because there were no baseline wildlife data. Pond 73 is on track to meet the plant cover and species diversity performance standard and DQO 5 for wildlife usage (see Table 4-237). Pond 73 will continue to be monitored in the future.

Table 4-237. Success at Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface MunitionsRemediation) Based on Performance Standards and Applicable Data Quality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track*

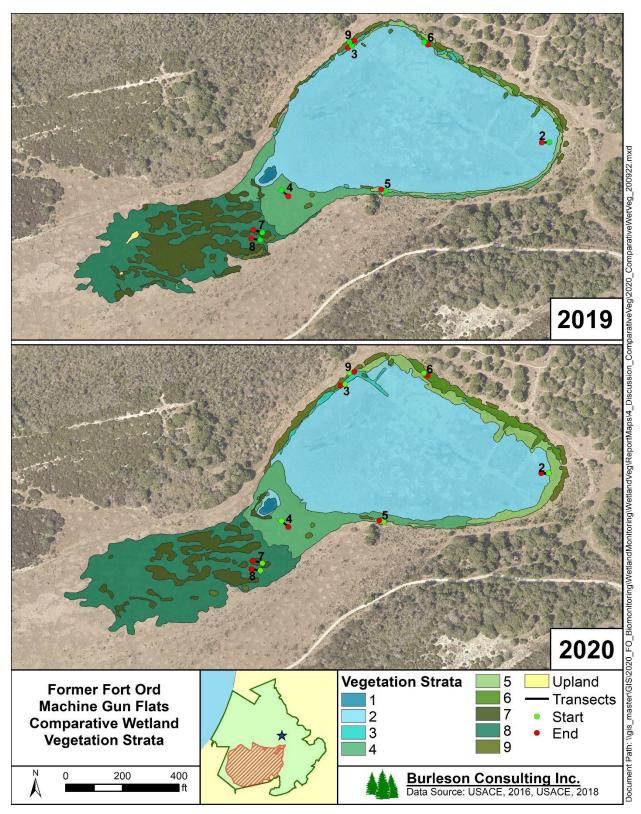

*Only evaluated against years 1 and 2, no baseline data.

4.19 Machine Gun Flats – Year 3

Machine Gun Flats was monitored in 2020 as a year 3 post-mastication vernal pool. Machine Gun Flats was monitored for baseline conditions in 1997 and 1998. Previous mastication and MEC remediation and subsurface activities were conducted in 1999 and 2000 with follow-up monitoring in 2000, 2001, 2002, and 2003 (HLA, 2001; Harding, 2002; MACTEC, 2003, MACTEC, 2004). Vegetation within the watershed of Machine Gun Flats was masticated in the summer of 2017 to support MEC remediation in BLM Area B Subunit B-3 East. No vegetation mastication occurred within the boundary of the maximum inundation area of the Machine Gun Flats vernal pool. Year 3 is the final year of monitoring for Machine Gun Flats. Table 4-238 summarizes the years that monitoring occurred and surveys were conducted at Machine Gun Flats (see Figure 4-59). The 1997-1998 and 2018-2019 water-years were above normal, whereas all other monitoring occurred in normal or below-normal water-years. This year, 2019-2020, was similar to the cumulative normal water-year.

Table 4-238. Machine Gun Flats (Year 3 Post-Mastication) Summary of Historic Surveys forHydrology, Vegetation, and Wildlife

		Water-Year							
Survey	1996-	1997-	1999-	2000-	2001-	2002-	2017-	2018-	2019-
	1997	1998	2000	2001	2002	2003	2018	2019	2020
Hydrology	•	•	•	•	•	•	•	•	•
Vegetation	•		•	•	•	•		•	•
Wildlife	•	•	•	•	•	•		•	•


Figure 4-59. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Machine Gun Flats (Year 3 Post-Mastication) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.19.1 Vegetation Monitoring

Vegetation data were collected at Machine Gun Flats in 1997, 2000, 2001, 2002, 2003, and 2019 (HLA, 1997, 2001; Harding ESE, 2002; MACTEC, 2003, 2004; Burleson, 2020). In 1997, 2000, 2001, 2002, and 2003, data were collected along transects in lengths varying from 50 to 241 feet. In 2000, 0.25 m² quadrats were placed at intervals ranging from 10 to 20 feet, whereas in 1998, 2001, 2002, and 2003, quadrats were placed at 10-foot intervals. Quadrats were placed at the given intervals, alternating from right to left along the transect. In 1997, 2000, 2001, 2002, and 2003, transects of varying lengths were in areas of representative transitional and emergent habitats. Due to differing methodologies, data for all strata in each respective year before 2019 were combined to compare to 2019 and 2020. In 2019 and 2020, data were collected using the methodology described in the Methods section of this report. Data from 2019 and 2020 and were compared stratum-to-stratum in Table 4-239 as well as visually in Figure 4-61.

Table 4-239. Machine Gun Flats (Year 3 Post-Mastication) Vegetative Strata Percentage within the
Vernal Pool Basin Boundary

Stratum	Percentage				
Stratum	2019	2020			
1	0.3%	0.3%			
2	61%	53%			
3	0.4%	1%			
4	8%	9%			
5	2%	5%			
6	1%	3%			
7	10%	6%			
8	15%	21%			
9	2% 2%				
Upland	0.1%	N/A			

Figure 4-60. Machine Gun Flats (Year 3 Post-Mastication) Vegetation Strata and Transects for 2019 and 2020

Absolute percent vegetative cover in 2020 was significantly less than baseline (see Table 4-240). The absolute percent vegetative cover at Machine Gun Flats in 2020 was within the range of values observed at the reference vernal pools and was most similar to Pond 5 (see Table 4-241).

Year	Vegetative Cover	Thatch/Bare Ground
1997*	111.6%	16.7%
2000	111.3%	5.6%
2001	61.7%	39.2%
2002	100.6%	5.1%
2003	106.7%	2.1%
2019	61.4%	38.6%
2020	48.8%	51.1%

Table 4-240. Machine Gun Flats (Year 3 Post-Mastication) Absolute Percent Cover

*baseline year

Table 4-241. Machine Gun Flats (Year 3 Post-Mastication) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground	
5	5 47.6% 52.4%		
101 East (East)	63.4%	36.6%	
997	70.2%	29.8%	
Machine Gun Flats	48.8%	51.1%	

Species richness on transects in 2020 was greater than in baseline years. Species richness on transects was 48, 34, 46, 47, 50, 52, and 55 species in 1997, 1999, 2000, 2001, 2003, 2019, and 2020 respectively, whereas overall basin species richness was 131 in 2019 and 123 in 2020 (see Table 4-242 and Appendix A Table A-19). The 1997-2003 surveys were limited to species on the transects and may underrepresent total vernal pool species richness. Machine Gun Flats species richness was greater than at the reference vernal pools (see Table 4-243 and Appendix E Tables E-21 and E-42).

Species composition at Machine Gun Flats differed among the monitoring years, but the dominant species were generally the same. The dominant species in 1997, 2000, 2001, and 2019, were pale spikerush (*Eleocharis macrostachya*) and brown-headed rush (*Juncus phaeocephalus*). In 2002, the dominant species was *Juncus* sp. and in 2003, the dominant species was smooth cat's-ear (*Hypochaeris glabra*). Beardless wild rye (*Elymus triticoides*) was another important species in 1997, 2000, and 2020. In 2020, coyote thistle (*Eryngium armatum*) was the dominant species. A complete comparison of species composition observed at Machine Gun Flats in 1997, 2000, 2001, 2002, 2003, 2019, and 2020 can be found in Appendix F. Figure 4-61 shows a subset of this comparison for species observed with a 2% cover or greater.

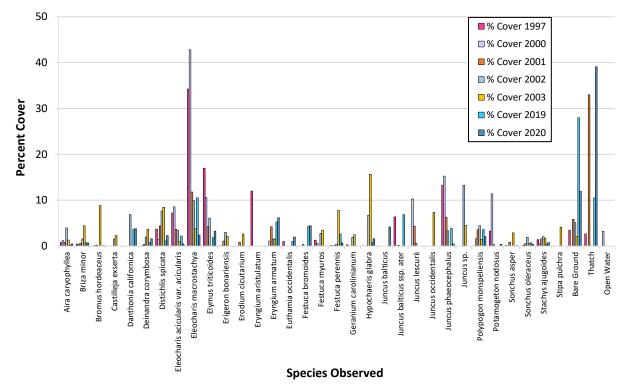


Figure 4-61. Percent Cover of Dominant Species at Machine Gun Flats (Year 3 Post-Mastication)

Native species richness on Machine Gun Flats transects was greater in 2020 (Yr 3) and 2019 (Yr 2) than the baseline year of monitoring. Non-native species richness was slightly greater than baseline in 2020 (Yr 3) but less than baseline in 2019 (Yr 2) (see Table 4-242). Machine Gun Flats native species richness in 2020 was within the range for values observed at the reference vernal pools, while non-native species richness was greater than reference (see Table 4-243). The relative percent cover of native and non-native species was within the range of previous monitoring years; however, native species cover was lower than baseline and non-native cover was greater (see Table 4-244). The relative percent cover of native species was less than the values observed at the reference vernal pools and non-native species was greater than the reference vernal pools (see Table 4-245).

Year	Native	Non-Native	Unidentified
1997*	21	24	3
2000	15	19	0
2001	21	23	2
2002	23	21	3
2003	24	25	1
2019	31	21	0
2020	27	25	3

 Table 4-242. Machine Gun Flats (Year 3 Post-Mastication) Native and Non-Native Species Richness

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
Machine Gun Flats	27	25	3

Table 4-243. Machine Gun Flats (Year 3 Post-Mastication) and Reference Vernal Pool Native andNon-Native Species Richness in 2020

Table 4-244. Machine Gun Flats (Year 3 Post-Mastication) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
1997*	92.8%	6.3%	0.8%
2000	92.5%	7.5%	0.0%
2001	75.9%	21.9%	2.2%
2002	52.1%	34.0%	13.9%
2003	41.0%	54.7%	4.2%
2019	69.5%	30.5%	0.0%
2020	64.3%	35.3%	0.4%

*baseline year

Table 4-245. Machine Gun Flats (Year 3 Post-Mastication) and Reference Vernal Pool RelativePercent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
Machine Gun Flats	64.3%	35.3%	0.4%

Wetland and non-wetland species richness on Machine Gun Flats transects in 2020 (Yr 3) and 2019 (Yr 2) both had greater wetland species richness than baseline. The non-wetland species richness was also slightly higher than baseline in 2020 (Yr 3) but lower in 2019 (Yr 2) (see Table 4-246). Machine Gun Flats wetland species richness in 2020 (Yr 3) and 2019 (Yr 2) was greater than the range observed at the reference vernal pools, whereas non-wetland species richness was within the range of reference in 2019 (Yr 2) and slightly greater than reference values in 2020 (Yr 3) (see Table 4-247). The relative percent cover of wetland and non-wetland species differed from baseline in 2020 (Yr 3) and 2019 (Yr 2). Relative percent wetland species cover was significantly lower in 2019 and 2020 compared to baseline, while the relative percent cover of non-wetland species was higher than baseline for those years. 2019 and 2020 relative percent cover values were most similar to previous monitoring years between 2000 and 2003 (see Table 4-248). The relative percent cover values for wetland and non-wetland species in 2020 (Yr 3) were within the range observed at the reference vernal pools (see Table 4-248).

222

Voor	Wetland			Non-W	Not Listed	
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1997*	11	8	7	10	0	13
2000	8	8	7	6	1	4
2001	6	9	8	10	1	12
2002	4	10	8	7	1	17
2003	5	8	7	11	1	18
2019	7	14	8	7	1	15
2020	5	12	10	10	1	17

Table 4-246. Machine Gun Flats (Year 3 Post-Mastication) Wetland and Non-Wetland Species Richness

*baseline year

Table 4-247. Machine Gun Flats (Year 3 Post-Mastication) and Reference Vernal Pool Wetland andNon-Wetland Species Richness in 2020

Vernal Pool		Wetland		Non-W	/etland	Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
Machine Gun Flats	5	12	10	10	1	17

Table 4-248. Machine Gun Flats (Year 3 Post-Mastication) Relative Percent Cover of Wetland and Non-Wetland Species

Voor	Year		Wetland		/etland	Not Listed
fedi	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1997*	54.1%	22.4%	17.0%	3.8%	0.0%	2.7%
2000	58.3%	27.3%	10.7%	2.9%	0.2%	0.6%
2001	28.7%	41.2%	11.9%	11.4%	0.9%	6.0%
2002	17.0%	21.3%	17.0%	13.1%	1.9%	29.6%
2003	7.9%	19.4%	14.1%	20.9%	0.5%	37.2%
2019	24.3%	37.4%	18.7%	5.7%	1.2%	12.7%
2020	9.2%	38.6%	20.9%	6.0%	0.8%	24.5%

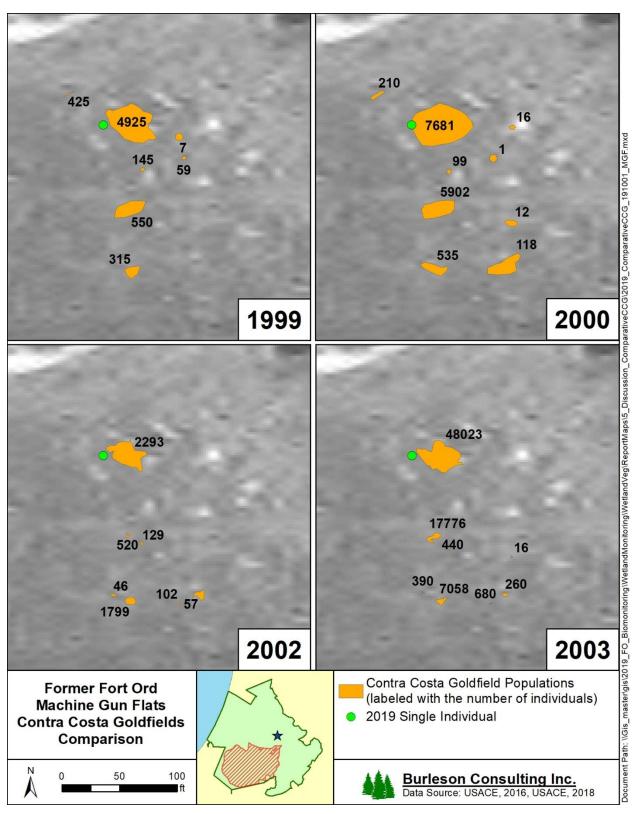
Vernal Pool		Wetland			etland	Not Listed
VernarPOOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
Machine Gun Flats	9.2%	38.6%	20.9%	6.0%	0.8%	24.5%

Table 4-249. Machine Gun Flats (Year 3 Post-Mastication) and Reference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2020

4.19.1.1 Contra Costa Goldfields

The area of CCG cover at Machine Gun Flats decreased dramatically between previous follow-up monitoring years (1999, 2000, 2002, and 2003) and 2020. The number of recorded CCG individuals in previous years ranged between 6,426 in 1999 and 74,643 in 2003; however, only one individual CCG was documented in 2019 and none were observed in 2020 (see Figure 4-62). The density was relatively low for these areas in 1999 and 2000 and recorded as 2-10% cover (HLA, 2000, 2001).

It is unclear why the CCG population at Machine Gun Flats has decreased but it is unlikely related to remediation activities because the mastication occurred outside of the CCG occupied areas and no other vegetation monitoring results indicate similar decreases following mastication within the watershed. Additionally, the species was observed in highest population numbers following subsurface remediation activities in 1999-2000. Native and wetland vegetation diversity and cover are following trends observed in previous years and at the reference vernal pools. The species reported as associated with the CCG population in past reports are still present in the area where the single individual was located in 2019 and areas where historic polygons of CCG have been mapped. The population of CCG however, does not match trends observed at other vernal pools.


It is possible that the years from 1999-2003 were particularly favorable for CCG, however, one would expect similar results from recent water-years. Water-years 1998-1999 and 1999-2000 were both similar to cumulative normal, whereas 2001-2002 and 2002-2003 were both below normal. Inundation and depth were not recorded in 1999. Inundation in 2000 was a maximum of 10.65 acres and Machine Gun Flats held water from January to June. Inundations in 2002 and 2003 were 3.49 and 4.44 acres maximums and held water from January-April and January-March, respectively. One consideration is the El Nino water-year prior to monitoring in 1999 in contrast with historic drought prior to recent monitoring.

The water-year preceding monitoring, 1997-1998, was an exceptionally wet El Nino year with cumulative precipitation more than twice that of normal, which resulted in the largest inundation area of Machine Gun Flats on record (Figure 4-59). Data from January 15, 1998 shows inundation extended in the southwest of Machine Gun Flats to cover a portion of area known to support CCG, and it is safe to assume that the maximum inundation area that year was not recorded because of additional precipitation that occurred after that date (Chenega 2021). Even though water-years 1998-1999 and 1999-2000 were similar to cumulative normal, and 2001-2002 and 2002-2003 were both below normal, the record inundation in 1998 may have set up ideal conditions for CCG in the following years which were observed in record numbers between 1999 and 2003.

Soil pit analyses conducted at Machine Gun Flats and two other vernal pools in 1996 confirmed presence of Antioch soils, which typically consist of a surface layer of very fine sandy loam approximately 20 inches thick and a clay subsoil extending to a depth of 67 inches (Burleson 2006). During precipitation events, initially it takes a certain amount of precipitation for the sandy loam layer to become saturated, after which it takes even more precipitation for the clay layer to start absorbing water. As the clay layer becomes saturated with water it expands and decreases in permeability. Once the clay layer becomes completely saturated, any additional input in water to the basin will result in ponding. The exceptionally high precipitation in 1998 may have caused the underlaying clay layer to become fully saturated which resulted in record inundated area at Machine Gun Flats. In the following years, water saturation of the underlaying clay layer likely remained high, causing longer inundation periods in the depressions containing CCG seeds even when cumulative precipitation was below normal.

Conversely, recent surveys at Machine Gun Flats followed a record drought period between fall 2011 and fall 2015, which had the opposite effect on the underlying clay layer. As the clay layer dries, it may become more prone to absorption of water from the overlying loam thereby depleting the loam of water that would otherwise support CCG. In such conditions, even an above-normal water-year may not cause sufficient inundation as the absorptive capacity of the underlying clay layer is much greater when it is dry. Water-years 2017-2018, 2018-2019, and 2019-2020 were below, above, and normal respectively. During that period, the largest inundation occurred on March 7, 2019 where it extended toward the SW area but did not cover the historic CCG occupied area, and it retreated the following month. This implies that inundation extent and duration of vernal pools is not only dependent on level of precipitation in any given year, but also on precipitation patterns leading up to that year. This may explain why years with similar cumulative precipitation may result in different inundation regimes.

Drought induced dehydrated soils and insufficient precipitation may be the reasons why the areas historically occupied by CCG at Machine Gun Flats did not become inundated between 2018 and 2020 (Burleson 2019, Burleson 2020, Chenega 2021). Since CCG appears to thrive in pools with longer inundation regimes, warmer waters, neutral water pH, and greater native species richness, insufficient inundation period may be a reason behind the decline of CCG population at Machine Gun Flats (Tannaourji 2009). This also implies that if future precipitation patterns create sufficient inundation periods at Machine Gun Flats, the species may reappear at this location as it is known to do (USFWS 2017). Recent activities related to MEC cleanup are unlikely to have caused the observed declines of CCG population as they were limited to mastication of vegetation within the watershed of Machine Gun Flats, but no mastication nor subsurface activities occurred within the vernal pool basin. Thus, the observed differences in duration or extent of inundation from previous years may have been due to changes in precipitation patterns.

Figure 4-62. Contra Costa Goldfields Populations at Machine Gun Flats (Year 3 Post-Mastication) in 1999, 2000, 2002, 2003, and 2019

4.19.1.2 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations as well as differing methodologies. In 1997, 2000, 2001, 2002, and 2003 the transects were placed in "transitional and emergent habitats" and "sampling characterized wetland-influenced vegetation and associated transitional herbaceous species" which differs from the methods in 2019 and 2020 which focused on placing transects within the wetland in representative locations in each stratum (MACTEC, 2003). Vegetative cover at Machine Gun Flats was dominated by native and wetland plant species during year 3 post-mastication monitoring in 2020. Machine Gun Flats wetland vegetation results were generally within range of reference vernal pools but lower than baseline values in 1997. Native and wetland species richness in 2020 were greater than baseline and reference vernal pools. Both, however, were within the range of previous monitoring years. Native cover was within 5.5% of reference vernal pool 101 East (East) in 2020.

Dramatic changes in the CCG population were observed at Machine Gun Flats. Areas that historically supported thousands of CCG individuals no longer support CCG. Only one individual was identified in the entire Machine Gun Flats vicinity in 2019 and there were no detections in 2020. It is unlikely that the decrease in observed CCG individuals was related to the mastication effort.

4.19.1.3 Performance Standard: Plant Cover and Species Diversity

Machine Gun Flats, a post-mastication vernal pool, did not meet the performance standard for year 3 in 2020. The species composition, richness, and native and wetland species relative abundances were similar to baseline, previous monitoring years, and/or reference vernal pool conditions; however, native and wetland species richness were greater. Machine Gun Flats provided suitable wetland habitat in 2020, but the CCG population is no longer comparable to baseline conditions.

4.19.2 Wildlife Monitoring

Wildlife data were collected at Machine Gun Flats in 1998, 2000, 2001, 2002, 2003, 2019, and 2020 (HLA, 1998, 2001; Harding ESE, 2002; MACTEC, 2003, 2004; Burleson, 2020). California tiger salamander larvae were present in 2003, 2019, and 2020. Fairy shrimp were present in all years. Table 4-250 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Low - Very High
2000	Not detected	Very High (1260, 1485)
2001	Not detected	Low - Very High (740, 3)
2002	Not detected	Very High (1000s, 1000s)
2003	Present	Very High (10,000s, 1,000s)
2019	Common (11, 61, 40)	Moderate – High (277, 13)
2020	Few (5, 3)	Low (1)

4.19.2.1 Data Quality Objective 5

California tiger salamanders were present in 2020, which was inconsistent with the baseline survey. California tiger salamanders were not detected in 1998. Results in 2020 also differed from the reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020, which was consistent with the baseline survey. Baseline monitoring in 1998 yielded detections. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

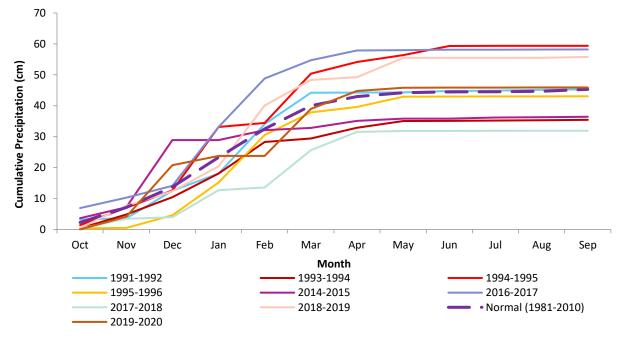
4.19.2.2 *Performance Standard: Wildlife Usage*

Machine Gun Flats, a post-mastication vernal pool, was in the final year of monitoring and met DQO 5. CTS and fairy shrimp were present in 2020 (Yr 2) and 2019 (Yr 1). In previous years of monitoring, CTS were present in 2003 but were not detected in 1998, 2000, 2001, or 2002. Fairy shrimp have been present in every year of monitoring. DQOs 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.19.3 Conclusion

Machine Gun Flats, a post-mastication vernal pool, was in the final year (Yr 3) of monitoring in 2020. The vernal pool met DQO 5 for wildlife usage but did not meet the plant cover and species diversity performance standard, due to a dramatic decrease in the CCG population (see Table 4-251).

Table 4-251. Success at Machine Gun Flats (Year 3 Post-Mastication) Based on Performance Standards and Applicable Data Quality Objectives


Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Not met
Wildlife Usage	DQO 5	Met

4.20 Pond 16 -Year 2

Pond 16 was monitored in 2020 as a year 2 post-subsurface munitions remediation vernal pool. Pond 16 was monitored for baseline conditions in 1992, 1994, 1995, 1996, 2009, and 2015. Vegetation within Pond 16 and immediately around it was masticated in the summer of 2016 in preparation for a prescribed burn in Unit 31. Less than 50 percent of the Pond 16 watershed was masticated, and limited vegetation mastication occurred within the inundation area. Pond 16 had intrusive anomaly investigations in 2018. Table 4-252 summarizes the years that monitoring occurred and surveys conducted. The cumulative precipitation graph shows precipitation for years in which monitoring was conducted at Pond 16 (see Figure 4-63). The 1994-1995, 2016-2017, and 2018-2019 water-years were above normal. This year, 2019-2020, as well as 1991-1992 and 1995-1996 were similar to the cumulative normal water-year. Below-normal and drought water years occurred in 1993-1994 and 2014-2015.

	Water-Year									
Survey	1991-	1993-	1994-	1995-	2008-	2014-	2016-	2017-	2018-	2019-
	1992	1994	1995	1996	2009	2015	2017	2018	2019	2020
Hydrology	•	•	•	•		•	•	•	•	•
Vegetation		•	•	•		•	•		•	•
Wildlife	٠	٠	•	•	•	•			•	•

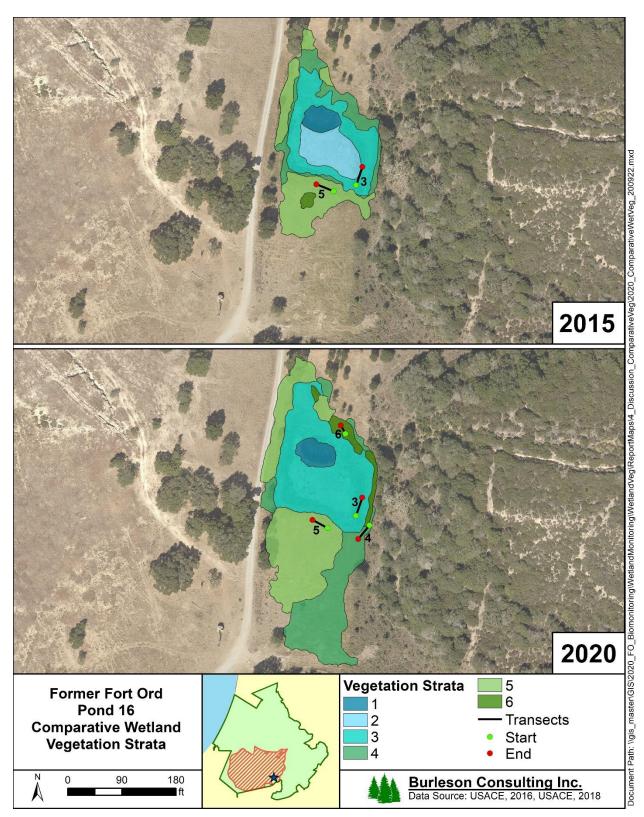

Table 4-252. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife

Figure 4-63. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1981-2010) (NPS, 2020; NCDC NOAA, 2018)

4.20.1 Vegetation Monitoring

Vegetation data were collected at Pond 16 in 2015, 2017, 2019, and 2020 (Burleson, 2016, 2018, 2020). Data from 1994, 1995, and 1996 only represent dominant species and are not included in the following analyses because the data were collected using a different methodology than was used in 2015 and 2017 (Jones and Stokes, 1996). In 2015, 2017, 2019, and 2020, data were collected using the methodology described in the Methods section of this report. Data from 2015 and 2020 were compared stratum-to-stratum in Table 4-253 as well as visually in Figure 4-64.

Figure 4-64. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2015 and 2020

Stratum	Percentage			
Stratum	2015	2020		
1	8%	4%		
2	24%	N/A		
3	44%	34%		
4	24%	25%		
5	N/A	33%		
6	N/A	4%		
7	N/A	N/A		

Table 4-253. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Absolute percent vegetative cover increased between baseline and 2020 (see Table 4-254). The absolute percent vegetative cover was slightly greater than the values observed at the reference vernal pools while thatch/bare ground cover was less (see Table 4-255).

Year	Vegetative Cover	Thatch/Bare Ground
2015*	59.1%	38.8%
2017	77.8%	21.8%
2019	70.6%	29.5%
2020	72.1%	27.8%

Table 4-254. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Absolute Percent Cover

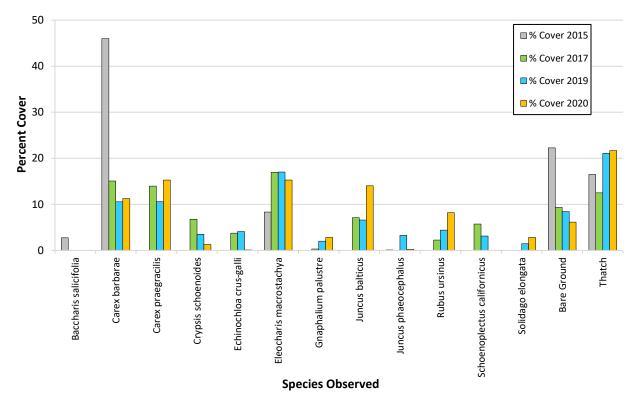

*baseline year

Table 4-255. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2020

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	47.6%	52.4%
101 East (East)	63.4%	36.6%
997	70.2%	29.8%
16	72.1%	27.8%

Species richness in 2020 was greater than the baseline year of monitoring. Species richness on transects was 8, 24, 29, and 17 species in 2015, 2017, 2019, and 2020, respectively, whereas overall basin species richness was 49, 86, 83, and 81 species in 2015, 2017, 2019, and 2020 respectively (see Table 4-256 and Appendix A Table A-16). Pond 16 species richness was less than the values observed on transects at the reference vernal pools but was within the ranges observed for the entire basin (see Table 4-257 and Appendix E Tables E-21 and E-42).

Species composition and the dominant species at Pond 16 were similar between the monitoring years. The dominant species in 2015 was whiteroot (*Carex barbarae*) and the dominant species in 2017, 2019, and 2020 was pale spike rush (*Eleocharis macrostachya*). Whiteroot and clustered field sedge (*Carex praegracilis*) were also important species in 2017, 2019, and 2020. A complete comparison of species

composition observed at Pond 16 in 2015, 2017, and 2019 can be found in Appendix F. Figure 4-45 shows a subset of this comparison for species observed with a 2% cover or greater.

Figure 4-65. Percent Cover of Dominant Species at Pond 16 (Year 2 Post-Subsurface Munitions Remediation)

Native and non-native species richness on Pond 16 transects was greater in 2020 than the baseline year of monitoring (see Table 4-256). Pond 16 native and non-native species richness in 2020 was less than the range observed at the reference vernal pools (see Table 4-257). The relative percent cover of native and non-native species were within 2% of the baseline values (see Table 4-258). Pond 16 native relative percent cover was greater than in reference vernal pools and the non-native relative percent cover was less than reference (see Table 4-259).

Table 4-256. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Native and Non-Native					
Species Richness					

Year	Native	Non-Native	Unidentified
2015*	5	2	1
2017	13	11	0
2019	16	10	3
2020	11	6	0

Vernal Pool	Native	Non-Native	Unidentified
5	12	11	0
101 East (East)	24	19	0
997	27	14	1
16	11	6	0

Table 4-257. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2020

Table 4-258. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
2015*	98.2%	1.1%	0.7%
2017	82.9%	17.1%	0.0%
2019	85.1%	14.5%	0.4%
2020	97.3%	2.7%	0.0%

*baseline year

Table 4-259. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal PoolRelative Percent Cover of Native and Non-Native Plants in 2020

Vernal Pool	Native	Non-Native	Unidentified
5	91.3%	8.7%	0.0%
101 East (East)	72.2%	27.8%	0.0%
997	76.3%	23.6%	0.1%
16	97.3%	2.7%	0.0%

Wetland and non-wetland species richness on Pond 16 transects were greater in 2020 than in baseline (see Table 4-260). Wetland species richness was less than reference vernal pool values and non-wetland species richness was within the range of values (see Table 4-261). The relative percent cover of wetland species was lower than the baseline year whereas non-wetland species cover was greater (see Table 4-262). Relative percent cover of wetland and non-wetland species were within the range of values observed at the reference vernal pools (see Table 4-263).

Voor		Wetland		Non-W	Non-Wetland				
Year	OBL	FACW	FAC*	FACU*	UPL	Not Listed			
2015+	1	3	2	0	0	2			
2017	4	5	4	8	1	2			
2019	4	6	6	8	1	4			
2020	2	5	6	3	1	0			

Table 4-260. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

*Values in this table changed from past reports, RUUR was incorrectly coded as FACU instead of FAC. The edits have been reflected in the 2020 report and deliverable.

+baseline year

Table 4-261. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2020

Vernal Pool		Wetland		Non-W	/etland	Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	7	3	3	1	5
101 East (East)	5	8	7	6	3	14
997	9	10	5	5	0	13
16	2	5	6	3	1	0

Table 4-262. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year		Wetland		Non-W	Vetland	Not Listed
Tear	OBL	FACW	FAC*	FACU*	UPL	NOT LISTED
2015+	14.1%	5.2%	79.3%	0.0%	0.0%	1.4%
2017	37.9%	29.4%	27.4%	2.6%	0.4%	2.4%
2019	33.6%	34.1%	27.3%	3.5%	0.0%	1.4%
2020	23.0%	45.0%	27.3%	4.7%	0.1%	0.0%

*Values in this table changed from past reports, RUUR was incorrectly coded as FACU instead of FAC. The edits have been reflected in the 2020 report and deliverable.

+baseline year

Table 4-263. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) and Reference Vernal PoolRelative Percent Cover of Wetland and Non-Wetland Species in 2020

Vernal Pool		Wetland		Non-W	etland	Not Listed
VernarPoor	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
101 East (East)	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
997	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
16	23.0%	45.0%	27.3%	4.7%	0.1%	0.0%

4.20.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. Vegetative cover in Pond 16 was dominated by native and wetland plant species during year 2 post-subsurface munitions remediation monitoring in 2020. Pond 16 wetland vegetation results were similar to baseline and/or reference year of monitoring; however, species richness was greater in 2020 than baseline. Relative percent cover of native species was greater than and non-native species cover was less than reference vernal pools values.

4.20.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 16, a post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for year 2. The species composition, richness, and native and wetland species relative abundances were similar to baseline and/or reference vernal pool conditions. Pond 16 provided suitable wetland habitat in 2020.

4.20.2 Wildlife Monitoring

Wildlife data were collected at Pond 16 in 1992, 1994, 1995, 1996, 2009, 2015, 2019, and 2020 (USACE 1992, Jones & Stokes 1996; Shaw, 2010; Burleson, 2016, 2020). California tiger salamander larvae were observed in 2009, 2015, and 2019. Fairy shrimp were present at Pond 16 in every monitoring year except 2015. Table 4-264 shows historic wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1992	Not detected	Present
1994	Not detected	Very Low - High
1995	Not detected	Low - High
1996	Not detected	Present
2009	Common	Moderate - High (32, 105)
2015 ⁺	Few – Common (13, 1)	Not detected
2019	Few – Common (5, 87, 46)	Present*
2020	Not detected	High (267)

Table 4-264. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Historic Wildlife Monitoring Results

*Fairy shrimp detected during CTS survey, no fairy shrimp survey was conducted in March due to the presence of CTS eggs. *baseline year

4.20.2.1 Data Quality Objective 5

California tiger salamanders were not detected in 2020. California tiger salamanders were observed in 2009 and 2015 but were not detected in 1992, 1994, 1995, or 1996. Results in 2020 were consistent with reference vernal pools; CTS were not detected at Pond 5 or 101 East (East).

Fairy shrimp were present in 2020, which was consistent with all but one baseline survey. Baseline monitoring in 1992, 1994, 1995, 1996, and 2009 yielded presence of fairy shrimp, but not in 2015. Results in 2020 were consistent with reference Pond 101 East (East). Fairy shrimp were present at Pond 101 East (East) but were not detected at Pond 5.

4.20.2.2 Performance Standard: Wildlife Usage

Pond 16, a post-mastication and post-subsurface munitions remediation vernal pool, is on track to meet DQO 5. DQOs 1 and 4 were analyzed in the Hydrology Monitoring Annual Report (Chenega, 2021).

4.20.3 Conclusion

Pond 16, a post-mastication and post-subsurface munitions remediation vernal pool, was in years 4 and 2 of monitoring in 2020. The vernal pool is on track to meet the plant cover and species diversity performance standard and DQO 5 for wildlife usage (see Table 4-265). Pond 16 will continue to be monitored in the future.

Table 4-265. Success at Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Based on Performance Standards and Applicable Data Quality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	DQO 5	On track

236

This page intentionally left blank

5 CONCLUSION

A normal cumulative rainfall but unusual precipitation frequency in 2020 resulted in late and irregular ponding for several vernal pools, some of which dried out once or twice between larger rain events (Chenega, 2021). Conditions were generally similar for wetland vegetation and wildlife compared to baseline years and reference vernal pools. Fourteen remediated vernal pools were monitored for years 2 through 4. Three were not on track to meet the wetland vegetation performance standard and all were on track to meet the wildlife usage data quality objective (see Table 5-1). Ponds 40 North, 56, and Machine Gun Flats were in their final year of monitoring. Machine Gun Flats did not meet the performance standard for wetland vegetation primarily due to a lack of detection of CCG. Ponds 56 and 40 North met both the wetland vegetation and wildlife usage requirements and no further monitoring is recommended.

Wetland vegetation trends were variable across vernal pools; however, 13 vernal pools met the performance standard. All vernal pools supported a majority of wetland species and relative percent cover was dominated by wetland species. Native species richness was variable but decreased on average from 2019 to 2020. Non-native species richness increased by one species on average from 2019 to 2020. Variability is expected in vernal pools that have dynamic conditions in response to the amount of precipitation and the resulting hydroperiod (Bauder, 2000; Bauder, 2005; Mulhouse *et al.*, 2005; Witham *et al.*, 1998). From 2019 to 2020, total vegetative cover decreased while cover of thatch and bare ground increased at 14 out of 20 vernal pools monitored in these years. This was likely due to a lower cumulative water year in 2020 than 2019 as well as late rain events. The late rain events may have created less favorable conditions for native species as well. Native vernal pool species are highly adapted to the conditions in a normal water year. The growing season was much shorter in 2020 since inundation at many of the vernal pools was late and irregular (Chenega, 2021). Both the decrease in vegetative cover and decrease in native species cover is likely related to the water-year and not remediation activities.

The three vernal pools that did not meet the wetland vegetation performance standard were Ponds 101 East (West), 35, and 39. At Pond 101 East (West), the relative dominance as measured by cover of native species and wetland species were lower than in baseline years and at reference vernal pools. This is likely related to the water year. However, Ponds 35 and 39, both had an increase in non-native species richness compared to baseline and reference vernal pools. In addition, at Pond 35 there was an increase in non-native cover and at Pond 39 an increase in non-wetland species and a decrease in wetland richness. Pond 40 South has had high non-native richness and cover in baseline as well as follow up years of monitoring. Ponds 35, 39, and 40 South are in a valley in Unit B that was historically used for bivouac and engineer field training (Gilbane, 2015). There was likely earthwork that could have involved demolition and mine or booby-trap training. The Army historically used this area for rifle, grenade, and rocket training which likely involved placement of targets such as tanks. The level of disturbance in this area is much higher than other vernal pools that are monitored, which coupled with the unusual rainfall patterns, may explain why Ponds 35 and 39 do not meet the vegetative performance standards.

The 2019-2020 water-year did not provide favorable conditions for CTS usage but was suitable for fairy shrimp as measured by presence of wildlife. Pond 997 was the only vernal pool that did not fill to the required 10 cm to trigger the wildlife survey. All the remediated vernal pools had wildlife presence similar to baseline years of monitoring, despite the low numbers of CTS. California tiger salamanders were observed in two vernal pools: Machine Gun Flats and Pond 60. The greatest number in one survey

237

event was seven individuals at Pond 60 in May. Fairy shrimp were observed at 15 out of 20 vernal pools monitored in 2020 even though early fairy shrimp surveys did not occur in 2020. The late-season detections are likely related to the precipitation pattern in the 2019-2020 water-year with very dry January and February months and unusually large late rain events.

Ponds 101 East (West), 41, 3 North, 3 South, 39, 40 South, 43, 35, 42, 44, 60, 61, 73, and 16 will continue to be monitored. Ponds 40 North and 56 have met performance standards and do not require additional monitoring for wetland vegetation or wildlife usage. Machine Gun Flats did not meet the wetland vegetation performance standard for CCG. This is likely related to fluctuations in multi-year precipitation patterns and insufficient inundation of the CCG occupied area and is unlikely related to remediation activity.

Vernal Pool	Monitoring Status	Wetland Vegetation DQO 3 (richness and cover)	Wildlife DQO 5 (wildlife presence)
Pond 101 East (West)	Year 2 Post-Mastication	Not on track	On track
Pond 41	Year 2 Post-Subsurface Munitions Remediation	On track	On track
Pond 3 North	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	On track	On track
Pond 3 South	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	On track	On track
Pond 39	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	Not on track	On track
Pond 40 North	Year 3 Post-Burn	Met	Met
Pond 40 South	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	On track	On track
Pond 43	Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation	On track	On track
Pond 35	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation	Not on track	On track
Pond 42	Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation	On track	On track
Pond 44	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation	On track	On track
Pond 56	Year 3 Post-Mastication	Met	Met
Pond 60	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation	On track	On track
Pond 61	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation	On track	On track
Pond 73	Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation	On track	On track*
Machine Gun Flats	Year 3 Post-Mastication	Not met	Met
Pond 16	Year 2 Post-Subsurface Munitions Remediation	On track	On track

Table 5-1. 2020 Remediated Vernal Pools and Performance Standards Status

*Only evaluated against year 1 and 2, no baseline data.

6 REFERENCES

- Baldwin BG, Goldman DH, Keil DJ, Patterson R, Rosatti TJ, Wilken DH (eds.). 2012. The Jepson Manual -Vascular Plants of California. 2nd ed. University of California Press, Berkeley, CA. pp. 1600.
- Barbour, M.G., J.H. Burk, and W.D. Pitts. 1980. Terrestrial Plant Ecology. Benjamin/Cummings Publishing. Menlo Park, California.
- Barbour MG, T Keeler-Wolf, and AA Schoenherr (eds.). 2007. Terrestrial Vegetation of California, Third Edition. University of California Press, Berkeley, CA. pp. 394-424.
- Bauder ET. 2000. "Inundation effects on small-scale plant distributions in San Diego, California vernal pools." Aquatic Ecology 34. Kluwer Academic Publishers. pp. 43-61.
- Bauder ET. 2005. "The effects of an unpredictable precipitation regime on vernal pool hydrology." Freshwater Biology 50. Blackwell Publishing Ltd. pp. 2129-2135.
- Burleson Consulting, Inc. 2006. Wetland Monitoring and Restoration Plan for Munitions and Contaminated Soil Remediation. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc., Denise Duffy & Associates, Inc., and EcoSystems West Consulting Group. 2016.
 2015 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc. and Denise Duffy & Associates, Inc. 2017. 2016 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc. 2018. 2017 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc. 2019. 2018 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Cal-IPC. 2020. *Plantago lanceolata* (English plantain) Profile. [Internet]. Accessed on November 3, 2020. Available at https://www.cal-ipc.org/plants/profile/plantago-lanceolata-profile/
- Chenega. 2021. 2020 Annual Hydrology Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.

Esri. 2018. ArcGIS Version 10.6.

Denise Duffy & Associates, Inc. 2009. California Tiger Salamander and California Fairy Shrimp Aquatic Sampling Survey Report. In: 2009 Annual Biological Monitoring Report, Former Fort Ord, California. Prepared for U.S. Army Corps of Engineers, Sacramento, CA.

- Denise Duffy & Associates, Inc. 2010. California Tiger Salamander and California Fairy Shrimp Aquatic Sampling Survey Report. In: 2010 Annual Biological Monitoring Report, Former Fort Ord, California. Prepared for U.S. Army Corps of Engineers, Sacramento, CA.
- Gilbane. 2015. Remedial Investigation/Feasibility Study BLM Area B and MRS-16, Former Fort Ord, California. Prepared for U.S. Army Corps of Engineers, Sacramento, CA.
- Harding ESE. 2002. 2001 Annual Monitoring Report Biological Baseline Studies and Follow-up Monitoring Former Fort Ord, Monterey, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- Harding Lawson and Associates (HLA). 1997. 1997 Annual Habitat Monitoring Report Former Fort Ord, Monterey, California. Prepared for U. S. Department of the Army, Seaside, CA.
- Harding Lawson and Associates (HLA). 1998. 1998 Annual Monitoring Report Biological Baseline Studies and Follow-Up Monitoring at Unexploded Ordnance Sites on Former Fort Ord, Presidio of Monterey Annex, Monterey, California. Prepared for U.S. Department of the Army, Sacramento, CA.
- Harding Lawson and Associates (HLA). 1999. 1999 Annual Habitat Monitoring Report Former Fort Ord, Monterey County, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- Harding Lawson and Associates (HLA). 2001. 2000 Annual Monitoring Report Biological Baseline Studies and Follow-up Monitoring Former Fort Ord, Monterey County, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- KEMRON Environmental Services. 2020. BLM Area B Track 2 Ponds Geophysical Anomaly Investigation Technical Information Paper Former Fort Ord, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- Jones and Stokes Associates Inc. 1996. 1996 Annual Wetland Monitoring Report for UXO Removal at Former Fort Ord. Prepared for Army Corps of Engineers, Sacramento, CA.
- Lichvar, RW, DL Banks, WN Kirchner, and NC Melvin. 2016. The National Wetland Plant List: 2016 Wetland Ratings. Phytoneuron 2016-30: 1-17. Available at <u>http://wetland-plants.usace.army.mil/</u>
- MACTEC. 2003. 2002 Annual Monitoring Report Biological Baseline Studies and Follow-up Monitoring Former Fort Ord, Monterey, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- MACTEC. 2004. 2003 Annual Monitoring Report Biological Baseline Studies and Follow-up Monitoring Former Fort Ord, Monterey, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- MACTEC. 2005. 2004 Annual Monitoring Report Biological Baseline Studies and Follow-up Monitoring Former Fort Ord, Monterey, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- Matthews MA and M Mitchell. 2015. The Plants of Monterey County, an Illustrated Field Key. 2nd ed. California Native Plant Society Press, Sacramento, CA. pp. 446.

- Mulhouse JM, D De Steven, RF Lide, RR Sharitz. 2005. "Effects of Dominant Species on Vegetation Change in Carolina Bay Wetlands following a Multi-Year Drought." The Journal of the Torrey Botanical Society, Vol. 132, No. 3. Torrey Botanical Society. pp. 411-420.
- National Climatic Data Center of the National Oceanic and Atmospheric Administration (NDC NOAA).
 2018. 30-Year Normal Precipitation Data for the NWSFO Monterey Airport Meteorological Tower.
 [Internet]. Accessed on October 20, 2018. Available at: http://www.ncdc.noaa.gov/cdo-web/datatools/normals
- Naval Postgraduate School Department of Meteorology (NPSDM). 2020. Monthly Precipitation Summaries for the Monterey Region. [Internet]. Accessed October 8, 2020. Available at: <u>http://met.nps.edu/~ldm/renard_wx/</u>
- Tannaourji, Danielle Nicole. 2009. Ecological factors suitable for the endangered *Lasthenia conjugens* (Asteraceae). [Internet]. Accessed February 23, 2021. Available at: <u>https://scholarworks.sjsu.edu/etd_theses/3723</u>
- Tetra Tech, Inc. 2014. 2013 California Tiger Salamander and California Fairy Shrimp Aquatic Sampling Former Fort Ord. In: 2013 Biological Monitoring Report for Units 7, 5E, and 23E; Units 15, 21, 32, and 34; Units 18 and 22; and Ranges 43–48 Former Fort Ord. Prepared for U.S. Army Corps of Engineers, Sacramento, CA.
- Tetra Tech, Inc. 2015. 2014 California Tiger Salamander and California Fairy Shrimp Aquatic Sampling Former Fort Ord. In: 2014 Biological Monitoring Report for Units 25 and 31; Units 06, 07, 10, 33, WGBA, and MOUT; Units 04, 11, 12 and 23N; Units 14 and 19; and MRS-16 Former Fort Ord. Prepared for U.S. Army Corps of Engineers, Sacramento, CA.
- Shaw Environmental, Inc. (Shaw). 2008. 2007 Annual Biological Monitoring Report, Former Fort Ord, California. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Shaw Environmental, Inc. (Shaw). 2010. 2009 Annual Biological Monitoring Report, Former Fort Ord, California. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Shaw Environmental, Inc. (Shaw). 2011. 2010 Annual Biological Monitoring Report, Former Fort Ord, California. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Witham CW, ET Bauder, D Belk, WR, Jr., Ferren, R Ornduff (eds.). 1998. Ecology, Conservation, and Management of Vernal Pool Ecosystems - Proceedings from a 1996 Conference. California Native Plant Society, Sacramento, CA.
- United States Army Corps of Engineers, Sacramento District. 1992. Flora and Fauna Baseline Study of Fort Ord, California. Prepared for Army Corps of Engineers, Sacramento, CA.
- United States Army Corps of Engineers, Sacramento District. 1994. Installation-Wide Multi-Species Habitat Management Plan for Former Fort Ord, California. February. Sacramento, CA.
- United States Army Corps of Engineers, Sacramento District. 1997. Installation-Wide Multi-Species Habitat Management Plan for Former Fort Ord, California. April. Sacramento, CA.

United States Army Corps of Engineers. 2016a. aquatic_habitat_area.shp. [Data set]. Unpublished.

- United States Department of Agriculture, Natural Resources Conservation Services. 2018. National Agricultural Imagery Program Imagery. [Internet]. Accessed on September 1, 2018. Available at https://gdg.sc.egov.usda.gov/
- U.S. Fish and Wildlife Service and California Department of Fish and Game. 1996. Interim Survey Guidelines to Permittees for Recovery Permits Under Section 10(a)(1)(A) of the Endangered Species Act for the Listed Vernal Pool Branchiopods.
- U.S. Fish and Wildlife Service and California Department of Fish and Game. 2003. Interim Guidance on Site Assessment for Determining the Presence or a Negative Finding of the California Tiger Salamander.
- United States Fish and Wildlife Service. 2015. Programmatic Biological Opinion for Cleanup and Property Transfer Actions Conducted at the Former Fort Ord, Monterey County, CA. Report No. 8-8-09-F-74.
- United States Fish and Wildlife Service. 2017. Reinitiation of Programmatic Biological Opinion for Cleanup and Property Transfer Actions Conducted at the Former Fort Ord, Monterey County, CA. Report No. 8-8-09-F-74.

APPENDIX A

Vegetation Transect Data

This page intentionally left blank

Table A-1. Pond 5 (Reference) Wetland Vegetation Transect Data by Stratum

		PO	ND 5
Date	6/10/2020		
Surveying Personnel	Kayti Christi	anson, Emily Poor, and Lizzy	Eichorn
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		N	lotes
Dand was dry by 6/10/2020	Stratum 1 wa	s repeated from 2016 2019	and 2010 Strate 2 and 2 were repeated from 2016 2017 2018 and

Pond was dry by 6/10/2020. Stratum 1 was repeated from 2016, 2018, and 2019. Strata 2, and 3 were repeated from 2016, 2017, 2018, and 2019. Stratum 6 was repeated from 2018 and 2019. Stratum 7 was repeated from 2019. Transect 1 was repeated from 2016, 2018, and 2019. Transect 2 was repeated from 2016. Transect 3 was relocated to a more representative location. Transect 6 was repeated from 2018 and 2019. Transect 7 was repeated from 2019.

		Relative	Quadra	it #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadrat #6	
Transect Transect # Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	
			ELMA	60	ELMA	50	AGAV	1	ELMA	50	ELMA	45	ELMA	50
			POMO	1	MALE	1	ELMA	48	POMO	1	MALE	1	MALE	1
1	10	250/	TH	39	POMO	1	POMO	1	TH	49	POMO	1	POMO	1
1	10 m	35%			TH	48	TH	50			BG	8	BG	2
											TH	45	TH	46
			TOTAL	100	TOTAL	100								

		Relative	Quadra	it #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
# Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	
			DISP	1	DISP	2	DISP	3	DISP	3	DISP	2	DISP	3
			ELMA	36	ELMA	30	ELMA	40	ELMA	32	ELMA	36	ELMA	36
2	10	220/	POMO	6	POMO	3	POMO	4	POMO	4	MALE	1	POMO	3
2	10 m	32%	TH	57	TH	65	TH	53	TH	61	POMO	2	TH	58
											TH	59		
			TOTAL	100	TOTAL	100								

		Relative	Quadra	it #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			DISP	5	DISP	4	AGGR	1	DISP	3	BRMI	1	BRMI	1
			ELMA	6	ELMA	4	CRTR	10	ELMA	5	DISP	2	DISP	5
			GEDI	3	ERCA	1	DISP	4	GEDI	2	ELMA	2	ELMA	5
			PHLE	2	HYGL	1	ELMA	2	HYGL	2	PHLE	2	GEDI	1
			STAJ	32	HYRA	2	ERCA	1	JUPH	2	POMO	2	HYGL	1
			BG	2	PHLE	4	GEDI	3	LYHY	1	RUCR	2	JUPH	1
				TH	50	POMO	1	HYGL	1	PHLE	1	STAJ	50	PHLE
3	10 m	12%			STAJ	25	PHLE	3	PLCHh	1	BG	1	PLCHh	1
					BG	1	STAJ	9	POMO	2	TH	38	POMO	2
					TH	57	BG	2	PSLU	1			RUCR	1
							TH	64	SOOL	1			STAJ	45
									STAJ	45			BG	1
									BG	2			TH	35
									TH	32				
			TOTAL	100										

		Relative	Quadra	at #1	Quadr	at #2	Quadr	at #3	Quadra	at #4	Quadra	at #5	Quadra	it #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			CRTR	1	CRTR	1	DISP	3	DISP	4	DISP	4	DISP	2
			DISP	1	DISP	3	ELMA	9	ELMA	4	ELMA	4	ELMA	3
			ELMA	18	ELMA	24	JUPH	5	JUPH	2	JUPH	2	JUPH	2
			JUPH	2	JUPH	4	PHLE	1	PHLE	1	PHLE	3	PHLE	7
6	10 m	14%	PHLE	2	PHLE	1	POMO	4	POMO	16	POMO	8	POMO	1
			POMO	2	POMO	3	RUCR	3	RUCR	4	TH	79	TH	85
			RUCR	3	RUCR	4	TH	75	TH	69				
			TH	71	TH	60								
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ERCA	7	ERCA	2	AGAV	1	JUBA	53	JUBA	60	JUBA	80
			HYGL	6	JUBA	45	JUBA	65	POMO	1	PSST	3	BG	1
			JUBA	55	PSST	1	POMO	1	BG	1	SEGL	2	TH	19
			POMO	1	BG	1	PSST	1	TH	45	BG	1		
7	10 m	7%	PSST	5	TH	51	BG	1			TH	34		
/	10 m	170	SEGL	3			TH	31						
			SOOL	1										
			BG	2										
			TH	20										
			TOTAL	100										

Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common yarrow	ACMI	Hypochaeris glabra	smooth cat's-ear	HYGL
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Hypochaeris radicata	rough cat's-ear	HYRA
Agoseris grandiflora	large-flowered agoseris	AGGR	Isoetes howellii	Howell's guillwort	ISHO
Agrostis avenacea	Pacific bent grass	AGAV	Juncus balticus	Baltic rush	JUBA
Aira caryophyllea	silvery hair-grass	AICA	Juncus phaeocephalus	brown-headed rush	JUPH
Avena barbata	slender wild oat	AVBA	Lactuca serriola	prickly lettuce	LASE
Baccharis glutinosa	marsh baccharis	BAGL	Lysimachia arvensis	scarlet pimpernel	LYAR
Baccharis pilularis	coyote brush	BAPI	Lythrum hyssopifolia	grass poly	LYHY
Briza maxima	rattlesnake grass	BRMA	Madia gracilis	gumweed	MAGR
Briza minor	annual quaking grass	BRMI	Madia sativa	coast tarweed	MASA
Bromus diandrus	ripgut grass	BRDI	Malvella leprosa	alkali mallow	MALE
Bromus hordeaceus	soft chess	BRHO	Phalaris lemmonii	Lemmon's canary grass	PHLE
Carduus pycnocephalus	Italian thistle	CAPY	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Cirsium brevistylum	Indian thistle	CIBR	Plantago coronopus	cut-leaved plantain	PLCO
Clinopodium douglasii	yerba buena	CLDO	Plantago lanceolata	English plantain	PLLA
Cotula coronopifolia	brass buttons	COCO	Polypogon monspeliensis	rabbitfoot grass	POMO
Cressa truxillensis	spreading alkaliweed	CRTR	Pseudognaphalium californicum	California everlasting	PSCA
Cynosurus echinatus	bristly dogtail grass	CYEC	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Cyperus eragrostis	tall cyperus	CYER	Pseudognaphalium ramosissimum	pink everlasting	PSRA
Daucus pusillus	rattlesnake weed	DAPU	Pseudognaphalium stramineum	cottonbatting plant	PSST
Deinandra corymbosa	coastal tarweed	DECO	Rumex acetosella	sheep sorrel	RUAC
Deschampsia danthonioides	annual hair grass	DEDA	Rumex crispus	curly dock	RUCR
Diplacus aurantiacus	sticky monkey flower	DIAU	Schoenoplectus californicus	California bulrush	SCCA
Distichlis spicata	salt grass	DISP	Senecio glomeratus	cutleaf burnweed	SEGL
Eleocharis macrostachya	pale spikerush	ELMA	Silene gallica	small-flower catchfly	SIGA
Elymus triticoides	beardless wild rye	ELTR3	Solanum americanum	small-flowered nightshade	SOAM
Epilobium ciliatum	fringed willowherb	EPCI	Sonchus asper	prickly sow thistle	SOAS
Erigeron canadensis	horseweed	ERCA	Sonchus oleraceus	common sow thistle	SOOL
Erodium botrys	long-beaked filaree	ERBO	Stachys ajugoides	bugle hedge nettle	STAJ
Eryngium armatum	coyote thistle	ERAR12	Torilis arvensis	tall sock destroyer	TOAR
Euthamia occidentalis	western goldenrod	EUOC	Toxicodendron diversilobum	poison oak	TODI
Festuca myuros	rattail sixweeks grass	FEMY	Verbena lasiostachys var. lasiostachys	western vervain	VELAL
Festuca perennis	Italian rye grass	FEPE	Groundcover Codes		
Galium aparine	goose grass	GAAP	BG	Bare Ground	
, Gamochaeta ustulata	purple cudweed	GAUS	тн	Thatch/Duff/Algae	
Geranium dissectum	cut-leaved geranium	GEDI	AL	Algae	
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO			

Table A-2. Pond 101 East (East) (Reference) Wetland Vegetation Transect Data by Stratum

		POND 101 Eas	st (East)
Date	6/9/2020, 6/25	/2020, 7/2/2020	
Surveying Personnel	Kayti Christians	on, Emily Poor, and Lizzy Eic	norn
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		Notes	
Pond was dry by 6/25/2020. Strat	ta 1 and 2 were r	epeated from 2016, 2018, ar	d 2019, whereas strata 5 and 6 were repeated from 2017, 2018,

and 2019. Strata 4 was repeated from 2017, 2018, and 2019, whereas strata 5 and 6 were repeated from 2017, 2018, and 2019. Strata 4 was repeated from 2016. Stratum 8 was in a new location in 2020. Transects 1 and 6 were relocated because the previous locations were no longer within the correct strata. Transect 2 was repeated from 2016. Transects 4 and 5 were relocated to a more representative location and Transect 8 was new.

		Relative	Quadra	at #1	Quadra	at #2	Quadrat #3	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			MALE	28	MALE	60	ELMA	7
			ELMA	10	ELMA	3	LYHY	1
			TH	62	RUCR	1	MALE	55
					BG	3	POMO	1
					TH	33	ROCU	1
1	5 m	0.4%					RUAC	1
							RUCR	1
							TRSC	2
							BG	18
							TH	13
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AGAV	2	AGAV	1	ELMA	55	ELMA	69	AGAV	1	ELMA	60
			ELMA	40	ELMA	60	MALE	1	POMO	1	ELMA	50	MALE	2
			MALE	5	POMO	1	POMO	2	RUCR	6	MALE	1	POMO	1
2	10 m	38%	RUCR	5	RUCR	3	RUCR	7	BG	4	RUCR	8	RUCR	8
			BG	1	TH	35	BG	2	TH	20	BG	4	TH	29
			TH	47			TH	33	ELMA	69	TH	36		
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ERCA	2	JUBA	56	GEDI	3	EPBR	1	ERCA	3	ERCA	6
			GEDI	6	RUAC	8	JUBA	45	GEDI	2	FEMY	1	GEDI	4
			JUBA	37	BG	1	RUAC	8	JUBA	65	GEDI	2	JUBA	36
			POMO	1	TH	35	RUSA	5	RUAC	12	JUBA	54	POMO	2
4	10 m	25%	RUAC	5			BG	1	VELAI	1	RUAC	4	RUSA	5
4	10 11	23%	RUSA	6			TH	38	BG	2	RUSA	7	BG	2
			VELAI	12					TH	17	VISAs	2	TH	45
			BG	1							BG	2		
			TH	30							TH	25		
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6						
Transect #	Transect Length	% Cover of Wetland	Species	% Cover																
			ACAMa	18	ACAMa	20	ACAMa	10	ACAMa	6	ACAMa	2	ACAMa	15						
			AGAV	1	AGAV	1	BRMI	4	BAPI	2	AVBA	1	AGAV	1						
			BRMI	3	BRMI	2	ERBO	2	BRMI	5	BRMI	1	ERCA	3						
			ERBO	2	ERCA	1	FEBR	4	ERBO	2	ERBO	2	FEBR	1						
			FEMY	1	FEMY	1	HYGL	20	ERCA	1	ERCA	3	FEMY	1						
			HECUo	3	HECUo	8	MAGR	7	FEBR	1	FEBR	1	HECUo	2						
			HYGL	8	HYGL	8	PSLU	1	HYGL	12	FEMY	1	HYGL	16						
			JUBA	1	JUBA	2	PSST	1	JUBA	2	HYGL	8	PSLU	1						
		3%	3%	PSST	12	LYAR	1	RUAC	6	PSLU	1	MAGR	1	PSST	3					
				RUAC	8	MAGR	2	STAJ	8	RUAC	6	PSLU	1	RUAC	12					
5	10 m			TRGR	2	POMO	1	TRMI	1	STAJ	15	PSST	4	SOOL	2					
					TRMI	1	PSLU	2	VISAs	3	TRMI	1	RUAC	6	STAJ	4				
								-	VISAn	2	PSST	5	BG	11	VISAn	2	SOOL	1	TRGR	1
								BG	25	RUAC	10	TH	22	BG	14	STAJ	3	VISAn	2	
			TH	13	STAJ	8			TH	30	VISAn	3	VISAs	1						
					TRMI	2					BG	45	BG	20						
					VISAn	2					TH	17	TH	15						
					VISAs	2														
					BG	10														
					TH	12														
			TOTAL	100																

		Relative	Quadra	t #1	Quadra	at #2	Quadra	at #3		
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover		
			BRDI	1	CAPR	30	CAPR	50		
			CAPR	45	FEMY	2	JUBA	1		
		1%	CIVU	1	GEDI	1	RUAC	3		
			ERCA	1	RUAC	6	BG	23		
6	5 m		PSST	1	SOOL	1	TH	23		
0	5 111		176	1/0	RUAC	2	VISAn	1		
				SOOL	1	VISAs	1			
			BG	26	BG	28				
			TH	22	TH	30				
			TOTAL	100	TOTAL	100	TOTAL	100		

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AGAV	48	AGAV	5	ACAMa	3	AGAV	14	AGAV	15	AGAV	1
			ERCA	1	EPBR	2	AGAV	10	AGGR	2	ERBO	1	BRMI	1
			GEDI	8	ERCA	2	EPBR	1	GEDI	3	GEDI	5	FEMY	1
			JUPH	6	GEDI	12	ERCA	2	HYGL	1	HYGL	1	HECUo	1
			MALE	3	JUPH	19	GEDI	5	JUPH	25	JUPH	35	JUPH	2
		34%	RUCR	3	POMO	15	HYGL	1	POMO	1	MASA	3	MASA	20
			-	SOOL	1	RUCR	2	JUPH	8	RUCR	1	POMO	3	POMO
8	10 m		STAJ	4	STAJ	8	PHLE	1	STAJ	18	RUCR	2	STAJ	16
0	10 10	34%	TRGR	1	TRGR	1	POMO	10	TRVA	3	VISAn	1	TRBA	1
			VISAn	2	TRVA	1	RUCR	3	VISAn	3	BG	5	TRGR	1
			VISAs	6	VISAn	5	STAJ	18	VISAs	2	TH	29	TRMI	2
			BG	5	VISAs	9	TRVA	6	BG	2			VISAn	2
			TH	12	BG	4	VISAs	6	TH	25			BG	5
					TH	15	BG	2					TH	45
							TH	25						
			TOTAL	100	TOTAL	100	TOTAL	101	TOTAL	100	TOTAL	100	TOTAL	100

	Pond 1	01 East (Eas	t) 2020 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common yarrow	ACMI	Layia platyglossa	tidy-tips	LAPL
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lonicera involucrata var. ledebourii	black twinberry	LOINL
Agoseris grandiflora	large-flowered agoseris	AGGR	Lysimachia arvensis	scarlet pimpernel	LYAR
Agrostis avenacea	Pacific bent grass	AGAV	Lysimachia minima	chaffweed	LYMI
Agrostis exarata	spike bent grass	AGEX	Lythrum hyssopifolia	grass poly	LYHY
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Madia gracilis	gumweed	MAGR
Agrostis pallens	seashore bent grass	AGPA	Madia sativa	coast tarweed	MASA
Aira caryophyllea	silvery hair-grass	AICA	Malvella leprosa	alkali mallow	MALE
Alopecurus saccatus	Pacific foxtail	ALSA	Microseris paludosa	marsh microseris	MIPA
Avena barbata	slender wild oat	AVBA	Phalaris lemmonii	Lemmon's canary grass	PHLE
Baccharis pilularis	coyote brush	BAPI	Plantago lanceolata	English plantain	PLLA
Briza maxima	rattlesnake grass	BRMA	Poa pratensis	Kentucky blue grass	POPR
Briza minor	annual quaking grass	BRMI	Polypogon monspeliensis	rabbitfoot grass	POMO
Bromus diandrus	ripgut grass	BRDI	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Bromus hordeaceus	soft chess	BRHO	Pseudognaphalium stramineum	cottonbatting plant	PSST
Carduus pycnocephalus	Italian thistle	CAPY	Ranunculus californicus	California buttercup	RACA
Carex praegracilis	clustered field sedge	CAPR	Ribes divaricatum var. pubiflorum	spreading gooseberry	RIDIP
Centaurea melitensis	Maltese star-thistle	CEME	Rorippa curvisiliqua	western yellowcress	ROCU
Cirsium brevistylum	Indian thistle	CIBR	Rubus ursinus	California blackberry	RUUR
Cirsium vulgare	bull thistle	CIVU	Rumex acetosella	sheep sorrel	RUAC
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Rumex crispus	curly dock	RUCR
Conium maculatum	poison hemlock	COMA	Rumex salicifolius	willow dock	RUSA
Cynosurus echinatus	bristly dogtail grass	CYEC	Senecio glomeratus	cutleaf burnweed	SEGL
Cyperus eragrostis	tall cyperus	CYER	Silene gallica	small-flower catchfly	SIGA
Eleocharis macrostachya	pale spikerush	ELMA	Solanum americanum	small-flowered nightshade	SOAM
Elymus glaucus	blue wild-rye	ELGL	Sonchus asper	prickly sow thistle	SOAS
Epilobium brachycarpum	tall annual willowherb	EPBR	Sonchus oleraceus	common sow thistle	SOOL
Epilobium ciliatum	fringed willowherb	EPCI	Stachys ajugoides	bugle hedge nettle	STAJ
Erigeron canadensis	horseweed	ERCA	Stachys bullata	California hedge nettle	STBU
Erodium botrys	long-beaked filaree	ERBO	Torilis arvensis	tall sock destroyer	TOAR
Erodium cicutarium	redstem filaree	ERCI	Toxicodendron diversilobum	poison oak	TODI
Euthamia occidentalis	western goldenrod	EUOC	Trifolium angustifolium	narrow-leaved clover	TRAN
Festuca myuros	rattail sixweeks grass	FEMY	Trifolium barbigerum	bearded clover	TRBA
Festuca perennis	Italian rye grass	FEPE	Trifolium depauperatum	sack clover	TRDE
Galium aparine		GAAP	Trifolium gracilentum	pin point clover	TRGR
Ganochaeta ustulata	goose grass	GAAP	Trifolium graciientum Trifolium microcephalum	small head clover	
Gamocnaeta ustulata Geranium dissectum	purple cudweed	GEDI	Trifolium microcephalum Trifolium variegatum		TRVA
	cut-leaved geranium	HECUO		variegated clover	TRVA
Heliotropium curassavicum var. oculatum	Chinese pusley		Triglochin scilloides	flowering quillwort	VELAL
Heterotheca grandiflora	telegraph weed	HEGR	Verbena lasiostachys var. lasiostachys	western vervain	
Hordeum brachyantherum	meadow barley	HOBR	Vicia sativa ssp. nigra	common vetch	VISAN
Hypochaeris glabra	smooth cat's-ear	HYGL	Vicia sativa ssp. sativa	spring vetch	VISAS
Hypochaeris radicata	rough cat's-ear	HYRA	Groundcover Codes		
Juncus balticus	Baltic rush	JUBA	BG	Bare Ground	
Juncus falcatus	falcate rush	JUFA	TH	Thatch/Duff	
Juncus phaeocephalus	brown-headed rush	JUPH	AL	Algae	

Table A-3. Pond 997 (Reference) Wetland Vegetation Transect Data by Stratum

		PON	D 997								
Date	6/2/2020										
Surveying Personnel	Kayti Chris	tianson, Emily Poor, and Lizzy	Eichorn								
Vegetation Type	% Cover	Species	Notes								
Emergent Vegetation											
Floating Vegetation											
Submerged Vegetation											
Open Water											
Notes											
Pond was dry by 6/2/2020. Str	rata 1, 2, and	d 3 were repeated from 2017,	2018, and 2019, whereas stratum 5 was repeated from 2018 and 2019.								

Transects 1 and 3 were repeated from 2017, 2018, and 2019. Transect 5 was relocated because the previous location was no longer within the correct stratum. Stratum 2 consisted of CCG and no transects were placed in this stratum.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6							
Transect #	Transect Length	% Cover of Wetland	Species	% Cover																	
			BRMI	1	ELMA	1	ELACa	2	CRAQ	1	ELACa	2	ERAR12	70							
			ELACa	3	ERAR12	14	ELMA	3	ELACa	2	ELCA	1	LACO	1							
			ELMA	3	HYGL	1	ERAR12	4	ELCA	1	ELMA	1	LYHY	2							
			ERAR12	35	JUBUb	1	JUPH	2	ERAR12	27	ERAR12	25	LYMI	1							
			HYGL	1	JUBUo	1	LYHY	4	JUBUb	1	ISHO	2	PLCHh	2							
			JUBUb	2	LYHY	15	LYMI	1	LYMI	1	LACO	1	POMO	3							
				LYHY	4	PLCHh	3	PLCHh	1	PLCHh	1	LYHY	3	BG	1						
1	10 m	6%	PLCHh	1	POMO	15	PLCO	2	PLCO	2	LYMI	1	TH	20							
		-		_	Ļ	Ļ		-		POMO	18	PSCH	25	POMO	10	POMO	3	PLCHh	1		
			PSCH	11	BG	15	PSCH	18	PSCH	2	PLCO	2									
			BG	16	TH	9	BG	31	BG	3	POMO	1									
			TH	5			TH	22	TH	56	PSCH	5									
											BG	20									
											TH	35									
			TOTAL	100																	

		Relative	Quadra	at #1	Quadra	at #2	Quadra	nt #3	Quadra	at #4	Quadr	at #5	Quadr	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRMA	15	AICA	3	AICA	3	AICA	5	ACPA	4	ACPA	3
			BRMI	2	BRMA	8	BRMA	4	BRMA	4	AICA	1	AICA	2
			DACA	8	BRMI	6	BRMI	3	BRMI	4	BRMA	1	BRMA	3
			DECO	1	CAAMa3	15	CAAMa3	3	BRTEt	1	BRMI	2	BRMI	1
			ERAR12	2	DACA	15	DACA	50	CAAMa3	9	BRTEt	1	DACA	5
			FEBR	7	DECO	1	DECO	2	DACA	33	DACA	30	DECO	3
			GEDI	2	ERAR12	15	ERAR12	4	ERAR12	10	DECO	3	ERAR12	4
			HYGL	4	ERBO	2	FEBR	1	ERBO	1	FEMY	1	ERBO	2
			HYRA	1	FEBR	1	FEMY	1	FEMY	1	GEDI	2	FEMY	1
			LYHY	2	FEMY	1	HYGL	3	HYGL	3	HYGL	5	GEDI	2
			LYMI	3	GRASS1	1	ISCE	1	ISCE	2	JUPH	1	HYGL	4
3	10 m	78%	PLCO	18	HYGL	2	JUBUb	2	JUBUb	2	LYHY	1	JUBUb	1
3	10 111	10/0	POMO	1	ISCA	1	LYAR	1	LYHY	1	MAGR	7	LYAR	2
			BG	16	ISCE	1	LYHY	1	LYMI	2	MASA	15	LYMI	1
			TH	18	JUBUb	2	LYMI	2	MAGR	3	RUAC	3	MAGR	4
					LYHY	4	MAGR	3	RUAC	4	TRIX	3	MASA	15
					LYMI	2	RUAC	2	TRIX	1	BG	2	MIPA	1
					MASA	4	ZEDA	1	BG	4	TH	18	RUAC	6
					PLCO	1	BG	7	TH	10			SIBE	2
					RUAC	1	TH	10					BG	30
					ZEDA	1							TH	8
					BG	9								
					TH	4								
			TOTAL	100	TOTAL	100	TOTAL	104	TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadr	at #1	Quadr	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadr	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRMA	3	BRMA	6	BRMA	5	BRMA	7	BRMA	6	BAPI	1
			BRMI	2	BRTEt	2	BRTEt	1	DACA	6	ERAR12	5	BRMA	8
			BRTEt	1	JUBUb	1	ERAR12	5	ERAR12	8	GEDI	1	BRMI	1
			JUPH	48	JUPH	70	JUPH	72	JUPH	45	JUPH	70	CAAMa3	1
			LYHY	6	BG	2	LYMI	1	LYMI	1	MASA	2	DACA	6
			BG	15	TH	19	BG	2	BG	3	BG	1	ERAR12	3
5	10 m	12%	TH	25			TH	14	TH	30	TH	15	JUBUb	1
5	10 111	12/0											JUPH	30
													LYHY	4
													LYMI	2
													PLCHh	1
													BG	14
													TH	28
			TOTAL	100										

2020 Annual Report – Appendix A

Consider Norma	Common Name		2020 Species List	Common Norma	Creation Carlo
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Acaena pinnatifida var. californica	California acaena	ACPIC	Isolepis cernua	low bulrush	ISCE
Achillea millefolium	common yarrow	ACMI	Juncus bufonius var. bufonius	common toad rush	JUBUB
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Juncus bufonius var. occidentalis	round-fruited toad rush	JUBUO
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Juncus phaeocephalus	brown-headed rush	JUPH
Aira caryophyllea	silvery hair-grass	AICA	Lasthenia conjugens	Contra Costa goldfields	LACO
Avena barbata	slender wild oat	AVBA	Logfia gallica	narrowleaf cottonrose	LOGA
Baccharis pilularis	coyote brush	BAPI	Lysimachia arvensis	scarlet pimpernel	LYAR
Briza maxima	rattlesnake grass	BRMA	Lysimachia minima	chaffweed	LYMI
Briza minor	annual quaking grass	BRMI	Lythrum hyssopifolia	grass poly	LYHY
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Madia gracilis	gumweed	MAGR
Bromus diandrus	ripgut grass	BRDI	Madia sativa	coast tarweed	MASA
Bromus hordeaceus	soft chess	BRHO	Microseris paludosa	marsh microseris	MIPA
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Chlorogalum pomeridianum	wavyleaf soap plant	СНРО	Plantago coronopus	cut-leaved plantain	PLCO
Cirsium quercetorum	brownie thistle	CIQU2	Plantago lanceolata	English plantain	PLLA
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Polypogon monspeliensis	rabbitfoot grass	POMO
Corethrogyne filaginifolia	common sandaster	COFI	Pseudognaphalium californicum	California everlasting	PSCA
Cotula coronopifolia	brass buttons	COCO	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Crassula aquatica	aquatic pygmy-weed	CRAQ	Pseudognaphalium ramosissimum	pink everlasting	PSRA
Danthonia californica	California oat grass	DACA	Pseudognaphalium stramineum	cottonbatting plant	PSST
Deinandra corymbosa	coastal tarweed	DECO	Psilocarphus chilensis	round woolly-marbles	PSCH
Diplacus aurantiacus	sticky monkey flower	DIAU	Quercus agrifolia	coast live oak	QUAG
Elatine californica	California waterwort	ELCA	Ranunculus californicus	California buttercup	RACA
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Rumex acetosella	sheep sorrel	RUAC
Eleocharis macrostachya	pale spikerush	ELMA	Salvia mellifera	black sage	SAME
Elymus glaucus	blue wild-rye	ELGL	Senecio glomeratus	cutleaf burnweed	SEGL
Elvmus triticoides	beardless wild rye	ELTR3	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM
Erigeron canadensis	horseweed	ERCA	Silene gallica	small-flower catchfly	SIGA
Erodium botrys	long-beaked filaree	ERBO	Sisyrinchium bellum	western blue-eyed grass	SIBE
Eryngium armatum	covote thistle	ERAR12	Sonchus asper	prickly sow thistle	SOAS
Festuca bromoides	brome fescue	FEBR	Sonchus oleraceus	common sow thistle	SOOL
Festuca myuros	rattail sixweeks grass	FEMY	Spiranthes romanzoffiana	hooded lady's tresses	SPRO
Festuca perennis	Italian rye grass	FEPE	Stachys ajugoides	bugle hedge nettle	STAJ
Franqula californica	California coffeeberry	FRCA12	Stipa pulchra	purple needle grass	STPU
Galium aparine	goose grass	GAAP	Taraxia ovata	sun cups	TAOV
	0 0	GAAP	Taraxia ovata Toxicodendron diversilobum		TODI
Galium porrigens	climbing bedstraw	GAUS		poison oak bearded clover	TRBA
Gamochaeta ustulata	purple cudweed		Trifolium barbigerum		
Geranium dissectum	cut-leaved geranium	GEDI	Triteleia ixioides	coast pretty face	TRIX
Horkelia cuneata var. cuneata	wedge-leaved horkelia	HOCUC	Zeltnera davyi	Davy's centuary	ZEDA
Hypochaeris glabra	smooth cat's-ear	HYGL	Groundcover Codes		
Hypochaeris radicata	rough cat's-ear	HYRA	BG	Bare Ground	
Isoetes howellii	Howell's quillwort	ISHO	ТН	Thatch/Duff	
Isolepis carinata	keeled bulrush	ISCA	AL	Algae	

Table A-4. Pond 101 East (West) (Year 2 Post-Mastication) Wetland Vegetation Transect Data by Stratum

		POND 101	East (West)									
Date	6/8/2020, 6	5/26/2020										
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Liz	zzy Eichorn									
Vegetation Type	Vegetation Type % Cover Species Notes											
Emergent Vegetation												
Floating Vegetation												
Submerged Vegetation												
Open Water												
		N	otes									
Pond was dry by 6/8/2020. Strat	ta 1, 2, 4, and	5 were repeated from 20	16, 2017, 2018, and 2019. Stratum 6 was repeated from 2017, 2018, and									
	2040 -											

2019. Stratum 8 was repeated from 2019. Transects 1 and 5 were relocated to a more representative vegetative composition. Transects 2, 4, and 6 were relocated because the previous locations were no longer within the correct strata. Transect 8 was repeated from 2019.

		Relative	Quadr	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ELMA	15	ALSA	1	ALSA	2	ALSA	2	ALSA	1	ALSA	1
			HECUo	6	ELMA	20	ELMA	13	ELMA	12	ELMA	18	ELMA	24
			MALE	17	MALE	4	GNPA	1	GNPA	5	GNPA	2	MALE	15
			POMO	1	POMO	10	HECUo	1	HECUo	4	LYHY	1	POMO	2
			BG	5	TH	65	LYHY	1	MALE	10	MALE	12	ROCU	1
1	10	3%	TH	56			MALE	11	PEMA	1	POMO	2	VEBR	1
1	10 m	3%					POMO	1	POMO	2	VEBR	1	BG	2
							ROCU	2	ROCU	1	BG	2	TH	54
							VEBR	3	VEBR	3	TH	61		
							BG	5	BG	2				
							TH	60	TH	58				
			TOTAL	100										

		Relative	Quadr	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ELMA	35	ELMA	40	ELMA	35	ELMA	40	ELMA	45	ELMA	60
			MALE	1	TH	60	LAGL3	1	MALE	1	MALE	1	MALE	1
2	10 m	10%	TH	64			MALE	1	PHLE	2	PHLE	3	PHLE	1
2	10 10	10%					BG	5	BG	1	BG	5	TH	38
							TH	58	TH	56	TH	46		
			TOTAL	100										

		Relative	Quadra	at #1	Quadr	at #2	Quadra	nt #3							
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover							
			BRMI	1	BRMI	1	ACAMa	2							
			ELMA	5	ELMA	6	BRMI	2							
			FEPE	1	GEDI	8	ELMA	3							
			-	GEDI	2	JUPH	6	GEDI	3						
			JUPH	1	MAGR	25	HECUo	6							
			MAGR	13	MASA	7	JUPH	5							
4	E m	4%	MASA	40	PSLU	1	LYAR	3							
4	5 m		470	RUAC	2	PSST	2	MAGR	10						
			VISAs	1	RUAC	5	MASA	45							
			BG	2	RUCR	1	PSST	2							
										TH	32	VISAs	1	RUCR	1
					BG	2	BG	2							
					TH	35	TH	16							
			TOTAL	100	TOTAL	100	TOTAL	100							

		Relative	Quadr	at #1	Quadra	it #2	Quadra	at #3	Quadr	at #4	Quadr	at #5	Quadra	it #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			FEPE	60	BRMI	1	BRMI	1	ELMA	20	ELMA	16	DISP	2
			FEBR	5	ELMA	1	ELMA	5	FEBR	5	BRDI	1	ELMA	5
			BG	5	FEBR	12	FEBR	5	FEPE	25	FEBR	20	ERAR12	2
			TH	30	FEPE	44	FEPE	31	MALE	3	FEPE	35	FEBR	5
5	10 m	44%			GEDI	3	GEDI	2	BG	2	GEDI	1	FEPE	55
5	10 m	44%			HYGL	2	MALE	25	TH	45	MALE	4	MALE	5
					MALE	8	BG	6			BG	3	RUCR	4
					BG	5	TH	25			TH	20	BG	2
					TH	24							TH	20
			TOTAL	100										

		Relative	Quadra	nt #1	Quadra	at #2	Quad	rat #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			ACAMa	1	ACAMa	1	AGAV	1
			AGAV	6	AGAV	4	BRMI	1
			GEDI	3	BAPI	1	JUBA	5
			HYGL	1	BRMI	1	JUPH	30
			JUBA	2	FEMY	1	POMO	2
			JUPH	39	FEPE	1	BG	4
			MASA	7	GEDI	4	TH	57
			POMO	1	JUBA	2		
6	5 m	12%	RUAC	4	JUPH	16		
			RUCR	1	PSST	2		
			VISAn	3	RUCR	2		
			BG	4	SEGL	1		
			TH	28	SOAS	1		
					SOOL	5		
					BG	4		
					TH	54		
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	nt #3					
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover					
			BRMI	1	EUOC	28	EUOC	20					
			ELACa	2	FEPE	1	FEPE	1					
			EUOC	30	GEDI	2	GEDI	2					
			FEPE	1	JUPH	1	JUPH	4					
			GEDI	2	POMO	6	MALE	1					
			JUPH	2	RUAC	1	POMO	12					
			MALE	1	BG	12	RUAC	1					
8	5 m	4%	PLCHh	1	TH	49	BG	5					
			POMO	10			TH	54					
			PSST	2									
			RUAC	1									
								SOOL	1				
			BG	8									
			TH	38									
			TOTAL	100	TOTAL	100	TOTAL	100					

		Relative	Quadr	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AGAV	40	AGAV	28	AGAV	15	AGAV	55	AGAV	7	AGAV	30
			BRMI	1	BRMI	2	BRMI	2	BRMI	1	ELMA	30	ELMA	5
			FEPE	3	FEBR	1	FEBR	1	ELMA	3	HECUo	10	HECUo	24
			GEDI	6	GEDI	3	FEPE	2	GEDI	2	RUCR	20	POMO	3
			HECUo	1	HECUo	3	GEDI	15	HECUo	7	BG	2	RUCR	12
9	10 m	25%	JUBA	1	HYGL	1	POMO	18	POMO	5	TH	31	BG	1
9	10 10	23%	POMO	8	JUBA	1	RUCR	6	RUCR	7			TH	25
			RUCR	2	POMO	8	SOOL	4	VISAs	1				
			BG	3	RUCR	3	VISAs	2	BG	2				
			TH	35	BG	2	BG	3	TH	17				
					TH	48	TH	32						
			TOTAL	100										

	Pond 101	East (West) 2020 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lythrum hyssopifolia	grass poly	LYHY
Agrostis avenacea	Pacific bent grass	AGAV	Madia gracilis	gumweed	MAGR
Aira caryophyllea	silvery hair-grass	AICA	Madia sativa	coast tarweed	MASA
Alopecurus saccatus	Pacific foxtail	ALSA	Malvella leprosa	alkali mallow	MALE
Avena barbata	slender wild oat	AVBA	Microseris paludosa	marsh microseris	MIPA
Baccharis pilularis	coyote brush	BAPI	Oxalis micrantha	dwarf woodsorrel	OXMI
Briza maxima	rattlesnake grass	BRMA	Persicaria maculosa	lady's thumb	PEMA
Briza minor	annual quaking grass	BRMI	Phalaris lemmonii	Lemmon's canary grass	PHLE
Bromus carinatus	California brome	BRCA	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Bromus diandrus	ripgut grass	BRDI	Plantago coronopus	cut-leaved plantain	PLCO
Bromus hordeaceus	soft chess	BRHO	Plantago lanceolata	English plantain	PLLA
Carex praegracilis	clustered field sedge	CAPR	Polygonum aviculare ssp. depressum	prostrate knotweed	POAVD
Cotula coronopifolia	brass buttons	COCO	Polypogon monspeliensis	rabbitfoot grass	POMO
Cyperus eragrostis	tall cyperus	CYER	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Danthonia californica	California oat grass	DACA	Pseudognaphalium ramosissimum	pink everlasting	PSRA
Deschampsia danthonioides	annual hair grass	DEDA	Pseudognaphalium stramineum	cottonbatting plant	PSST
Distichlis spicata	salt grass	DISP	Rorippa curvisiliqua	western yellowcress	ROCU
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Rumex acetosella	sheep sorrel	RUAC
Eleocharis macrostachya	pale spikerush	ELMA	Rumex crispus	curly dock	RUCR
Erigeron canadensis	horseweed	ERCA	Rumex salicifolius	willow dock	RUSA
Erodium botrys	long-beaked filaree	ERBO	Senecio glomeratus	cutleaf burnweed	SEGL
Eryngium armatum	coyote thistle	ERAR12	Sonchus asper	prickly sow thistle	SOAS
Euthamia occidentalis	western goldenrod	EUOC	Sonchus oleraceus	common sow thistle	SOOL
Festuca myuros	rattail sixweeks grass	FEMY	Stachys ajugoides	bugle hedge nettle	STAJ
Festuca perennis	Italian rye grass	FEPE	Toxicodendron diversilobum	poison oak	TODI
Gamochaeta ustulata	purple cudweed	GAUS	Trifolium angustifolium	narrow-leaved clover	TRAN
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium barbigerum	bearded clover	TRBA
Gnaphalium palustre	lowland cudweed	GNPA	Trifolium dubium	little hop clover	TRDU
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO	Trifolium microcephalum	small head clover	TRMI
Hordeum brachyantherum ssp. brachyantherum	meadow barley	HOBRB	Trifolium willdenovii	tomcat clover	TRWI
Hordeum marinum ssp. gussoneanum	Mediterranean barley	HOMAG	Verbena bracteata	bracted verbena	VEBR
Hypochaeris glabra	smooth cat's-ear	HYGL	Verbena lasiostachys var. lasiostachys	western vervain	VELAL
Hypochaeris radicata	rough cat's-ear	HYRA	Vicia sativa ssp. nigra	common vetch	VISAN
Isoetes howellii	Howell's quillwort	ISHO	Vicia sativa ssp. sativa	spring vetch	VISAS
Juncus balticus	Baltic rush	JUBA	Vicia villosa ssp. villosa	hairy vetch	VIVIV
Juncus effusus	common rush	JUEF	Groundcover Codes		
Juncus phaeocephalus	brown-headed rush	JUPH	BG	Bare Ground	
Lasthenia glaberrima	smooth goldfields	LAGL3	тн	Thatch/Duff	
Lupinus nanus	sky lupine	LUNA	AL	Algae	
Lvsimachia arvensis	scarlet pimpernel	LYAR		-	

Table A-5. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Transect Data by Stratum

		PON	D 41
Date	6/1/2020		
Surveying Personnel	Kayti Chris	tianson, Emily Poor, and Lizzy	Eichorn
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		No	otes
Pond was dry by 6/1/2020. Sti	rata 1, 2, and	3 were repeated from 2016	and 2019. Stratum 4 was repeated from 2019. Transects 1 and 2 were

repeated from 2019. Stratum 4 was repeated from 2019. Stratum 4 was repeated from 2019. Transects 1 and 2 were repeated from 2019. Transect 3 was relocated because the previous location was no longer within the stratum. An upland stratum was mapped and occupied 1% relative cover of the wetland but was not included in the cover data.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ELACa	3	ELACa	2	ELACa	12	DEDA	2	DEDA	1	DEDA	4
			ELMA	14	ELMA	62	ELMA	48	ELACa	1	ELACa	3	ELACa	1
			LAGL3	1	PHLE	6	LAGL3	3	ELMA	59	ELMA	54	ELMA	30
			MALE	1	POMO	18	PHLE	7	POMO	1	LAGL3	3	LAGL3	3
1	10	1 40/	PHLE	6	BG	1	POMO	10	BG	2	PLCHh	1	PHLE	3
1	10 m	14%	POMO	3	TH	11	BG	2	TH	35	POMO	15	POMO	9
			BG	2			TH	18			STAJ	12	BG	2
			TH	70							BG	1	TH	48
											TH	10		
			TOTAL	100										

		Relative	Quadr	at #1	Quadi	at #2	Quadr	at #3	Quadr	at #4	Quadr	at #5	Quadr	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ELACa	11	DEDA	6	DEDA	9	DEDA	2	ELACa	4	ELACa	12
			GEDI	7	ELACa	14	ELACa	12	ELACa	1	ELMA	8	ELMA	5
			JUPH	10	GEDI	18	ELMA	4	ELMA	8	GEDI	22	GEDI	9
			PHLE	4	JUPH	8	GEDI	20	GEDI	18	LAGL3	1	LAGL3	2
			PLCHh	2	LAGL3	2	MALE	7	MALE	3	PHLE	1	MALE	2
2	10 m	59%	POMO	40	MALE	2	PHLE	1	PHLE	2	PLCHh	1	PHLE	2
2	10 m	59%	RUCR	5	PHLE	4	PLCHh	1	PLCHh	1	POMO	34	PLCHh	2
			STAJ	2	PLCHh	1	POMO	25	POMO	30	RUCR	3	POMO	44
			TH	19	POMO	9	STAJ	7	STAJ	12	STAJ	2	STAJ	4
					STAJ	3	TH	14	TH	23	TH	24	TH	18
					TH	33								
			TOTAL	100										

		Relative	Quadr	rat #1	Quadi	rat #2	Quadr	at #3	Quadr	at #4	Quadr	rat #5	Quadr	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRHO	1	BRHO	1	ELACa	10	BRMI	1	DEDA	1	GEDI	2
			BRMI	1	BRMI	3	JUPH	75	ELACa	2	ELACa	1	JUPH	70
			ERBO	2	ERCA	1	POMO	3	JUBA	3	ERCA	1	MALE	1
			FEBR	1	FEBR	2	TH	10	JUPH	55	GEDI	2	RUCR	2
			GAUS	3	GEDI	6	BG	2	POMO	3	JUPH	55	TH	23
			GEDI	2	JUPH	55			RUCR	2	MALE	1	BG	2
			HYGL	2	MASA	4			TH	30	POMO	3		
			JUBA	1	POMO	5			BG	4	RUCR	1		
3	10 m	21%	JUPH	35	SOOL	5					SOOL	3		
5	10 111	21/0	LYAR	4	TH	18					TH	30		
			MAGR	4	BG	1					BG	2		
			MASA	12										
			POMO	3										
			RUAC	2										
			SOOL	3										
			TH	20										
			BG	4										
			TOTAL	100	TOTAL	101	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadr	at #2	Quadr	at #3	Quadra	t #4	Quadra	it #5	Quadr	at #6
Transec t #	Transect Length	% Cover of Wetland	Species	% Cover										
			AICA	2	AICA	1	BRMI	2	AICA	1	AICA	1	AICA	2
			BRHO	1	BRHO	1	DACA	32	BRMI	1	BAPI	9	BRMI	2
		BRMI	1	BRMI	1	FEMY	1	BRTEt	1	BRMI	3	BRTEt	1	
			DACA	40	BRTEt	1	GEDI	3	CAAMa3	1	BRTEt	1	DACA	15
			ERAR12	3	DACA	28	HYGL	3	DACA	22	CAAMa3	4	FEMY	1
			FEBR	1	FEMY	1	LYMI	1	FEBR	1	DACA	11	GEDI	3
			GAUS	1	GAUS	1	MAGR	4	GEDI	2	ERAR12	4	HYGL	5
4	10 m	6%	GEDI	3	GEDI	2	MASA	1	HYGL	2	FEMY	3	LUCO6	2
4	10 111	0%	MAGR	8	HYGL	2	STAJ	4	JUPH	1	GAUS	1	LYAR	1
			TH	32	LYAR	1	BG	9	MAGR	28	GEDI	4	MAGR	12
			BG	8	MAGR	10	TH	40	POMO	1	HYGL	6	BG	35
					PLCO	5			BG	6	MAGR	12	TH	21
					BG	15			TH	33	POMO	2		
					TH	31					BG	9		
											TH	30		
			TOTAL	100										

2020 Annual Report – Appendix A

		Pond 41 2	020 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common yarrow	ACMI	Juncus occidentalis	western rush	JUOC
Agrostis exarata	spike bent grass	AGEX	Juncus phaeocephalus	brown-headed rush	JUPH
Aira caryophyllea	silvery hair-grass	AICA	Lasthenia glaberrima	smooth goldfields	LAGL3
Alopecurus saccatus	Pacific foxtail	ALSA	Luzula comosa	Pacific woodrush	LUCO6
Avena barbata	slender wild oat	AVBA	Lysimachia arvensis	scarlet pimpernel	LYAR
Baccharis pilularis	coyote brush	BAPI	Lysimachia minima	chaffweed	LYMI
Briza maxima	rattlesnake grass	BRMA	Lythrum hyssopifolia	grass poly	LYHY
Briza minor	annual quaking grass	BRMI	Madia gracilis	gumweed	MAGR
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Madia sativa	coast tarweed	MASA
Bromus hordeaceus	soft chess	BRHO	Malvella leprosa	alkali mallow	MALE
Carduus pycnocephalus	Italian thistle	CAPY	Microseris paludosa	marsh microseris	MIPA
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Oxalis corniculata	creeping woodsorrel	OXCO
Danthonia californica	California oat grass	DACA	Phalaris lemmonii	Lemmon's canary grass	PHLE
Deschampsia danthonioides	annual hair grass	DEDA	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Drymocallis glandulosa var. wrangelliana	sticky cinquefoil	DRGLW	Plantago coronopus	cut-leaved plantain	PLCO
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Polypogon monspeliensis	rabbitfoot grass	POMO
Eleocharis macrostachya	pale spikerush	ELMA	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Elymus glaucus	blue wild-rye	ELGL	Pseudognaphalium ramosissimum	pink everlasting	PSRA
Elymus triticoides	beardless wild rye	ELTR3	Pseudognaphalium stramineum	cottonbatting plant	PSST
Erigeron canadensis	horseweed	ERCA	Rumex acetosella	sheep sorrel	RUAC
Erodium botrys	long-beaked filaree	ERBO	Rumex crispus	curly dock	RUCR
Eryngium armatum	coyote thistle	ERAR12	Rumex salicifolius	willow dock	RUSA
Festuca bromoides	brome fescue	FEBR	Senecio glomeratus	cutleaf burnweed	SEGL
Festuca myuros	rattail sixweeks grass	FEMY	Sonchus oleraceus	common sow thistle	SOOL
Gamochaeta ustulata	purple cudweed	GAUS	Stachys ajugoides	bugle hedge nettle	STAJ
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium microcephalum	small head clover	TRMI
Gnaphalium palustre	lowland cudweed	GNPA	Verbena lasiostachys var. lasiostachys	western vervain	VELAL
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO	Zeltnera davyi	Davy's centuary	ZEDA
Hordeum brachyantherum	meadow barley	HOBR	Groundcover Codes		
Hypochaeris glabra	smooth cat's-ear	HYGL	BG	Bare Ground	
Hypochaeris radicata	rough cat's-ear	HYRA	TH	Thatch/Duff	
Juncus balticus	Baltic rush	JUBA	AL	Algae	

Table A-6. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		POND	3 North
Date	6/5/2020,6	6/18/2020, 6/25/2020	
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Lizz	zy Eichorn
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		No	ites

Pond was dry by 6/25/2020. Stratum 1 was repeated from 2015 and 2018. Strata 2, 3, and 4 were repeated from 2015, 2018, and 2019. Transect 1 was repeated from 2015 and 2018. Transect 2 was relocated because the previous location was no longer within the stratum. Transect 3 was repeated from 2018. Stratum 4 consisted of CCG and no transects were placed in this stratum.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ELMA	70	ELMA	50	ELMA	30	ELMA	70	ELACa	1	ELACa	4
			BG	7	BG	5	ELACa	1	ELACa	1	ELMA	65	ELMA	85
			TH	23	TH	45	BG	40	BG	20	РОМО	1	LAGL3	1
1	10 m	11%					TH	29	TH	9	BG	12	POMO	2
											TH	21	BG	6
													TH	2
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6		
Transect #	Transect Length	% Cover of Wetland	Species	% Cover												
			ELMA	18	ELMA	20	ELMA	15	ELMA	12	COCO	1	DEDA	1		
			ERAR12	6	ERAR12	18	HOMAg	10	HOMAg	6	ELMA	10	ELACa	3		
			FEPE	1	POMO	10	JUBUb	1	LACO	1	ERAR12	6	ELMA	5		
			HOMAg	2	PLCO	6	LACO	1	LYHY	5	HOMAg	5	ERAR12	13		
			LYHY	3	PSCH	4	LYHY	8	LYMI	1	LYHY	4	HOMAg	10		
			LYMI	1	HOMAg	3	LYMI	1	PLCHh	2	LYMI	1	JUBUb	1		
			PLCHh	2	PLCHh	2	POMO	4	POMO	8	PLCHh	1	LYHY	2		
2	10 m	14%	PLCO	7	LYHY	2	POZI	3	POZI	1	PLCO	3	PLCHh	1		
			POMO	16	POZI	1	PSCH	2	PSCH	2	POMO	4	PLCO	3		
			PSCH	1	JUBUb	1	ZEDA	1	ZEDA	1	PSCH	2	POMO	8		
					BG	16	ZEDA	1	BG	25	BG	36	ZEDA	1	PSCH	1
			TH	27	LYMI	1	TH	29	TH	25	BG	30	ZEDA	1		
					BG	2					TH	32	BG	27		
					TH	29							TH	24		
			TOTAL	100												

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AICA	1	AICA	1	ACPA	2	ACPA	2	AICA	1	BRMI	1
			BAPI	5	BRHO	3	AICA	1	AICA	1	BRHO	1	DACA	20
			BRHO	1	BRMI	1	BRHO	3	BRHO	1	BRMI	1	ERAR12	7
			BRMI	1	CAAM	5	BRMI	1	CAAM	2	CAAM	3	FEMY	1
			CAAM	4	DACA	40	DACA	12	CAUN	1	DACA	5	FEPE	26
			CAUN	1	DECO	1	ERAR12	3	DACA	15	ERAR12	6	HYGL	1
			DACA	2	ERCA	1	FEPE	31	ERAR12	5	ERCA	1	JUBUb	1
			ERAR12	30	FEMY	1	LOGA	1	FEMY	1	FEPE	15	JUPH	1
3	10 m	37%	FEMY	1	LYAR	2	LYAR	2	FEPE	25	LYAR	3	LYHY	6
			JUPH	2	MIPA	3	MAGR	1	LYAR	3	LYHY	2	MIPA	1
			LYAR	5	PLCO	3	MIPA	3	MIPA	2	MA sp.	2	PLCO	2
			LYMI	1	TRAN	1	TRAN	3	PLCO	2	MIPA	3	POMO	1
			MIPA	1	TRDU	1	BG	6	TRDU	2	PLCO	6	SOOL	1
			ZEDA	1	ZEDA	1	TH	31	BG	12	PLER	1	BG	6
			BG	32	BG	12			TH	26	BG	45	TH	25
			TH	12	TH	24					TH	5		
			TOTAL	100										

			20 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common yarrow	ACMI	Lasthenia conjugens	Contra Costa goldfields	LACO
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lasthenia glaberrima	smooth goldfields	LAGL3
Acmispon parviflorus	hill lotus	ACPA	Leptosiphon parviflorus	variable linanthus	LEPA
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Logfia gallica	narrowleaf cottonrose	LOGA
Aira caryophyllea	silvery hair-grass	AICA	Luzula comosa	Pacific woodrush	LUCO6
Allium hickmanii	Hickman's onion	ALHI	Lysimachia arvensis	scarlet pimpernel	LYAR
Avena barbata	slender wild oat	AVBA	Lysimachia minima	chaffweed	LYMI
Baccharis pilularis	coyote brush	BAPI	Lythrum hyssopifolia	grass poly	LYHY
Briza minor	annual quaking grass	BRMI	Madia exigua	small tarweed	MAEX
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Madia gracilis	gumweed	MAGR
Bromus diandrus	ripgut grass	BRDI	Madia sativa	coast tarweed	MASA
Bromus hordeaceus	soft chess	BRHO	Microseris paludosa	marsh microseris	MIPA
Callitriche heterophylla var. bolanderi	Bolander's water starwort	CAHEB	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Calochortus uniflorus	pink star-tulip	CAUN	Plantago coronopus	cut-leaved plantain	PLCO
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Pogogyne zizyphoroides	Sacramento mesa mint	POZI
Cotula coronopifolia	brass buttons	COCO	Polypogon monspeliensis	rabbitfoot grass	POMO
Crassula aquatica	aquatic pygmy-weed	CRAQ	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Danthonia californica	California oat grass	DACA	Pseudognaphalium stramineum	cottonbatting plant	PSST
Deinandra corymbosa	coastal tarweed	DECO	Psilocarphus chilensis	round woolly-marbles	PSCH
Deschampsia danthonioides	annual hair grass	DEDA	Senecio glomeratus	cutleaf burnweed	SEGL
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM
Eleocharis macrostachya	pale spikerush	ELMA	Sonchus oleraceus	common sow thistle	SOOL
Erigeron canadensis	horseweed	ERCA	Stipa pulchra	purple needle grass	STPU
Erodium botrys	long-beaked filaree	ERBO	Taraxia ovata	sun cups	TAOV
Eryngium armatum	coyote thistle	ERAR12	Toxicodendron diversilobum	poison oak	TODI
Festuca bromoides	brome fescue	FEBR	Trifolium angustifolium	narrow-leaved clover	TRAN
Festuca myuros	rattail sixweeks grass	FEMY	Trifolium campestre	hop clover	TRCA5
Festuca perennis	Italian rye grass	FEPE	Trifolium dubium	little hop clover	TRDU
Gamochaeta ustulata	purple cudweed	GAUS	Trifolium microcephalum	small head clover	TRMI
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium variegatum	variegated clover	TRVA
Hordeum brachyantherum	meadow barley	HOBR	Triglochin scilloides	flowering quillwort	TRSC
Hordeum marinum ssp. gussoneanum	Mediterranean barley	HOMAG	Triteleia hyacinthina	white brodiaea	TRHY3
Hypochaeris glabra	smooth cat's-ear	HYGL	Vicia sativa ssp. nigra	common vetch	VISAN
Hypochaeris radicata	rough cat's-ear	HYRA	Vicia sativa ssp. sativa	spring vetch	VISAS
Isolepis cernua	low bulrush	ISCE	Zeltnera davyi	Davy's centuary	ZEDA
Hordeum brachyantherum	meadow barley	HOBR	Groundcover Codes	· ·	
Juncus bufonius var. bufonius	common toad rush	JUBUB	BG	Bare Ground	
Juncus capitatus	dwarf rush	JUCA	ТН	Thatch/Duff	
Juncus occidentalis	western rush	JUOC	AL	Algae	
Juncus phaeocephalus	brown-headed rush	JUPH		-	

Table A-7. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		POND	3 South		
Date	5/26/2020				
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Lizz	zy Eichorn		
Vegetation Type	% Cover	Species		Notes	
Emergent Vegetation					
Floating Vegetation					
Submerged Vegetation					
Open Water					
		No	otes		
			a aaya 🛛 kaaya 🖛		 10010

Pond was dry by 5/26/2020. Strata 1 through 4 were repeated from 2016, 2018, and 2019. Transect 1 was repeated from 2016, 2018, and 2019, whereas Transects 2 through 4 were repeated from 2019. Stratum 5 consisted of CCG and no transects were placed in this stratum. An upland stratum was mapped and occupied 3% relative cover of the wetland but was not included in the cover data.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadr	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			CRAQ	1	COCO	1	DEDA	1	COCO	1	COCO	2	ELACa	4
			ELACa	10	CRAQ	1	ELACa	6	DEDA	1	ELMA	40	ELMA	55
			ELMA	15	ELACa	3	ELMA	55	ELACa	2	JUPH	1	JUPH	1
			ERAR12	12	ELMA	25	ERAR12	6	ELMA	60	LAGL3	1	LAGL3	2
			LYHY	1	ERAR12	20	JUPH	2	ERAR12	6	LYHY	1	MALE	1
	10 m	17%	PLCHh	3	LYHY	1	LAGL3	2	JUPH	2	MALE	1	PLCHh	1
1			POMO	1	PLCHh	3	LYHY	1	LAGL3	2	PLCHh	1	BG	6
			BG	2	PLCO	15	MALE	1	MALE	2	POMO	2	TH	30
			TH	55	POMO	1	PLCHh	3	PLCHh	2	BG	16		
					BG	20	POMO	3	POMO	3	TH	35		
					TH	10	BG	5	BG	10				
							TH	15	TH	11				
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	102	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadr	at #3	Quadrat #4		Quadrat #5		Quadrat #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover
			BRMI	2	BRMI	1	BRTEt	1	BRMI	1	BRMI	1	AICA	1
			BRTEt	1	BRTEt	6	FEBR	1	BRTEt	1	BRTEt	2	BRMI	1
			CAAMa3	2	ELACa	2	FEPE	2	CAAMa3	1	ELACa	3	CAAMa3	1
			DACA	2	ERAR12	1	GEDI	1	DEDA	1	ERAR12	2	DEDA	1
			DEDA	1	FEMY	1	JUPH	70	ELACa	2	FEBR	1	ELACa	1
			ELACa	5	FEPE	4	MIPA	1	FEBR	1	GEDI	1	GEDI	1
	10 m	22%	ERAR12	4	GEDI	2	PLCO	2	FEPE	3	JUBUb	1	ISCA	1
			FEPE	5	JUPH	64	POMO	1	ISCE	1	JUPH	35	JUBUo	1
			GEDI	4	LYAR	1	BG	6	JUBUb	1	LYHY	1	JUPH	40
2			ISCE	1	LYHY	1	TH	15	JUPH	50	MIPA	1	LYHY	6
2			JUBUo	1	MALE	2			LOGA	1	PLCO	15	LYMI	1
			JUPH	40	MIPA	3			LYHY	5	POMO	2	MIPA	2
			LYHY	5	POMO	2			PLCO	7	TRVA	1	POMO	6
			LYMI	1	BG	1			POMO	3	BG	10	PSCH	1
			MIPA	1	TH	10			ZEDA	1	TH	24	SIGA	1
			POMO	6					BG	10			ZEDA	1
			RACA	1					TH	11			BG	14
			BG	3									TH	20
			TH	15										
			TOTAL	100	TOTAL	101	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadrat #3		Quadrat #4		Quadrat #5		Quadrat #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover
			AICA	1	AICA	1	AICA	2	ACMI	2	ACMI	10	ACMI	1
			BRMI	2	BRMI	1	BRMI	1	AICA	1	AICA	2	AICA	1
			BRTEt	2	BRTEt	2	BRTEt	3	BRMI	3	BRMI	2	BRMI	1
			CAUN	1	DACA	12	CAAMa3	3	BRTEt	2	BRTEt	1	BRTEt	1
			ERAR12	3	ERAR12	3	DACA	12	CAAMa3	3	DACA	40	DACA	25
			ERCA	1	FEBR	1	FEBR	1	DACA	20	ERBO	1	ERBO	3
			FEBR	1	GEDI	1	HYGL	2	FEBR	1	FEBR	1	ERCA	1
			GEDI	2	HYGL	1	JUPH	2	GAPH	1	FEPE	1	FEBR	1
	10 m	47%	HYGL	1	JUPH	1	LOGA	1	GEDI	5	GEDI	3	FEPE	2
			HYRA	2	LOGA	1	LYAR	1	HYGL	2	HYGL	1	GEDI	1
			JUPH	1	LYAR	1	LYHY	26	HYRA	2	JUPH	1	HYGL	2
			LOGA	1	LYHY	3	LYMI	2	JUPH	1	LOGA	1	LOGA	1
3			LYAR	1	LYMI	1	PLER	2	LOGA	1	LYAR	2	LYAR	2
			LYHY	12	MIPA	1	POMO	1	LYAR	1	LYHY	6	LYHY	10
			LYMI	1	POMO	1	SIMAm	2	LYHY	12	MASA	1	MAGR	1
			MASA	1	SIMAm	3	SOOL	1	LYMI	1	SIMAm	4	MASA	1
			MIPA	1	SOOL	1	TRBA	1	MAGR	1	BG	8	PLER	1
			PLCO	3	ZEDA	2	ZEDA	1	MASA	1	TH	15	POMO	1
			PLER	1	BG	23	BG	20	SOOL	1			SOOL	1
			POMO	1	TH	40	TH	16	ZEDA	1			TAOV	1
			SOOL	1					BG	18			BG	35
			ZEDA	1					TH	20			TH	7
			BG	30										
			TH	30										
			TOTAL	101	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadr	at #1	Quadrat #2		Quadrat #3		Quadrat #4		Quadrat #5		Quadrat #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover
			BRMI	5	BRHO	1	BRHO	1	BRDI	1	BRDI	1	BRHO	3
			BRTEt	2	BRMI	1	BRMI	5	BRHO	2	BRHO	5	BRMI	2
			ELMA	4	BRTEt	1	BRTEt	1	BRMI	1	BRMI	3	BRTEt	1
			FEPE	57	ELMA	4	ELMA	3	BRTEt	6	ELMA	17	CAUN	1
			GEDI	1	FEPE	52	ERCA	1	ELMA	20	FEPE	30	ELMA	5
		10%	HYGL	1	GEDI	2	FEPE	43	ERCA	5	GAUS	2	FEPE	34
	10 m		JUPH	2	JUPH	1	GEDI	3	FEPE	31	GEDI	8	GEDI	7
			LYAR	1	LYHY	1	HYGL	1	GAUS	2	HYGL	2	HYGL	1
			LYHY	3	MALE	5	JUPH	2	GEDI	4	JUPH	3	JUPH	4
4			MALE	4	PSST	1	LYHY	2	HYGL	1	LYHY	1	MALE	7
			RACA	1	SIGA	1	MALE	6	JUPH	2	MALE	2	MIPA	1
			SIGA	1	TRDU	15	MIPA	2	MALE	2	RACA	2	RACA	2
			SOOL	1	TH	15	RACA	1	MIPA	3	SIGA	1	SOOL	5
			BG	2			SIGA	2	SOOL	2	SOOL	7	TRBA	1
			TH	15			TRDU	6	BG	2	BG	1	BG	6
							ZEDA	1	TH	16	TH	22	TH	20
							BG	6						
							TH	14						
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	107	TOTAL	100

Pond 3 South 2020 Species List											
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code						
Achillea millefolium	common yarrow	ACMI	Lysimachia arvensis	scarlet pimpernel	LYAR						
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lysimachia minima	chaffweed	LYMI						
Adenostoma fasciculatum	chamise	ADFA	Lythrum hyssopifolia	grass poly	LYHY						
Agoseris grandiflora	large-flowered agoseris	AGGR	Madia exigua	small tarweed	MAEX						
Aira caryophyllea	silvery hair-grass	AICA	Madia gracilis	gumweed	MAGR						
Allium hickmanii	Hickman's onion	ALHI	Madia sativa	coast tarweed	MASA						
Arctostaphylos hookeri	Hooker's manzanita	ARHO	Malvella leprosa	alkali mallow	MALE						
Avena barbata	slender wild oat	AVBA	Microseris paludosa	marsh microseris	MIPA						
Baccharis pilularis	coyote brush	BAPI	Navarretia hamata ssp. parviloba	hooked navarretia	NAHAP						
Briza maxima	rattlesnake grass	BRMA	Phalaris lemmonii	Lemmon's canary grass	PHLE						
Briza minor	annual quaking grass	BRMI	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH						
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Plantago coronopus	cut-leaved plantain	PLCO						
Bromus diandrus	ripgut grass	BRDI	Plantago erecta	California plantain	PLER						
Bromus hordeaceus	soft chess	BRHO	Plantago lanceolata	English plantain	PLLA						
Calochortus uniflorus	pink star-tulip	CAUN	Pogogyne zizyphoroides	Sacramento mesa mint	POZI						
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Polypogon monspeliensis	rabbitfoot grass	POMO						
Cirsium brevistylum	Indian thistle	CIBR	Pseudognaphalium luteoalbum	weedy cudweed	PSLU						
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Pseudognaphalium stramineum	cottonbatting plant	PSST						
Cotula coronopifolia	brass buttons	COCO	Psilocarphus chilensis	round woolly-marbles	PSCH						
Crassula aquatica	aguatic pygmy-weed	CRAQ	Ranunculus californicus	California buttercup	RACA						
Danthonia californica	California oat grass	DACA	Rubus ursinus	California blackberry	RUUR						
Deinandra corymbosa	coastal tarweed	DACA	Rumex acetosella	sheep sorrel	RUAC						
		DECO	Rumex acetosena Rumex crispus	curly dock	RUCR						
Deschampsia danthonioides Eleocharis acicularis var. acicularis	annual hair grass	ELACa		cutleaf burnweed	SEGL						
	needle spikerush	ELMA	Senecio glomeratus	checkerbloom	SIMAM						
Eleocharis macrostachya	pale spikerush		Sidalcea malviflora ssp. malviflora		-						
Elymus glaucus	blue wild-rye	ELGL	Silene gallica	small-flower catchfly	SIGA						
Erigeron canadensis	horseweed	ERCA	Sisyrinchium bellum	western blue-eyed grass	SIBE						
Erodium botrys	long-beaked filaree	ERBO	Sonchus oleraceus	common sow thistle	SOOL						
Eryngium armatum	coyote thistle	ERAR12	Spergularia villosa	hairy sand-spurrey	SPVI						
Festuca bromoides	brome fescue	FEBR	Stipa pulchra	purple needle grass	STPU						
Festuca perennis	Italian rye grass	FEPE	Taraxia ovata	sun cups	TAOV						
Gamochaeta ustulata	purple cudweed	GAUS	Tribolium obliterum	Capetown grass	TROB						
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium angustifolium	narrow-leaved clover	TRAN						
Hordeum brachyantherum ssp. brachyantherum	meadow barley	HOBRB	Trifolium barbigerum	bearded clover	TRBA						
Horkelia cuneata	wedge-leaved horkelia	HOCU	Trifolium campestre	hop clover	TRCA5						
Hypochaeris glabra	smooth cat's-ear	HYGL	Trifolium depauperatum	sack clover	TRDE						
Hypochaeris radicata	rough cat's-ear	HYRA	Trifolium dubium	little hop clover	TRDU						
Isolepis cernua	low bulrush	ISCE	Trifolium microcephalum	small head clover	TRMI						
Juncus bufonius var. bufonius	common toad rush	JUBUB	Trifolium variegatum	variegated clover	TRVA						
Juncus bufonius var. occidentalis	round-fruited toad rush	JUBUO	Triteleia hyacinthina	white brodiaea	TRHY3						
Juncus falcatus	falcate rush	JUFA	Triteleia ixioides	coast pretty face	TRIX						
Juncus occidentalis	western rush	JUOC	Vicia hirsuta	hairy vetch	VIHI						
Juncus patens	spreading rush	JUPA	Vicia sativa ssp. sativa	spring vetch	VISAS						
Juncus phaeocephalus	brown-headed rush	JUPH	Zeltnera davyi	Davy's centuary	ZEDA						
Lasthenia conjugens	Contra Costa goldfields	LACO	Groundcover Codes								
Lasthenia glaberrima	smooth goldfields	LAGL3	BG	Bare Ground							
Leptosiphon parviflorus	variable linanthus	LEPA	тн	Thatch/Duff	-						
Logfia gallica	narrowleaf cottonrose	LOGA	AL	Algae							

Table A-8. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		PON	ID 39		
Date	5/22/2020,	6/3/2020			
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Liz	zy Eichorn		
Vegetation Type	% Cover	Species		Notes	
Emergent Vegetation					
Floating Vegetation					
Submerged Vegetation					
Open Water					
		N	otes		

Pond was dry by 6/3/2020. Strata 1 and 3 were repeated from 2016, 2018, and 2019. Stratum 4 was repeated from 2018 and 2019. Transect 1 was repeated from 2016 and 2018. Transect 3 was repeated from 2018 and 2019. Transect 4 was repeated from 2018. An upland stratum was mapped and occupied 9% relative cover of the wetland but was not included in the cover data.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			ELACa	1	ELACa	2	ELACa	2
			ELMA	77	ELMA	70	ELMA	72
1	5 m	9%	BG	7	BG	4	BG	5
			TH	15	TH	24	TH	21
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AICA	1	BRHO	1	BRDI	1	BRDI	1	BRDI	2	AVBA	2
			BRHO	1	BRMI	1	DISP	15	DISP	6	BRHO	1	BRDI	3
			DACA	45	BRTEt	1	FEMY	20	FEMY	2	ERBO	3	BRHO	1
			FEMY	1	DACA	30	FEPE	52	FEPE	49	FEMY	2	ERBO	3
			GEDI	2	FEMY	1	GEDI	5	GEDI	6	FEPE	71	FEMY	2
			JUOC	15	GEDI	1	BG	2	BG	1	GEDI	3	FEPE	55
3	10 m	38%	MAGR	3	JUOC	33	TH	5	TH	35	BG	3	GEDI	2
5	10 m	38%	PLCO	8	MAGR	2					TH	15	BG	2
			TRDU	2	PLCO	15							TH	30
			VISAn	1	TRDU	2								
			BG	2	ZEDA	1								
			TH	19	BG	2								
					TH	10								
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ACAMa	1	ACAMa	8	AICA	1	ACPA	1	ACPA	2	AICA	1
			AICA	1	AICA	1	AVBA	1	AICA	3	AICA	2	BRDI	1
			BRHO	1	BRHO	1	BRHO	4	AVBA	1	BRHO	1	BRHO	1
			BRMI	1	BRMI	1	BRMI	1	BRDI	1	BRMI	1	BRMI	1
			ERBO	5	DACA	5	DACA	40	BRHO	2	DACA	45	DACA	45
			FEBR	2	FEMY	15	FEBR	3	BRMI	2	ERBO	2	ERBO	3
			FEMY	1	GEDI	2	FEMY	8	CADE	1	FEMY	1	FEMY	4
			GEDI	2	HYGL	1	GEDI	2	DACA	25	HYGL	2	HYGL	1
			PLCO	15	MAGR	15	HYGL	1	FEMY	1	HYRA	1	PLCO	18
			TRAN	21	PLCO	6	MAGR	2	GEDI	1	LYAR	1	TRAN	2
4	10 m	44%	BG	10	PLLA	4	PLCO	4	HYGL	4	PLCO	7	VISAs	1
			TH	40	TRAN	1	TAOV	3	HYRA	2	TRAN	1	BG	4
					BG	5	TRDU	2	JUOC	1	TRDU	1	TH	18
					TH	35	VIHI	1	MAGR	2	BG	20		
							BG	2	PLCO	25	TH	13		
							TH	25	TAOV	1				
									TRDU	1				
									VISAn	1				
									BG	5				
									TH	20				
			TOTAL	100										

	P	ond 39 202	0 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common yarrow	ACMI	Juncus phaeocephalus	brown-headed rush	JUPH
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lasthenia glaberrima	smooth goldfields	LAGL3
Acmispon parviflorus	hill lotus	ACPA	Lupinus bicolor	miniature lupine	LUBI
Agrostis avenacea	Pacific bent grass	AGAV	Lupinus nanus	sky lupine	LUNA
Agrostis exarata	spike bent grass	AGEX	Luzula comosa	Pacific woodrush	LUCO6
Aira caryophyllea	silvery hair-grass	AICA	Lysimachia arvensis	scarlet pimpernel	LYAR
Arctostaphylos hookeri	Hooker's manzanita	ARHO	Lythrum hyssopifolia	grass poly	LYHY
Avena barbata	slender wild oat	AVBA	Madia gracilis	gumweed	MAGR
Baccharis pilularis	coyote brush	BAPI	Madia sativa	coast tarweed	MASA
Briza maxima	rattlesnake grass	BRMA	Microseris paludosa	marsh microseris	MIPA
Briza minor	annual quaking grass	BRMI	Oxalis corniculata	creeping woodsorrel	охсо
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Bromus diandrus	ripgut grass	BRDI	Plantago coronopus	cut-leaved plantain	PLCO
Bromus hordeaceus	soft chess	BRHO	Plantago lanceolata	English plantain	PLLA
Calochortus uniflorus	pink star-tulip	CAUN	Polypogon monspeliensis	rabbitfoot grass	POMO
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Pseudognaphalium stramineum	cottonbatting plant	PSST
Castilleja densiflora ssp. densiflora	dense flower owl's clover	CADED	Psilocarphus chilensis	round woolly-marbles	PSCH
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Quercus agrifolia	coast live oak	QUAG
Cotula coronopifolia	brass buttons	COCO	Ranunculus californicus	California buttercup	RACA
Cynosurus echinatus	bristly dogtail grass	CYEC	Rumex acetosella	sheep sorrel	RUAC
Danthonia californica	California oat grass	DACA	Rumex crispus	curly dock	RUCR
Deinandra corymbosa	coastal tarweed	DECO	Rumex salicifolius	willow dock	RUSA
Deschampsia danthonioides	annual hair grass	DEDA	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM
Distichlis spicata	salt grass	DISP	Silene gallica	small-flower catchfly	SIGA
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Sisyrinchium bellum	western blue-eyed grass	SIBE
Eleocharis macrostachya	pale spikerush	ELMA	Sonchus asper	prickly sow thistle	SOAS
Elymus glaucus	blue wild-rye	ELGL	Sonchus oleraceus	common sow thistle	SOOL
Erodium botrys	long-beaked filaree	ERBO	Stachys ajugoides	bugle hedge nettle	STAJ
Eryngium armatum	coyote thistle	ERAR12	Stachys bullata	California hedge nettle	STBU
Festuca bromoides	brome fescue	FEBR	Stipa pulchra	purple needle grass	STPU
Festuca myuros	rattail sixweeks grass	FEMY	Taraxia ovata	sun cups	TAOV
Festuca perennis	Italian rye grass	FEPE	Toxicodendron diversilobum	poison oak	TODI
Galium porrigens	climbing bedstraw	GAPO	Trifolium angustifolium	narrow-leaved clover	TRAN
Gamochaeta ustulata	purple cudweed	GAUS	Trifolium dubium	little hop clover	TRDU
Geranium dissectum	cut-leaved geranium	GEDI	Triteleia hyacinthina	white brodiaea	TRHY3
Heteromeles arbutifolia	toyon	HEAR	Triteleia ixioides	coast pretty face	TRIX
Hordeum brachyantherum	meadow barley	HOBR	Vicia hirsuta	hairy vetch	VIHI
Hordeum marinum ssp. gussoneanum	Mediterranean barley	HOMAG	Vicia sativa ssp. nigra	common vetch	VISAN
Horkelia cuneata	wedge-leaved horkelia	HOCU	Vicia sativa ssp. sativa	spring vetch	VISAS
Hypochaeris glabra	smooth cat's-ear	HYGL	Zeltnera davyi	Davy's centuary	ZEDA
Hypochaeris radicata	rough cat's-ear	HYRA	Groundcover Codes	· ·	
Juncus bufonius var. bufonius	common toad rush	JUBUB	BG	Bare Ground	
Juncus bufonius var. occidentalis	round-fruited toad rush	JUBUO	ТН	Thatch/Duff	
Juncus occidentalis	western rush	JUOC	AL	Algae	
Juncus patens	spreading rush	JUPA		J	

Table A-9. Pond 40 North (Year 3 Post-Burn) Wetland Vegetation Transect Data by Stratum

		POND 4	l0 North
Date	6/16/2020		
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Lizz	zy Eichorn
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		No	otes
Pond was dry by 6/16/2020. Str	atum 2 was r	epeated from 2015, 2018, a	and 2019, whereas stratum 3 was repeated from 2015 and 2019. Stratum

4 was repeated from 2019, and 2019. Transect 2 was repeated from 2015, 2018, and 2019. Transect 3 was relocated because the previous location was no longer within the correct stratum. Transect 4 was repeated from 2019.

		Relative	Quadra	at #1	Quadra	nt #2	Quadra	at #3	
Transect #		% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	
		33%	ELMA	37	ELMA	69	ELMA	54	
			GAUS	1	LYMI	1	GAUS	2	
2	5 m		BG	32	BG	18	BG	9	
		TH	30	TH	12	TH	35		
			TOTAL	100	TOTAL	100	TOTAL	100	

		Relative	Quadra	at #1	Quadra	at #2	Quadr	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			ELMA	33	ELMA	5	ERAR12	9
			ERAR12	25	ERAR12	33	FEPE	1
			JUPH	7	FEPE	1	JUPH	12
			PLCO	4	JUPH	9	PLCO	20
3	5 m	41%	POMO	2	PLCO	2	POMO	2
			RUCR	3	POMO	2	BG	25
			BG	5	BG	10	TH	31
			TH	21	TH	38		
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	t #1	Quadra	t #2	Quadra	t #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			BRMI	1	BRMI	1	BRMI	2
		-	DECO	2	GEDI	2	ERAR12	3
			GEDI	7	JUPH	20	JUPH	30
			JUPH	50	LYHY	1	LYHY	1
			MAGR	1	PLCO	25	PLCO	18
4	5 m	26%	PLCO	2	POMO	1	РОМО	2
			BG	4	BG	5	RUCR	1
			TH	33	TH	45	SIGA	1
							BG	12
							TH	30
			TOTAL	100	TOTAL	100	TOTAL	100

	Pon	d 40 North 2	2020 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common yarrow	ACMI	Lysimachia arvensis	scarlet pimpernel	LYAR
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lythrum hyssopifolia	grass poly	LYHY
Adenostoma fasciculatum	chamise	ADFA	Madia gracilis	gumweed	MAGR
Aira caryophyllea	silvery hair-grass	AICA	Madia sativa	coast tarweed	MASA
Avena barbata	slender wild oat	AVBA	Medicago polymorpha	California burclover	MEPO
Baccharis pilularis	coyote brush	BAPI	Microseris paludosa	marsh microseris	MIPA
Briza minor	annual quaking grass	BRMI	Plantago coronopus	cut-leaved plantain	PLCO
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Plantago lanceolata	English plantain	PLLA
Bromus hordeaceus	soft chess	BRHO	Polypogon monspeliensis	rabbitfoot grass	POMO
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Cotula coronopifolia	brass buttons	COCO	Psilocarphus chilensis	round woolly-marbles	PSCH
Cynosurus echinatus	bristly dogtail grass	CYEC	Quercus agrifolia	coast live oak	QUAG
Danthonia californica	California oat grass	DACA	Ranunculus californicus	California buttercup	RACA
Deinandra corymbosa	coastal tarweed	DECO	Rumex crispus	curly dock	RUCR
Drymocallis glandulosa var. wrangelliana	sticky cinquefoil	DRGLW	Senecio glomeratus	cutleaf burnweed	SEGL
Eleocharis acicularis	needle spikerush	ELAC	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM
Eleocharis macrostachya	pale spikerush	ELMA	Silene gallica	small-flower catchfly	SIGA
Elymus glaucus	blue wild-rye	ELGL	Sonchus asper	prickly sow thistle	SOAS
Erigeron canadensis	horseweed	ERCA	Sonchus oleraceus	common sow thistle	SOOL
Erodium botrys	long-beaked filaree	ERBO	Stachys bullata	California hedge nettle	STBU
Eryngium armatum	coyote thistle	ERAR12	Taraxia ovata	sun cups	TAOV
Festuca myuros	rattail sixweeks grass	FEMY	Toxicodendron diversilobum	poison oak	TODI
Festuca perennis	Italian rye grass	FEPE	Trifolium angustifolium	narrow-leaved clover	TRAN
Galium porrigens	climbing bedstraw	GAPO	Trifolium dubium	little hop clover	TRDU
Gamochaeta ustulata	purple cudweed	GAUS	Vicia hirsuta	hairy vetch	VIHI
Geranium dissectum	cut-leaved geranium	GEDI	Vicia sativa ssp. sativa	spring vetch	VISAS
Heterotheca grandiflora	telegraph weed	HEGR	Zeltnera davyi	Davy's centuary	ZEDA
Hypochaeris glabra	smooth cat's-ear	HYGL	Groundcover Codes		
Hypochaeris radicata	rough cat's-ear	HYRA	BG	Bare Ground	
Juncus occidentalis	western rush	JUOC	ТН	Thatch/Duff	
Juncus phaeocephalus	brown-headed rush	JUPH	AL	Algae	
Luzula comosa	Pacific woodrush	LUCO6		<u>.</u>	

and 2019. Transect 3 was repeated from 2016.

Table A-10. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		POND 4	10 South					
Date	5/27/2020							
Surveying Personnel	Kayti Christi	anson, Emily Poor, and Liz	zy Eichorn					
Vegetation Type	% Cover	Species	Notes					
Emergent Vegetation								
Floating Vegetation								
Submerged Vegetation								
Open Water								
Notes								
Pond was dry by 5/27/2020. Str	ata 1 through	3 were repeated from 201	16, 2018, and 2019. Transects 1 and 2 were repeated from 2016, 2018,					

Quadrat #2 Quadrat #3 Relative Quadrat #1 Transect Transect % Cover % % % # Length of Species Species Species Cover Cover Cover Wetland ELACa ELACa ELMA 8 5 20 FEPE 2 ELMA 2 ELMA 3 JUPH 1 FEPE 1 FEPE 1 LYHY JUPH LYHY 1 1 1 PLCHh 50 LYHY 1 PLCHh 40 PLCO 4 PHLE 1 PLCO 8 6% POMO PLCHh RUCR 2 1 5 m 1 60 RUCR PLCO BG 3 4 3 BG 5 POMO 2 ΤН 22 25 RUCR 5 ΤН 6 BG ΤН 12 TOTAL 100 TOTAL 100 TOTAL 100

		Relative	Quadra	at #1	Quadr	at #2	Quadr	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			AICA	3	AICA	5	AICA	10
			BRHO	2	BRHO	2	BRHO	1
			BRMI	2	BRMI	7	BRMI	2
			ERBO	1	ERBO	3	ERBO	1
			FEBR	2	HYGL	12	HYGL	4
			HYGL	10	JUPH	9	JUPH	8
2	F	120/	JUPH	4	PLCO	7	PLCO	18
2	5 m	12%	PLCO	7	RUAC	2	RUAC	2
			RUAC	2	SIGA	5	SIGA	1
			SIGA	2	TRAN	13	TRDU	1
			TRAN	5	BG	16	BG	26
			BG	16	TH	19	TH	26
			TH	44				
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRHO	1	BRDI	2	BRDI	2	BRDI	1	FEBR	2	FEBR	3
			BRMI	1	BRHO	1	BRHO	1	BRHO	1	FEPE	55	FEPE	18
			ERBO	2	FEBR	2	FEBR	1	DACA	40	GEDI	10	GEDI	3
			FEBR	10	FEPE	60	FEMY	1	FEBR	1	MASA	2	HYGL	1
			FEPE	55	GEDI	6	FEPE	20	FEPE	2	BG	12	MAGR	2
3	10 m	82%	RUAC	8	RUAC	5	GEDI	3	GEDI	2	TH	19	BG	3
5	10 111	0270	BG	2	BG	2	JUPH	1	JUPH	2			TH	70
			TH	21	TH	22	MAGR	2	BG	4				
							MASA	25	TH	47				
							BG	2						
							TH	42						
			TOTAL	100										

	Pond 40 South 2020 Species List												
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code								
Achillea millefolium	common yarrow	ACMI	Lythrum hyssopifolia	grass poly	LYHY								
Aira caryophyllea	silvery hair-grass	AICA	Madia exigua	small tarweed	MAEX								
Avena barbata	slender wild oat	AVBA	Madia gracilis	gumweed	MAGR								
Baccharis pilularis	coyote brush	BAPI	Madia sativa	coast tarweed	MASA								
Briza minor	annual quaking grass	BRMI	Medicago polymorpha	California burclover	MEPO								
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Microseris paludosa	marsh microseris	MIPA								
Bromus diandrus	ripgut grass	BRDI	Phalaris lemmonii	Lemmon's canary grass	PHLE								
Bromus hordeaceus	soft chess	BRHO	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH								
Calochortus uniflorus	pink star-tulip	CAUN	Plantago coronopus	cut-leaved plantain	PLCO								
Castilleja densiflora ssp. densiflora	dense flower owl's clover	CADED	Plantago lanceolata	English plantain	PLLA								
Cotula coronopifolia	brass buttons	COCO	Polypogon monspeliensis	rabbitfoot grass	РОМО								
Danthonia californica	California oat grass	DACA	Pseudognaphalium luteoalbum	weedy cudweed	PSLU								
Deinandra corymbosa	coastal tarweed	DECO	Pseudognaphalium stramineum	cottonbatting plant	PSST								
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Ranunculus californicus	California buttercup	RACA								
Eleocharis macrostachya	pale spikerush	ELMA	Rumex acetosella	sheep sorrel	RUAC								
Elymus glaucus	blue wild-rye	ELGL	Rumex crispus	curly dock	RUCR								
Erigeron canadensis	horseweed	ERCA	Rumex salicifolius	willow dock	RUSA								
Erodium botrys	long-beaked filaree	ERBO	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM								
Eryngium armatum	coyote thistle	ERAR12	Silene gallica	small-flower catchfly	SIGA								
Festuca bromoides	brome fescue	FEBR	Sisyrinchium bellum	western blue-eyed grass	SIBE								
Festuca myuros	rattail sixweeks grass	FEMY	Sonchus asper	prickly sow thistle	SOAS								
Festuca perennis	Italian rye grass	FEPE	Sonchus oleraceus	common sow thistle	SOOL								
Gamochaeta ustulata	purple cudweed	GAUS	Stipa pulchra	purple needle grass	STPU								
Geranium dissectum	cut-leaved geranium	GEDI	Taraxia ovata	sun cups	TAOV								
Hordeum brachyantherum	meadow barley	HOBR	Trifolium angustifolium	narrow-leaved clover	TRAN								
Hypochaeris glabra	smooth cat's-ear	HYGL	Trifolium campestre	hop clover	TRCA5								
Hypochaeris radicata	rough cat's-ear	HYRA	Trifolium dubium	little hop clover	TRDU								
luncus bufonius var. bufonius	common toad rush	JUBUB	Trifolium microcephalum	small head clover	TRMI								
luncus bufonius var. occidentalis	round-fruited toad rush	JUBUO	Triteleia ixioides	coast pretty face	TRIX								
luncus capitatus	dwarf rush	JUCA	Vicia sativa ssp. sativa	spring vetch	VISAS								
luncus falcatus	falcate rush	JUFA	Zeltnera davyi	Davy's centuary	ZEDA								
luncus occidentalis	western rush	JUOC	Groundcover Codes										
luncus phaeocephalus	brown-headed rush	JUPH	BG	Bare Ground									
Lupinus nanus	sky lupine	LUNA	ТН	Thatch/Duff									
Lvsimachia arvensis	scarlet pimpernel	LYAR	AL	Algae									

Table A-11. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		PON	ID 43
Date	5/28/2020		
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Rad	chel Spellenberg
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		No	otes
Dand was dry by E/20/2020 All	three strates	ware repeated from 2016	2018 and 2010 Transacts 1 and 2 wars repeated from 2016, 2018, and

Pond was dry by 5/28/2020. All three strata were repeated from 2016, 2018, and 2019. Transects 1 and 3 were repeated from 2016, 2018, and 2019. Transect 2 was relocated because the previous location was no longer within the correct stratum.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			DEDA	1	CRAQ	1	ELACa	3	CRAQ	1	CRAQ	1	CRAQ	1
			ELACa	1	ELACa	8	ELMA	8	DEDA	1	ELACa	5	ELACa	5
			ELMA	2	ELMA	1	ERAR12	4	ELACa	6	ELMA	1	ELMA	32
			ERAR12	5	ERAR12	5	ISCE	1	ELMA	5	ERAR12	30	ERAR12	16
			JUPH	1	ISCE	2	JUPH	2	ERAR12	4	JUPH	1	ISCE	1
			LAGL3	45	JUPH	3	LYHY	1	JUPH	1	LYMI	3	JUPH	1
			LYHY	1	LAGL3	1	LYMI	1	LYHY	2	PLCHh	2	LYHY	1
1	10	100/	LYMI	1	LYHY	2	PLCHh	2	LYMI	2	POMO	3	LYMI	3
1	10 m	46%	PLCHh	4	LYMI	1	POZI	12	PLCHh	19	POZI	3	PLCHh	2
			POMO	1	PLCHh	25	PSCH	1	POMO	3	PSCH	1	POMO	3
			POZI	1	POMO	1	BG	10	POZI	17	BG	10	POZI	5
			PSCH	1	POZI	1	TH	55	BG	18	TH	40	PSCH	8
			BG	12	TRSC	2			TH	21			BG	2
			TH	24	BG	20							TH	20
					TH	27								
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			AICA	1	BRMI	1	ERAR12	1
			BAPI	1	DEDA	10	JUPH	39
			BRHO	1	GEDI	1	LYHY	6
			BRMI	2	JUPH	61	LYMI	2
			DECO	7	LYHY	2	PLCHh	2
			FEBR	1	LYMI	1	POMO	1
			GAUS	1	PLCHh	1	POZI	1
			GEDI	3	POMO	2	PSCH	3
			HYGL	2	POZI	1	BG	35
			JUBUb	1	PSCH	1	TH	10
			JUCA	2	PSLU	1		
2	5 m	37%	JUOC	3	SOOL	2		
			JUPH	27	BG	6		
			LYHY	3	TH	10		
			LYMI	2				
			MAGR	4				
			MASA	2				
			POMO	1				
			SIBE	3				
			SOOL	1				
			BG	22				
			TH	10				
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadrat #3		
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	
			ACAMa	5	ACAMa	5	ACAMa	8	
			AICA	1	AICA	1	AICA	1	
			BRHO	1	BRHO	1	BRHO	1	
			BRMI	1	BRMI	2	BRMI	1	
			DACA	55	DACA	35	CIQU	1	
			DECO	3	DECO	2	DACA	44	
			ERAR12	1	ERAR12	2	DECO	2	
			FEBR	1	FEBR	1	ERAR12	7	
			GAUS	2	GEDI	1	FEBR	1	
			HYGL	1	HYGL	1	GEDI	1	
			MAEX	2	JUBUb	1	JUOC	1	
			MAGR	5	LYHY	2	JUPH	1	
3	5 m	15%	PLCO	5	MAEX	1	LYAR	1	
			TRDU	2	MAGR	3	LYMI	1	
			BG	6	PLCO	5	MAEX	1	
			TH	9	POMO	1	MAGR	4	
					TRDU	12	PLCO	5	
					BG	20	PSCH	1	
					TH	4	SIBE	1	
							TRDU	1	
							TROB	1	
							ZEDA	1	
							BG	6	
							TH	8	
			TOTAL	100	TOTAL	100	TOTAL	100	

Pond 43 2020 Species List											
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code						
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Juncus phaeocephalus	brown-headed rush	JUPH						
Acmispon strigosus	strigose lotus	ACST	Lasthenia glaberrima	smooth goldfields	LAGL3						
Adenostoma fasciculatum	chamise	ADFA	Lepechinia calycina	pitcher sage	LECA						
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Logfia filaginoides	California cottonrose	LOFI						
Aira caryophyllea	silvery hair-grass	AICA	Logfia gallica	narrowleaf cottonrose	LOGA						
Arctostaphylos hookeri	Hooker's manzanita	ARHO	Lysimachia arvensis	scarlet pimpernel	LYAR						
Arctostaphylos tomentosa	woolly leaf manzanita	ARTO	Lysimachia minima	chaffweed	LYMI						
Baccharis pilularis	coyote brush	BAPI	Lythrum hyssopifolia	grass poly	LYHY						
Briza maxima	rattlesnake grass	BRMA	Madia exigua	small tarweed	MAEX						
Briza minor	annual quaking grass	BRMI	Madia gracilis	gumweed	MAGR						
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Madia sativa	coast tarweed	MASA						
Bromus hordeaceus	soft chess	BRHO	Microseris paludosa	marsh microseris	MIPA						
Castilleja densiflora ssp. densiflora	dense flower owl's clover	CADED	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH						
Ceanothus dentatus	dwarf ceanothus	CEDE	Plantago coronopus	cut-leaved plantain	PLCO						
Ceanothus rigidus	Monterey ceanothus	CERI	Plantago erecta	California plantain	PLER						
Cicendia quadrangularis	timwort	CIQU	Pogogyne zizyphoroides	Sacramento mesa mint	POZI						
Cirsium brevistylum	Indian thistle	CIBR	Polypogon monspeliensis	rabbitfoot grass	POMO						
Crassula aquatica	aquatic pygmy-weed	CRAQ	Pseudognaphalium luteoalbum	weedy cudweed	PSLU						
Crocanthemum scoparium	peak rush-rose	CRSC	Pseudognaphalium ramosissimum	pink everlasting	PSRA						
, Danthonia californica	California oat grass	DACA	Pseudognaphalium stramineum	cottonbatting plant	PSST						
Deinandra corymbosa	coastal tarweed	DECO	Psilocarphus chilensis	round woolly-marbles	PSCH						
, Deschampsia danthonioides	annual hair grass	DEDA	Quercus agrifolia	coast live oak	QUAG						
, Diplacus aurantiacus	sticky monkey flower	DIAU	Ribes malvaceum	chaparral currant	RIMA						
Elatine californica	California waterwort	ELCA	Salix sp.	· · · · ·	-						
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Senecio glomeratus	cutleaf burnweed	SEGL						
Elymus glaucus	blue wild-rye	ELGL	Silene gallica	small-flower catchfly	SIGA						
Epilobium ciliatum	fringed willowherb	EPCI	Sisyrinchium bellum	western blue-eyed grass	SIBE						
Erigeron canadensis	horseweed	ERCA	Sonchus asper	prickly sow thistle	SOAS						
Eriophyllum confertiflorum	golden yarrow	ERCO	Sonchus oleraceus	common sow thistle	SOOL						
Eryngium armatum	covote thistle	ERAR12	Toxicodendron diversilobum	poison oak	TODI						
Festuca bromoides	brome fescue	FEBR	Tribolium obliterum	Capetown grass	TROB						
Festuca myuros	rattail sixweeks grass	FEMY	Trifolium barbigerum	bearded clover	TRBA						
Gamochaeta ustulata	purple cudweed	GAUS	Trifolium campestre	hop clover	TRCA5						
Garrya elliptica	coast silk tassel	GAEL	Trifolium dubium	little hop clover	TRDU						
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium gracilentum	pin point clover	TRGR						
Horkelia cuneata	wedge-leaved horkelia	HOCU	Trifolium microcephalum	small head clover	TRMI						
Hypochaeris glabra	smooth cat's-ear	HYGL	Trifolium variegatum	variegated clover	TRVA						
Hypochaeris radicata	rough cat's-ear	HYRA	Trifolium willdenovii	tomcat clover	TRWI						
Isolepis carinata	keeled bulrush	ISCA	Triglochin scilloides	flowering quillwort	TRSC						
Isolepis cernua	low bulrush	ISCE	Triteleia ixioides	coast pretty face	TRIX						
Juncus bufonius var. bufonius	common toad rush	JUBUB	Zeltnera davyi	Davy's centuary	ZEDA						
Juncus bufonius var. congestus	clustered toad rush	JUBUC2	Groundcover Codes	, o contadi y	22071						
Juncus bufonius var. occidentalis	round-fruited toad rush	JUBUO	BG	Bare Ground							
Juncus capitatus	dwarf rush	JUCA	ТН	Thatch/Duff							
Juncus capitatus Juncus occidentalis	western rush	JUCA	AL	Algae	-						
	western rusn	1000	AL	Aigae							

Table A-12. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		PON	ID 35
Date	5/21/2020		
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Lizz	zy Eichorn
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		N	otes
Dand was dry by E/21/2020 Str	ata 1 and 2 u	iora rapacted from 2016 2	219 and 2010 Stratum Awas repeated from 2018 and 2010 Transacts 1

Pond was dry by 5/21/2020. Strata 1 and 2 were repeated from 2016, 2018, and 2019. Stratum 4 was repeated from 2018 and 2019. Transects 1 and 2 were repeated from 2016, 2018, and 2019. Transect 4 was relocated because the previous location was no longer within the correct stratum.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			COCO	1	COCO	1	COCO	1	COCO	1	ELMA	3	ELMA	4
			ELMA	1	ELMA	1	LAGL3	1	LAGL3	1	LYHY	8	LYHY	25
			FEPE	1	LAGL3	2	LYHY	1	LYHY	8	PLCHh	25	PLCHh	30
			LAGL3	1	LYHY	8	PLCHh	40	PLCHh	24	PLCO	25	PLCO	20
			LYHY	4	PLCHh	22	PLCO	35	PLCO	32	PSCH	1	PSCH	1
1	10	200/	PLCHh	12	PLCO	45	PSCH	2	PSCH	1	TRSC	1	BG	12
1	10 m	20%	PLCO	50	PSCH	6	TRSC	2	TRSC	1	BG	25	TH	8
			PSCH	3	TRSC	1	BG	11	BG	7	TH	12		
			TRSC	5	BG	8	TH	7	TH	25				
			BG	11	TH	6								
			TH	11										
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadr	at #3	Quadra	at #4	Quadrat #5		Quadrat #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover
			DEDA	1	FEPE	1	PLCO	30	FEPE	1	PLCO	20	PLCO	50
			NAAT	1	HYGL	1	PSCH	3	PLCO	40	TRAN	26	TRAN	2
			PLCO	35	LYHY	1	TRAN	1	PSCH	1	BG	32	BG	24
2	10 m	36%	PSCH	3	PLCO	45	BG	25	TRAN	1	TH	22	TH	24
2	10 11	50%	TRAN	2	PSCH	2	TH	41	BG	26				
			BG	40	BG	20			TH	31				
			TH	18	TH	30								
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AICA	3	AICA	4	BRDI	2	BRMI	1	BRHO	2	BRDI	1
			AVBA	1	AVBA	1	BRMI	1	DACA	5	BRTEt	1	BRTEt	1
			BRHO	2	BRHO	2	DACA	40	FEMY	1	ERBO	1	ERBO	3
			DACA	65	DACA	60	FEBR	3	FEPE	25	FEPE	65	FEPE	65
			FEMY	2	FEBR	6	FEPE	10	GEDI	2	GEDI	2	HOBR	1
4	10 m	44%	FEPE	1	FEPE	2	GEDI	2	PLCO	12	TRAN	1	TRAN	12
4	10 m	44%	GEDI	2	GEDI	2	HYGL	2	TRAN	30	BG	5	BG	3
			TRAN	15	HYGL	1	TRAN	8	TRDU	1	TH	23	TH	15
			BG	1	TRAN	1	BG	4	BG	3				
			TH	8	BG	1	TH	28	TH	20				
					TH	20								
			TOTAL	100	TOTAL	101								

Pond 35 2020 Species List											
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code						
Acmispon parviflorus	hill lotus	ACPA	Isoetes howellii	Howell's quillwort	ISHO						
Aira caryophyllea	silvery hair-grass	AICA	Juncus occidentalis	western rush	JUOC						
Avena barbata	slender wild oat	AVBA	Lasthenia glaberrima	smooth goldfields	LAGL3						
Baccharis pilularis	coyote brush	BAPI	Lupinus bicolor	miniature lupine	LUBI						
Briza minor	annual quaking grass	BRMI	Lythrum hyssopifolia	grass poly	LYHY						
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Madia gracilis	gumweed	MAGR						
Bromus diandrus	ripgut grass	BRDI	Madia sativa	coast tarweed	MASA						
Bromus hordeaceus	soft chess	BRHO	Navarretia atractyloides	holly leaf navarretia	NAAT						
Cardionema ramosissimum	sand mat	CARA	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH						
Castilleja densiflora ssp. densiflora	dense flower owl's clover	CADED	Plantago coronopus	cut-leaved plantain	PLCO						
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Plantago lanceolata	English plantain	PLLA						
Cotula coronopifolia	brass buttons	COCO	Polypogon monspeliensis	rabbitfoot grass	POMO						
Cynosurus echinatus	bristly dogtail grass	CYEC	Pseudognaphalium stramineum	cottonbatting plant	PSST						
Cyperus eragrostis	tall cyperus	CYER	Psilocarphus chilensis	round woolly-marbles	PSCH						
Danthonia californica	California oat grass	DACA	Quercus agrifolia	coast live oak	QUAG						
Deschampsia danthonioides	annual hair grass	DEDA	Rumex acetosella	sheep sorrel	RUAC						
Eleocharis macrostachya	pale spikerush	ELMA	Rumex crispus	curly dock	RUCR						
Erodium botrys	long-beaked filaree	ERBO	Silene gallica	small-flower catchfly	SIGA						
Erodium cicutarium	redstem filaree	ERCI	Sonchus oleraceus	common sow thistle	SOOL						
Eryngium armatum	coyote thistle	ERAR12	Spergularia villosa	hairy sand-spurrey	SPVI						
Eschscholzia californica	California poppy	ESCA	Stipa pulchra	purple needle grass	STPU						
Festuca bromoides	brome fescue	FEBR	Taraxia ovata	sun cups	TAOV						
Festuca myuros	rattail sixweeks grass	FEMY	Trifolium angustifolium	narrow-leaved clover	TRAN						
Festuca perennis	Italian rye grass	FEPE	Trifolium dubium	little hop clover	TRDU						
Gamochaeta ustulata	purple cudweed	GAUS	Trifolium hirtum	rose clover	TRHI						
Gastridium phleoides	nit grass	GAPH	Triglochin scilloides	flowering quillwort	TRSC						
Geranium dissectum	cut-leaved geranium	GEDI	Vicia sativa ssp. nigra	common vetch	VISAN						
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO	Vicia sativa ssp. sativa	spring vetch	VISAS						
Heterotheca grandiflora	telegraph weed	HEGR	Groundcover Codes								
Hordeum marinum ssp. gussoneanum	Mediterranean barley	HOMAG	BG	Bare Ground							
Hypochaeris glabra	smooth cat's-ear	HYGL	тн	Thatch/Duff							
Hypochaeris radicata	rough cat's-ear	HYRA	AL	Algae							

Table A-13. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Transect Data by Stratum

		PON	D 42
Date	6/16/2020,	6/26/2020	
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Lizz	zy Eichorn
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		No	otes

Pond was dry by 6/26/2020. Strata 1 through 4 were repeated from 2017, 2018, and 2019. Stratum 5 was repeated from 2019. Transect 1 was relocated to an area with more representative vegetative composition. Transect 2 was repeated from 2018 and 2019. Transects 3 and 5 were relocated because the previous locations were no longer within the correct strata. Transect 4 was repeated from 2017, 2018, and 2019. An upland stratum was mapped and occupied 17% relative cover of the wetland but was not included in the cover data.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			ELACa	35	ELACa	32	ELACa	45
			JUPH	15	ELMA	9	ERAR12	2
			LYHY	1	ERAR12	10	JUPH	18
			PLCHh	1	LAGL3	2	LYHY	2
1	F	110/	BG	12	LYHY	1	POMO	1
L	5 m	11%	TH	36	PLCHh	3	BG	18
					POMO	1	TH	14
					BG	7		
					TH	36		
			TOTAL	100	TOTAL	101	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			ELACa	3	ELACa	1	ELACa	1
		10%	ELMA	45	ELMA	40	ELMA	42
			LAGL3	1	ERAR12	1	ISHO	1
2	5 m		LYHY	2	PLCHh	1	POMO	6
2	5 111	10%	PLCHh	1	POMO	5	TH	50
			POMO	2	PS sp	1		
			TH	46	TH	51		
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadr	at #1	Quadra	at #2	Quadra	at #3	Quadr	at #4	Quadr	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AGLAV	1	AGLAV	1	AGLAV	1	BRTEt	1	COCO	2	ELACa	5
			BRTEt	1	BG	2	BG	8	CIQU	1	ELACa	7	ERAR12	6
			DEDA	1	BRTEt	1	BRTEt	1	DEDA	1	JUPH	65	JUPH	76
			ELACa	34	COCO	1	DEDA	1	ELACa	13	LAGL3	1	LAGL3	2
			ERAR12	18	ELACa	30	ELACa	10	ERAR12	21	LYAR	1	POMO	2
			JUPH	15	ERAR12	30	ERAR12	14	JUPH	25	LYHY	1	BG	1
			LYHY	1	JUPH	16	HERA	1	LYHY	1	PLCHh	2	TH	8
3	10 m	41%	LYMI	1	LYMI	1	HYGL	1	LYMI	1	POMO	6		
3	10 111	41/0	PLCHh	1	PLCHh	1	JUPH	13	POMO	2	BG	3		
			POMO	8	POMO	2	LYHY	2	PSCH	1	TH	12		
			PSCH	1	TH	15	LYMI	1	SEGL	1				
			BG	2			PLCHh	1	SOOL	1				
			TH	16			POMO	15	BG	8				
							SEGL	1	TH	23				
							TH	30						
			TOTAL	100										

		Relative	Quadra	at #1	Quadr	at #2	Quadra	t #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			AICA	1	AICA	1	AICA	1
			AVBA	1	BRMI	1	BRMI	1
			BRMI	1	DACA	24	BRTEt	1
			DACA	23	DECO	20	DACA	10
			DECO	18	FEBR	1	DECO	42
			FEBR	1	GAPH	2	ERAR12	1
			GAPH	3	HYGL	1	FEBR	1
4	5 m	14%	GAUS	2	LYAR	2	GAPH	2
4	5 M	14%	LYAR	2	BG	28	GAUS	2
			PLER	1	TH	20	HYGL	1
			POMO	1			LYAR	2
			ZEDA	1			POMO	1
			BG	23			ZEDA	1
			TH	22			BG	20
							TH	14
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadi	rat #1	Quadr	at #2	Quadra	nt #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			COCO	55	COCO	70	COCO	65
			ERCA	1	POMO	5	POMO	7
			POMO	2	BG	1	BG	3
5	5 m	6%	PS sp	1	TH	24	TH	25
			BG	1				
			TH	40				
			TOTAL	100	TOTAL	100	TOTAL	100

	Рог	nd 42 2020 S	Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common yarrow	ACMI	Juncus phaeocephalus	brown-headed rush	JUPH
Acmispon parviflorus	hill lotus	ACPA	Lasthenia glaberrima	smooth goldfields	LAGL3
Agrostis avenacea	Pacific bent grass	AGAV	Logfia gallica	narrowleaf cottonrose	LOGA
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Luzula comosa	Pacific woodrush	LUCO6
Agrostis pallens	seashore bent grass	AGPA	Lysimachia arvensis	scarlet pimpernel	LYAR
Aira caryophyllea	silvery hair-grass	AICA	Lysimachia minima	chaffweed	LYMI
Arctostaphylos hookeri	Hooker's manzanita	ARHO	Lythrum hyssopifolia	grass poly	LYHY
Avena barbata	slender wild oat	AVBA	Madia gracilis	gumweed	MAGR
Baccharis pilularis	coyote brush	BAPI	Madia sativa	coast tarweed	MASA
Briza maxima	rattlesnake grass	BRMA	Microseris paludosa	marsh microseris	MIPA
Briza minor	annual guaking grass	BRMI	Nuttallanthus texanus	blue toadflax	NUTE
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Perideridia gairdneri	Gairdner's yampah	PEGA
Bromus diandrus	ripgut grass	BRDI	Phalaris lemmonii	Lemmon's canary grass	PHLE
Bromus hordeaceus	soft chess	BRHO	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Callitriche longipedunculata	longstock water starwort	CALO2	Plantago coronopus	cut-leaved plantain	PLCO
Carpobrotus edulis	ice plant	CAED	Plantago erecta	California plantain	PLER
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Polypogon monspeliensis	rabbitfoot grass	POMO
Centaurea melitensis	Maltese star-thistle	CEME	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Cirsium brevistylum	Indian thistle	CIBR	Pseudognaphalium stramineum	cottonbatting plant	PSST
Cotula coronopifolia	brass buttons	COCO	Psilocarphus chilensis	round woolly-marbles	PSCH
Crassula aquatica	aquatic pygmy-weed	CRAQ	Quercus agrifolia	coast live oak	QUAG
Danthonia californica	California oat grass	DACA	Rubus ursinus	California blackberry	RUUR
Daucus pusillus	rattlesnake weed	DACA	Rumex acetosella	sheep sorrel	RUAC
Deinandra corymbosa	coastal tarweed	DAPO	Rumex salicifolius	willow dock	RUSA
Deschampsia danthonioides	annual hair grass	DECO	Salix sp.	willow dock	RUSA
Elatine californica	California waterwort	ELCA	Senecio glomeratus	cutleaf burnweed	SEGL
		ELCA			SIGA
Eleocharis acicularis var. acicularis	needle spikerush		Silene gallica	small-flower catchfly	
Eleocharis macrostachya	pale spikerush	ELMA	Sisyrinchium bellum	western blue-eyed grass	SIBE
Elymus glaucus	blue wild-rye	ELGL	Sonchus asper	prickly sow thistle	SOAS
Epilobium ciliatum	fringed willowherb	EPCI	Sonchus oleraceus	common sow thistle	SOOL
Epilobium densiflorum	denseflower willowherb	EPDE4	Spiranthes romanzoffiana	hooded lady's tresses	SPRO
Erigeron canadensis	horseweed	ERCA	Stachys bullata	California hedge nettle	STBU
Eriodictyon californicum	yerba santa	ERCA6	Stipa pulchra	purple needle grass	STPU
Erodium botrys	long-beaked filaree	ERBO	Toxicodendron diversilobum	poison oak	TODI
Eryngium armatum	coyote thistle	ERAR12	Tribolium obliterum	Capetown grass	TROB
Festuca bromoides	brome fescue	FEBR	Trifolium barbigerum	bearded clover	TRBA
Festuca myuros	rattail sixweeks grass	FEMY	Trifolium campestre	hop clover	TRCA5
Galium porrigens	climbing bedstraw	GAPO	Trifolium dubium	little hop clover	TRDU
Gamochaeta ustulata	purple cudweed	GAUS	Trifolium variegatum	variegated clover	TRVA
Gastridium phleoides	nit grass	GAPH	Triglochin scilloides	flowering quillwort	TRSC
Geranium dissectum	cut-leaved geranium	GEDI	Triteleia ixioides	coast pretty face	TRIX
Heterocodon rariflorum	western pearlflower	HERA	Typha sp.		
Hypochaeris glabra	smooth cat's-ear	HYGL	Vicia hirsuta	hairy vetch	VIHI
Hypochaeris radicata	rough cat's-ear	HYRA	Zeltnera davyi	Davy's centuary	ZEDA
Isoetes howellii	Howell's quillwort	ISHO	Groundcover Codes		
Juncus bufonius var. bufonius	common toad rush	JUBUB	BG	Bare Ground	
Juncus capitatus	dwarf rush	JUCA	ТН	Thatch/Duff	
Juncus occidentalis	western rush	JUOC	AL	Algae	

Table A-14. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Transect Data by Stratum

		PON	D 44
Date	5/28/2020,	6/1/2020	
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Rac	chel Spellenberg
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		No	otes

Pond was dry by 5/28/2020. Strata 1 and 3 were repeated from 2016, 2018, and 2019, whereas stratum 4 was repeated from 2018 and 2019. Strata 2 was repeated from 2016. Transect 1 was repeated from 2018 and 2019. Transect 2 was relocated because the previous location was no longer within the correct stratum. Transect 3 was repeated from 2016, 2018 and 2019, whereas Transect 4 was relocated to an area with more representative vegetative composition. An upland stratum was mapped and occupied 11% relative cover of the wetland but was not included in the cover data.

		Relative	Quadra	t #1	Quadra	t #2	Quadra	t #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			AGLAv	1	AGLAv	2	BRMI	2
			ELACa	11	ERAR12	9	ERAR12	12
			ERAR12	15	JUBUb	7	ERBO	1
			JUBUb	4	LYHY	5	FEBR	1
			JUPH	3	LYMI	3	HYGL	1
			LAGL3	1	PLCHh	11	JUBUb	10
			LYHY	10	POMO	13	LYHY	2
1	5 m	59%	LYMI	1	PSCH	24	PLCO	2
			PLCHh	6	TRDU	1	POMO	4
			POMO	15	BG	11	POZI	1
			POZI	1	TH	14	PSCH	2
			PSCH	4			TRDU	5
			BG	14			BG	35
			TH	14			TH	22
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	t #1	Quadra	t #2	Quadra	t #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			AGLAv	3	AGLAv	3	AGLAv	1
			BRMI	1	BRMI	1	BRTEt	1
			CRAQ	1	BRTEt	3	DEDA	2
			DEDA	1	ELACa	2	ELACa	1
			ELMA	1	ERAR12	4	ERAR12	6
			ERAR12	6	JUBUb	28	JUBUb	20
			JUBUb	7	JUPH	1	JUCA	1
2	5 m	9%	JUPH	5	LYHY	18	LYHY	12
2	5 111	3%	LYHY	7	PLCHh	6	LYMI	1
			LYMI	2	PLCO	2	PLCHh	2
			PLCHh	12	POMO	2	PLCO	1
			POMO	6	PSCH	3	POMO	18
			PSCH	2	BG	23	PSCH	1
			BG	30	TH	4	BG	29
			TH	16			TH	4
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	t #1	Quadra	t #2	Quadra	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			ACPA	1	ACPA	2	ACPA	1
			AICA	1	AICA	1	AICA	1
			BRTEt	2	AVBA	1	BRMI	1
			CAAT	1	BRMA	2	CIQU	1
			DACA	30	DACA	55	DACA	47
			ELACa	1	ERAR12	6	DECO	1
			ERAR12	1	GAPH	1	ERBO	1
			FEMY	1	HYGL	2	FEMY	1
			GEDI	1	JUBUb	1	JUBUb	1
			HYGL	1	JUPH	1	LYAR	2
			JUBUb	1	LYAR	3	MAGR	2
3	5 m	18%	JUPH	2	LYMI	1	PLCO	7
5	5 111	10%	LYAR	2	MAGR	2	TRDU	2
			LYMI	2	PLCO	12	TRPU	2
			MAGR	32	POMO	1	BG	25
			PLCO	10	TRDU	2	TH	5
			POMO	1	TRPU	1		
			TAOV	1	BG	5		
			TRCA5	1	TH	1		
			TRDU	4				
			ZEDA	1				
			BG	1				
			TH	2				
			TOTAL	100	TOTAL	100	TOTAL	100

Transect	Transect		Quad	rat #1	Quadra	t #2	Quadra	at #3
#	Length		Species	% Cover	Species	% Cover	Species	% Cover
			BRMI	1	AGLAv	1	BRMI	1
			BRTEt	1	BRTEt	1	BRTEt	2
			ELACa	2	DEDA	2	DEDA	1
			ERAR12	4	ELACa	10	ELACa	12
			HYGL	1	ERAR12	10	ERAR12	18
			JUBUb	1	JUBUb	1	GEDI	1
			JUPH	45	JUCA	1	JUBUb	1
			LYHY	6	JUPH	40	JUPH	24
			LYMI	2	LAGL3	2	LAGL3	2
4	5 m	4%	PLCHh	1	LYHY	6	LYHY	3
			PLCO	1	LYMI	2	PLCO	1
			POMO	2	PLCHh	1	POMO	1
			PSCH	1	POMO	1	POZI	1
			TRDU	1	PSCH	3	PSCH	2
			TRVA	2	BG	7	TRDU	2
			BG	11	TH	12	BG	15
			TH	20			TH	13
			TOTAL	102	TOTAL	100	TOTAL	100

	F	ond 44 202	0 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lysimachia minima	chaffweed	LYMI
Acmispon parviflorus	hill lotus	ACPA	Lythrum hyssopifolia	grass poly	LYHY
Adenostoma fasciculatum	chamise	ADFA	Madia exigua	small tarweed	MAEX
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Madia gracilis	gumweed	MAGR
Aira caryophyllea	silvery hair-grass	AICA	Madia sativa	coast tarweed	MASA
Arctostaphylos hookeri	Hooker's manzanita	ARHO	Microseris paludosa	marsh microseris	MIPA
Avena barbata	slender wild oat	AVBA	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Baccharis pilularis	coyote brush	BAPI	Plantago coronopus	cut-leaved plantain	PLCO
Briza maxima	rattlesnake grass	BRMA	Plantago erecta	California plantain	PLER
Briza minor	annual quaking grass	BRMI	Pogogyne zizyphoroides	Sacramento mesa mint	POZI
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Polypogon monspeliensis	rabbitfoot grass	POMO
Bromus hordeaceus	soft chess	BRHO	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Castilleja attenuata	valley tassels	CAAT	Psilocarphus chilensis	round woolly-marbles	PSCH
Cicendia quadrangularis	timwort	CIQU	Quercus agrifolia	coast live oak	QUAG
Crocanthemum scoparium	peak rush-rose	CRSC	Rumex acetosella	sheep sorrel	RUAC
Danthonia californica	California oat grass	DACA	Silene gallica	small-flower catchfly	SIGA
Deinandra corymbosa	coastal tarweed	DECO	Sisyrinchium bellum	western blue-eyed grass	SIBE
Deschampsia danthonioides	annual hair grass	DEDA	Sonchus asper	prickly sow thistle	SOAS
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Sonchus oleraceus	common sow thistle	SOOL
Erodium botrys	long-beaked filaree	ERBO	Taraxia ovata	sun cups	TAOV
Eryngium armatum	coyote thistle	ERAR12	Toxicodendron diversilobum	poison oak	TODI
Festuca bromoides	brome fescue	FEBR	Trifolium angustifolium	narrow-leaved clover	TRAN
Festuca myuros	rattail sixweeks grass	FEMY	Trifolium campestre	hop clover	TRCA5
Gamochaeta ustulata	purple cudweed	GAUS	Trifolium dubium	little hop clover	TRDU
Gastridium phleoides	nit grass	GAPH	Trifolium microcephalum	small head clover	TRMI
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium variegatum	variegated clover	TRVA
Horkelia cuneata	wedge-leaved horkelia	HOCU	Trifolium willdenovii	tomcat clover	TRWI
Hypochaeris glabra	smooth cat's-ear	HYGL	Triphysaria pusilla	little owl's clover	TRPU
Hypochaeris radicata	rough cat's-ear	HYRA	Triteleia ixioides	coast pretty face	TRIX
Juncus bufonius var. bufonius	common toad rush	JUBUB	Vicia sativa ssp. nigra	common vetch	VISAN
Juncus capitatus	dwarf rush	JUCA	Zeltnera davyi	Davy's centuary	ZEDA
Juncus occidentalis	western rush	JUOC	Groundcover Codes		
Juncus phaeocephalus	brown-headed rush	JUPH	BG	Bare Ground	
Lasthenia glaberrima	smooth goldfields	LAGL3	ТН	Thatch/Duff	
Luzula comosa	Pacific woodrush	LUCO6	AL	Algae	
Lysimachia arvensis	scarlet pimpernel	LYAR			

Table A-15. Pond 56 (Year 3 Post-Mastication) Wetland Vegetation Transect Data by Stratum

		PON	D 56								
Date	6/16/2020,	7/14/2020, 8/11/2020									
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Lizz	y Eichorn								
Vegetation Type % Cover Species Notes											
Emergent Vegetation											
Floating Vegetation											
Submerged Vegetation											
Open Water	Open Water										
Notes											

Pond was dry by 8/11/2020. Stratum 1 was repeated from 2016 and 2019. Strata 2 through 4 were repeated from 2015, 2016, and 2019 whereas stratum 5 was repeated from 2015 and 2016. Transect 1 was repeated from 2016. Transects 2 and 5 were relocated to areas with more representative vegetative composition. Transects 3 and 4 were repeated from 2016. An upland stratum was mapped and occupied 3% relative cover of the wetland but was not included in the cover data.

		Relative	Quadra	Quadrat #1		Quadrat #2		Quadrat #3		at #4	Quadrat #5		Quadrat #6			
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover		
			ELMA	60	ELMA	45	ELMA	45	ELMA	24	ELMA	48	ELMA	55		
				MALE	4	MALE	3	MALE	5	MALE	5	MALE	3	MALE	3	
1	10 m	6%	TH	36	TH	52	TH	50	BG	10	BG	1	TH	42		
	10										TH	61	TH	48		
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100		

		Relative	Quadra	at #1	Quadrat #2		Quadra	at #3	Quadra	at #4	Quadrat #5		Quadrat #6		
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	
			DISP	25	DISP	22	DISP	16	DISP	30	DISP	40	DISP	18	
			ELACa	2	ELACa	2	ELACa	4	ELACa	1	ELACa	1	ELACa	6	
			ELMA	9	ELMA	7	ELMA	6	ELMA	9	ELMA	10	ELMA	9	
2	10 m	5%	JUPH	1	JUPH	3	JUPH	4	JUPH	1	BG	4	JUPH	1	
				BG	10	BG	11	BG	9	BG	7	TH	45	BG	9
			TH	53	TH	55	TH	61	TH	52			TH	57	
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadrat #5		Quadrat #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover
			DISP	18	DISP	8	DISP	7	DISP	10	DISP	9	DISP	18
			ELMA	28	ELMA	20	ELMA	20	ELMA	22	ELMA	16	ELMA	10
3	10m	16%	JUPH	10	JUPH	8	JUPH	9	JUPH	8	JUPH	18	JUPH	14
5	TOW		TH	44	BG	8	BG	3	BG	4	BG	2	TH	58
					TH	56	TH	61	TH	56	TH	55		
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	it #1	Quadr	at #2	Quadr	at #3	Quadra	it #4	Quadra	at #5	Quadr	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			DISP	7	DISP	5	DISP	5	DISP	4	DISP	4	DISP	4
			JUPH	16	JUPH	18	JUPH	20	JUPH	9	JUPH	10	JUPH	12
			PLCHh	1	TH	77	STAJ	5	LYHY	1	LYHY	2	LYHY	1
			POMO	6			TH	70	PHLE	2	PHLE	1	POMO	1
4	10 m	24%	BG	4					STAJ	1	POMO	1	TRSC	2
			TH	66					TRSC	1	TRSC	4	BG	1
									BG	2	BG	4	TH	79
									TH	80	TH	74		
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AGAV	1	AGAV	1	BRTEt	1	AGAV	1	AGAV	1	AGAV	1
			BRTEt	1	BRTEt	1	DECO	1	DEDA	1	DEDA	1	BRMI	1
			ELACa	2	DEDA	1	DISP	2	DISP	4	DISP	5	DECO	1
			ERAR12	12	DISP	1	ELACa	2	ERAR12	7	ERAR12	15	DEDA	5
			JUPH	12	ELACa	2	ERAR12	32	ERBO	1	JUPH	35	ERAR12	7
			MALE	11	ERAR12	18	JUPH	15	JUPH	19	MALE	2	ERBO	1
5	10 m	46%	POMO	1	JUPH	30	LYHY	1	MALE	6	BG	1	JUPH	25
			BG	1	MALE	6	MALE	3	POMO	1	TH	40	LYHY	2
			TH	59	POMO	1	POMO	1	BG	5			MALE	5
					TH	39	BG	3	TH	55			POMO	3
							TH	39					BG	3
													TH	46
			TOTAL	100										

	F	ond 56 202	20 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Agoseris grandiflora	large-flowered agoseris	AGGR	Luzula comosa	Pacific woodrush	LUCO6
Agrostis avenacea	Pacific bent grass	AGAV	Lysimachia arvensis	scarlet pimpernel	LYAR
Agrostis pallens	seashore bent grass	AGPA	Lysimachia minima	chaffweed	LYMI
Aira caryophyllea	silvery hair-grass	AICA	Lythrum hyssopifolia	grass poly	LYHY
Avena barbata	slender wild oat	AVBA	Madia gracilis	gumweed	MAGR
Baccharis pilularis	coyote brush	BAPI	Madia sativa	coast tarweed	MASA
Briza maxima	rattlesnake grass	BRMA	Malvella leprosa	alkali mallow	MALE
Briza minor	annual quaking grass	BRMI	Microseris paludosa	marsh microseris	MIPA
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Oxalis corniculata	creeping woodsorrel	OXCO
Bromus diandrus	ripgut grass	BRDI	Phalaris lemmonii	Lemmon's canary grass	PHLE
Bromus hordeaceus	soft chess	BRHO	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Castilleja ambigua	Johnny-Nip	CAAM	Plantago coronopus	cut-leaved plantain	PLCO
Cotula coronopifolia	brass buttons	сосо	Polypogon monspeliensis	rabbitfoot grass	POMO
Danthonia californica	California oat grass	DACA	Pseudognaphalium californicum	California everlasting	PSCA
Deinandra corymbosa	coastal tarweed	DECO	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Diplacus aurantiacus	sticky monkey flower	DIAU	Pseudognaphalium ramosissimum	pink everlasting	PSRA
Distichlis spicata	salt grass	DISP	Pseudognaphalium stramineum	cottonbatting plant	PSST
Drymocallis glandulosa	sticky cinquefoil	DRGL	Rumex acetosella	sheep sorrel	RUAC
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Rumex crispus	curly dock	RUCR
Eleocharis macrostachya	pale spikerush	ELMA	Senecio glomeratus	cutleaf burnweed	SEGL
Elymus triticoides	beardless wild rye	ELTR3	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM
Erigeron canadensis	horseweed	ERCA	Silene gallica	small-flower catchfly	SIGA
Erodium botrys	long-beaked filaree	ERBO	Solanum americanum	small-flowered nightshade	SOAM
Eryngium armatum	coyote thistle	ERAR12	Sonchus asper	prickly sow thistle	SOAS
Euthamia occidentalis	western goldenrod	EUOC	Sonchus oleraceus	common sow thistle	SOOL
Festuca perennis	Italian rye grass	FEPE	Spiranthes romanzoffiana	hooded lady's tresses	SPRO
Galium aparine	goose grass	GAAP	Stachys ajugoides	bugle hedge nettle	STAJ
Gamochaeta ustulata	purple cudweed	GAUS	Taraxia ovata	sun cups	TAOV
Geranium dissectum	cut-leaved geranium	GEDI	Toxicodendron diversilobum	poison oak	TODI
Heterocodon rariflorum	western pearlflower	HERA	Triglochin scilloides	flowering quillwort	TRSC
Hypochaeris glabra	smooth cat's-ear	HYGL	Zeltnera davyi	Davy's centuary	ZEDA
Hypochaeris radicata	rough cat's-ear	HYRA	Groundcover Codes		
Juncus phaeocephalus	brown-headed rush	JUPH	BG	Bare Ground	
Lasthenia glaberrima	smooth goldfields	LAGL3	ТН	Thatch/Duff	
Leptosiphon parviflorus	variable linanthus	LEPA	AL	Algae	
Logfia gallica	narrowleaf cottonrose	LOGA			

Table A-16. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland VegetationTransect Data by Stratum

		PON	D 60								
Date	6/17/2020,	8/11/2020									
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Lizz	y Eichorn								
Vegetation Type % Cover Species Notes											
Emergent Vegetation											
Floating Vegetation											
Submerged Vegetation											
Open Water											
Notes											

Pond was dry by 8/11/2020. Strata 1 through 4 were repeated from 2015, 2018, and 2019. Transect 1 was relocated to an area with more representative vegetative composition. Transect 2 was repeated from 2018 and 2019, while Transect 3 was repeated from 2018. Transect 4 was repeated from 2015.

		Relative	Quadra	Quadrat #1		Quadrat #2		Quadrat #3		t #4	Quadrat #5		Quadrat #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover
			ELMA	50	ELMA	52	ELMA	60	ELMA	35	ELMA	65	ELMA	46
			MALE	6	MALE	8	MALE	1	TH	65	TH	35	BG	4
1	10 m	7%	TH	44	TH	40	BG	1					TH	50
							TH	38						
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	t #1	Quadr	at #2	Quadr	at #3	Quadra	it #4	Quadrat #5		Quadrat #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover
			ELMA	32	DISP	8	DISP	5	DISP	5	DISP	15	DISP	6
		39%	COCO	2	ELMA	30	ELMA	50	ELMA	42	ELMA	52	ELMA	60
	2 10 m		DISP	4	JUPH	1	BG	2	JUPH	1	JUPH	1	JUPH	10
2			JUPH	2	TH	58	TH	43	BG	3	BG	2	BG	1
			BG	20	BG	3			TH	49	TH	30	TH	23
			TH	40										
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

	T	Relative	Quadr	at #1	Quadrat #2		Quad	rat #3	Quad	rat #4	Quadrat #5		Quadrat #6	
# Length o	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	
		DISP	2	DISP	1	DISP	DISP	2	DISP	1	DISP	DISP	2	
		m 13% -	ELMA	20	ELMA	2	ELMA	ELMA	20	ELMA	2	ELMA	ELMA	20
2	10		JUPH	55	JUPH	76	JUPH	JUPH	55	JUPH	76	JUPH	JUPH	55
5	3 10 m		BG	1	BG	1	BG	BG	1	BG	1	BG	BG	1
			TH	22	TH	20	TH	TH	22	TH	20	TH	TH	22
			TOTAL	100	TOTAL	100	TOTAL	TOTAL	100	TOTAL	100	TOTAL	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AICA	1	BRMI	1	BRMI	1	BRMI	1	BRMI	2	BRMI	1
			BRMI	1	DISP	16	DISP	6	DISP	6	DISP	9	DISP	4
			COCO	1	ELACa	4	ELACa	2	ELACa	3	ELACa	3	ELACa	1
			DISP	10	ELMA	8	ELMA	7	ELMA	3	ELMA	3	ELMA	1
			ELACa	16	PHLE	3	JUPH	1	JUPH	1	ERCA	1	JUPH	3
			ELMA	6	POMO	12	LYHY	2	LYHY	1	PHLE	1	PHLE	1
			ERCA	4	STAJ	2	PHLE	1	PHLE	1	POMO	10	POMO	5
4	10 m	41%	ISHO	1	TH	54	POMO	11	POMO	20	PSLU	1	STAJ	33
			JUPH	1			PSLU	1	SOOL	1	PSST	2	BG	9
			LYHY	1			RUCR	1	STAJ	19	RUCR	1	TH	42
			PHLE	2			STAJ	13	BG	7	STAJ	5		
			POMO	10			BG	2	TH	37	BG	6		
			BG	3			TH	52			TH	56		
			TH	43										
			TOTAL	100										

Pond 60 2020 Species List											
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code						
Agrostis avenacea	Pacific bent grass	AGAV	Isoetes howellii	Howell's quillwort	ISHO						
Aira caryophyllea	silvery hair-grass	AICA	Juncus bufonius var. occidentalis	round-fruited toad rush	JUBUO						
Avena barbata	slender wild oat	AVBA	Juncus phaeocephalus	brown-headed rush	JUPH						
Baccharis pilularis	coyote brush	BAPI	Logfia gallica	narrowleaf cottonrose	LOGA						
Briza maxima	rattlesnake grass	BRMA	Lysimachia arvensis	scarlet pimpernel	LYAR						
Briza minor	annual quaking grass	BRMI	Lythrum hyssopifolia	grass poly	LYHY						
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Madia gracilis	gumweed	MAGR						
Bromus diandrus	ripgut grass	BRDI	Madia sativa	coast tarweed	MASA						
Bromus hordeaceus	soft chess	BRHO	Malvella leprosa	alkali mallow	MALE						
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Microseris paludosa	marsh microseris	MIPA						
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Phalaris lemmonii	Lemmon's canary grass	PHLE						
Cotula coronopifolia	brass buttons	COCO	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH						
Danthonia californica	California oat grass	DACA	Plantago coronopus	cut-leaved plantain	PLCO						
Daucus pusillus	rattlesnake weed	DAPU	Polypogon monspeliensis	rabbitfoot grass	POMO						
Deinandra corymbosa	coastal tarweed	DECO	Pseudognaphalium luteoalbum	weedy cudweed	PSLU						
Distichlis spicata	salt grass	DISP	Pseudognaphalium ramosissimum	pink everlasting	PSRA						
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Pseudognaphalium stramineum	cottonbatting plant	PSST						
Eleocharis macrostachya	pale spikerush	ELMA	Rumex acetosella	sheep sorrel	RUAC						
Elymus triticoides	beardless wild rye	ELTR3	Rumex crispus	curly dock	RUCR						
Erigeron canadensis	horseweed	ERCA	Senecio glomeratus	cutleaf burnweed	SEGL						
Erodium botrys	long-beaked filaree	ERBO	Sisyrinchium bellum	western blue-eyed grass	SIBE						
Eryngium armatum	coyote thistle	ERAR12	Sonchus asper	prickly sow thistle	SOAS						
Euthamia occidentalis	western goldenrod	EUOC	Sonchus oleraceus	common sow thistle	SOOL						
Festuca bromoides	brome fescue	FEBR	Stachys ajugoides	bugle hedge nettle	STAJ						
Festuca perennis	Italian rye grass	FEPE	Triglochin scilloides	flowering quillwort	TRSC						
Galium aparine	goose grass	GAAP	Zeltnera davyi	Davy's centuary	ZEDA						
Gamochaeta ustulata	purple cudweed	GAUS	Groundcover Codes								
Geranium dissectum	cut-leaved geranium	GEDI	BG	Bare Ground							
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO	ТН	Thatch/Duff							
Hypochaeris glabra	smooth cat's-ear	HYGL	AL	Algae							
Hypochaeris radicata	rough cat's-ear	HYRA									

Table A-17. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Transect Data by Stratum

		PON	ID 61
Date	5/19/2020,	5/20/2020, 6/3/2020	
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Lizz	zy Eichorn
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		No	otes
Development development (2/2/2020) Char		4	

Pond was dry by 6/3/2020. Strata 1 through 4 were repeated from 2017, 2018, and 2019. Transect 1 was repeated from 2017, whereas Transect 3 was repeated from 2017, 2018, and 2019. Transect 4 was repeated from 2019. Stratum 2 consisted of CCG and no transect was placed in this stratum. An upland stratum was mapped and occupied 32% relative cover of the wetland but was not included in the cover data.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRTEt	4	BRTEt	3	ELMA	15	ELACa	2	BRTEt	1	CRAQ	1
			ELACa	6	ELACa	2	ISHO	8	ELMA	3	CRAQ	1	ELMA	10
			ELMA	40	ELMA	40	LAGL3	1	ISHO	3	ELACa	5	ISHO	8
			LAGL3	2	ISHO	8	PLCHh	1	LACO	6	ELMA	20	LACO	2
			LYHY	3	LAGL3	5	TRSC	12	LAGL3	5	ISHO	2	LAGL3	1
			LYMI	1	PLCHh	1	BG	45	PLCHh	3	LACO	3	LYMI	1
1	10 m	1%	PLCHh	2	POMO	1	TH	18	BG	20	LAGL3	3	PLCHh	3
			POMO	1	BG	12			TH	58	PLCHh	2	TRSC	3
			POZI	1	TH	28					TRSC	3	BG	66
			PSCH	2							BG	48	TH	5
			BG	12							TH	12		
			TH	26										
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AGLAv	1	BRTEt	3	BRTEt	18	BRTEt	10	BRTEt	3	BRTEt	5
			BRMA	1	CIQU	1	ELACa	3	ELACa	4	ELACa	5	ELACa	11
			BRMI	3	DEDA	1	ERAR12	12	ERAR12	14	ERAR12	33	ERAR12	22
			BRTEt	1	ELACa	12	LAGL3	13	ISHO	2	ISHO	2	ISHO	10
			DACA	1	ERAR12	10	LYHY	2	JUPH	2	JUPH	1	JUPH	1
			ELACa	25	ISHO	1	LYMI	1	LAGL3	12	LAGL3	8	LAGL3	3
			ERAR12	8	JUPH	1	PLCHh	16	LYHY	3	LYHY	3	LYHY	3
			FEMY	1	LAGL3	3	POMO	1	LYMI	1	LYMI	4	LYMI	2
			GEDI	3	LYHY	14	POZI	12	PLCHh	15	PLCHh	20	PLCHh	30
			HYGL	1	LYMI	1	BG	3	PSCH	1	BG	5	POZI	1
3	10 m	4%	JUPH	2	PLCHh	16	TH	20	BG	18	TH	16	BG	2
5	10 111	470	LYHY	15	PSCH	1			TH	18			TH	10
			LYMI	2	UNK1	1								
			MAGR	1	BG	20								
			MIPA	1	TH	15								
			PLCHh	5										
			PSCH	4										
			SOOL	4										
			TRVA	1										
			BG	10										
			TH	10										
			TOTAL	100	TOTAL	100	TOTAL	101	TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadr	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRMA	3	ACAMa	1	BRMA	2	BRMA	8	ACMI	1	ACMI	6
			BRTEt	1	BRMA	1	BRMI	1	BRMI	1	BRHO	1	AICA	1
			DACA	40	BRTEt	2	DACA	15	BRTEt	1	BRMA	5	BRHO	1
			GEDI	3	DACA	8	ELACa	3	DACA	20	DACA	60	BRMA	5
			HYGL	3	ERAR12	18	ERAR12	3	ELACa	3	ELACa	2	BRTEt	1
			JUPH	30	GEDI	4	HYGL	6	ERAR12	2	GEDI	6	DACA	30
			LYMI	2	HYGL	4	JUPH	30	FEMY	1	JUPH	10	ERAR12	4
4	10 m	59%	MAGR	2	HYRA	2	LYMI	3	GEDI	12	MAGR	3	GEDI	2
4	10 11	33%	MIPA	2	JUPH	40	MAGR	8	JUPH	3	MIPA	3	HYGL	1
			BG	2	LYAR	2	MIPA	1	MAGR	15	BG	2	MAGR	25
			TH	12	LYMI	1	BG	10	MASA	5	TH	8	MIPA	2
					MAGR	3	TH	18	BG	9			BG	6
					MIPA	2			TH	20			TH	16
					BG	2								
				TH	10									
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	101	TOTAL	100

	Po	nd 61 2020	Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Acaena pinnatifida var. californica	California acaena	ACPIC	Juncus bufonius var. bufonius	common toad rush	JUBUB
Achillea millefolium	common yarrow	ACMI	Juncus capitatus	dwarf rush	JUCA
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Juncus occidentalis	western rush	JUOC
Acmispon glaber	deerweed	ACGL	Juncus phaeocephalus	brown-headed rush	JUPH
Acmispon parviflorus	hill lotus	ACPA	Koeleria macrantha	June grass	КОМА
Adenostoma fasciculatum	chamise	ADFA	Lasthenia glaberrima	smooth goldfields	LAGL3
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Leptosiphon parviflorus	variable linanthus	LEPA
Aira caryophyllea	silvery hair-grass	AICA	Linum bienne	pale flax	LIBI5
Allium hickmanii	Hickman's onion	ALHI	Lupinus nanus	sky lupine	LUNA
Arctostaphylos tomentosa	woolly leaf manzanita	ARTO	Luzula comosa	Pacific woodrush	LUCO6
Avena barbata	slender wild oat	AVBA	Lysimachia arvensis	scarlet pimpernel	LYAR
Baccharis pilularis	coyote brush	BAPI	Lysimachia minima	chaffweed	LYMI
Briza maxima	rattlesnake grass	BRMA	Madia gracilis	gumweed	MAGR
Briza minor	annual quaking grass	BRMI	Madia sativa	coast tarweed	MASA
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Microseris paludosa	marsh microseris	MIPA
Bromus carinatus	California brome	BRCA	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Bromus diandrus	ripgut grass	BRDI	Plantago coronopus	cut-leaved plantain	PLCO
Bromus hordeaceus	soft chess	BRHO	Plantago erecta	California plantain	PLER
Calandrinia ciliata	red maids	CACI	Pogogyne zizyphoroides	Sacramento mesa mint	POZI
Callitriche marginata	California water-starwort	CAMA	Polypogon monspeliensis	rabbitfoot grass	РОМО
Calochortus uniflorus	pink star-tulip	CAUN	Pseudognaphalium californicum	California everlasting	PSCA
Calystegia subacaulis ssp. subacaulis	hill morning glory	CASUS	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Carduus pycnocephalus	Italian thistle	CAPY	Pseudognaphalium ramosissimum	pink everlasting	PSRA
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Pseudognaphalium stramineum	cottonbatting plant	PSST
Castilleja densiflora	dense flower owl's clover	CADE	Psilocarphus chilensis	round woolly-marbles	PSCH
Centaurea melitensis	Maltese star-thistle	CEME	Quercus agrifolia	coast live oak	QUAG
Chlorogalum pomeridianum	wavyleaf soap plant	СНРО	Ranunculus californicus	California buttercup	RACA
Cicendia quadrangularis	timwort	CIQU	Rumex acetosella	sheep sorrel	RUAC
Cirsium quercetorum	brownie thistle	CIQU2	Senecio glomeratus	cutleaf burnweed	SEGL
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM
Corethrogyne filaginifolia	common sandaster	COFI	Silene gallica	small-flower catchfly	SIGA
Danthonia californica	California oat grass	DACA	Sisyrinchium bellum	western blue-eyed grass	SIBE
Deinandra corymbosa	coastal tarweed	DECO	Sonchus asper	prickly sow thistle	SOAS
Deschampsia danthonioides	annual hair grass	DEDA	Sonchus oleraceus	common sow thistle	SOOL
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Stachys ajugoides	bugle hedge nettle	STAJ
Eleocharis macrostachya	pale spikerush	ELMA	Stipa cernua	nodding needle grass	STCE
Elymus glaucus	blue wild-rye	ELGL	Taraxia ovata	sun cups	TAOV
Erodium botrys	long-beaked filaree	ERBO	Tribolium obliterum	Capetown grass	TROB
Eryngium armatum	coyote thistle	ERAR12	Trifolium polyodon	Pacific Grove clover	TRPO3
Festuca bromoides	brome fescue	FEBR	Trifolium variegatum	variegated clover	TRVA
Festuca myuros	rattail sixweeks grass	FEMY	Triglochin scilloides	flowering quillwort	TRSC
Festuca perennis	Italian rye grass	FEPE	Triteleia hyacinthina	white brodiaea	TRHY3
Galium porrigens	climbing bedstraw	GAPO	Triteleia ixioides	coast pretty face	TRIX
Gamochaeta ustulata	purple cudweed	GAUS	Unknown 1		
Geranium dissectum	cut-leaved geranium	GEDI	Vicia benghalensis	purple vetch	VIBE
Gnaphalium palustre	lowland cudweed	GNPA	Vicia sativa ssp. sativa	spring vetch	VISAS
Heteromeles arbutifolia	toyon	HEAR	Zeltnera davyi	Davy's centuary	ZEDA
Hordeum marinum ssp. gussoneanum	Mediterranean barley	HOMAG	Groundcover Codes	Savy Scentuary	2007
Hypochaeris glabra	smooth cat's-ear	HYGL	BG	Bare Ground	
Isoetes howellii	Howell's quillwort	ISHO	TH	Thatch/Duff	
Isolepis carinata	keeled bulrush	ISCA	AL	Algae	-
isolepis curinutu		IJCA	AL	Aigde	

Table A-18. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		POND	73								
Date	6/3/2020, 6,	/4/2020									
Surveying Personnel	Kayti Christia	anson, Emily Poor, and Lizzy	Eichorn								
Vegetation Type	% Cover	Species	Notes								
Emergent Vegetation											
Floating Vegetation											
Submerged Vegetation											
Open Water	Open Water										
		Notes									

Pond was dry by 6/4/2020. Strata 1 and 2 were repeated from 2017, 2018, and 2019, whereas stratum 4 was repeated from 2018 and 2019. Transect 1 was repeated from 2018 and 2019. Transect 2 was relocated to an area with more representative vegetative composition. Transect 4 was repeated from 2018. An upland stratum was mapped and occupied 32% relative cover of the wetland but was not included in the cover data.

		Relative	Quadra	at #1	Quadra	at #2	Quadrat #3		
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	
			ELMA	57	ELMA	64	ELMA	70	
		11%	POMO	2	JUPH	1	BG	1	
1	5 m		BG	6	BG	2	TH	29	
			TH	35	TH	33			
			TOTAL	100	TOTAL	100	TOTAL	100	

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			DEDA	1	DEDA	1	ERAR12	2	ELACa	1	DEDA	1	ELACa	6
			ERAR12	1	ERAR12	1	JUPH	75	ERAR12	4	ELACa	3	ERAR12	12
			GEDI	1	JUPH	75	LAGL3	1	JUPH	75	ERAR12	25	JUPH	65
			JUPH	80	LAGL3	1	POMO	1	LAGL3	1	JUPH	35	LAGL3	1
2	10 m	46%	LAGL3	1	POMO	1	TH	21	POMO	1	LAGL3	1	POMO	3
			PLCHh	1	TH	21			TH	18	POMO	8	TH	13
			POMO	4							TH	27		
			TH	12										
			TOTAL	101	TOTAL	100								

		Relative	Quadra	at #1	Quadra	at #2	Quadra	it #3	Quadra	at #4	Quadra	it #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRMI	1	BRMI	1	BRMI	1	AGLAv	1	BRMI	1	BRMI	1
			DECO	1	DECO	1	CAAMa3	2	BRMI	1	CAAMa3	5	CAAMa3	2
			DEDA	1	DEDA	7	DECO	1	CAAMa3	3	DECO	2	DECO	3
			ELACa	6	ERAR12	18	DEDA	1	DECO	5	DEDA	1	DEDA	2
			ERAR12	40	HYGL	2	ERAR12	18	DEDA	1	ERAR12	45	ERAR12	24
			GEDI	1	JUCA	1	HYGL	2	ELACa	2	HYGL	2	HYGL	1
			JUPH	12	JUPH	8	JUBUb	1	ERAR12	40	JUPH	15	HYRA	1
			LYHY	8	LYMI	1	JUPH	8	HYGL	1	LYMI	1	JUBUb	1
			LYMI	1	POMO	45	LOGA	1	JUPH	20	POMO	12	JUCA	2
4	10 m	41%	PLCHh	1	PSCH	1	LYHY	2	LYHY	1	SOOL	1	JUPH	12
			POMO	12	ZEDA	1	LYMI	1	LYMI	1	BG	9	LYHY	1
			PSCH	1	BG	7	PLCHh	1	POMO	5	TH	6	LYMI	1
			BG	8	TH	7	POMO	45	SOOL	1			POMO	20
			TH	7			PSCH	1	ZEDA	1			PSCH	1
							SOOL	1	BG	10			SOOL	1
							ZEDA	1	TH	7			ZEDA	1
							BG	6					BG	11
							TH	7					TH	15
			TOTAL	100										

Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common varrow	ACMI	Juncus bufonius var. bufonius	common toad rush	JUBUB
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Juncus bufonius var. congestus	clustered toad rush	JUBUC2
Acmispon parviflorus	hill lotus	ACPA	Juncus capitatus	dwarf rush	JUCA
Agrostis avenacea	Pacific bent grass	AGAV	Juncus phaeocephalus	brown-headed rush	JUPH
Agrostis exarata	spike bent grass	AGEX	Lasthenia alaberrima	smooth goldfields	LAGL3
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Logfia gallica	narrowleaf cottonrose	LOGA
Aira caryophyllea	silvery hair-grass	AICA	Lysimachia arvensis	scarlet pimpernel	LYAR
Avena barbata	slender wild oat	AVBA	Lysimachia minima	chaffweed	LYMI
Baccharis pilularis	coyote brush	BAPI	Lythrum hyssopifolia	grass poly	LYHY
Briza maxima	rattlesnake grass	BRMA	Madia exigua	small tarweed	MAEX
Briza minor	annual quaking grass	BRMI	Madia gracilis	gumweed	MAGR
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Madia sativa	coast tarweed	MASA
Bromus diandrus	ripgut grass	BRDI	Microseris paludosa	marsh microseris	MIPA
Bromus hordeaceus	soft chess	BRHO	Phalaris lemmonii	Lemmon's canary grass	PHLE
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Plantago coronopus	cut-leaved plantain	PLCO
Cotula coronopifolia	brass buttons	COCO	Pogogyne zizyphoroides	Sacramento mesa mint	POZI
Danthonia californica	California oat grass	DACA	Polypogon monspeliensis	rabbitfoot grass	POMO
Deinandra corymbosa	coastal tarweed	DECO	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Deschampsia cespitosa ssp. cespitosa	tufted hair grass	DECEC2	Pseudognaphalium stramineum	cottonbatting plant	PSST
Deschampsia danthonioides	annual hair grass	DEDA	Psilocarphus chilensis	round woolly-marbles	PSCH
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Rumex acetosella	sheep sorrel	RUAC
Eleocharis macrostachya	pale spikerush	ELMA	Rumex crispus	curly dock	RUCR
Elymus triticoides	beardless wild rye	ELTR3	Senecio glomeratus	cutleaf burnweed	SEGL
Epilobium ciliatum ssp. watsonii	willow herb	EPCIW	Silene gallica	small-flower catchfly	SIGA
Erodium botrys	long-beaked filaree	ERBO	Sonchus oleraceus	common sow thistle	SOOL
Eryngium armatum	coyote thistle	ERAR12	Spiranthes romanzoffiana	hooded lady's tresses	SPRO
Festuca myuros	rattail sixweeks grass	FEMY	Taraxia ovata	sun cups	TAOV
Galium aparine	goose grass	GAAP	Toxicodendron diversilobum	poison oak	TODI
Galium porrigens	climbing bedstraw	GAPO	Triglochin scilloides	flowering quillwort	TRSC
Gamochaeta ustulata	purple cudweed	GAUS	Triteleia ixioides	coast pretty face	TRIX
Geranium dissectum	cut-leaved geranium	GEDI	Zeltnera davyi	Davy's centuary	ZEDA
Heterocodon rariflorum	western pearlflower	HERA	Groundcover Codes		
Hypochaeris glabra	smooth cat's-ear	HYGL	BG	Bare Ground	
Hypochaeris radicata	rough cat's-ear	HYRA	тн	Thatch/Duff	
Isoetes howellii	Howell's quillwort	ISHO	AL	Algae	

Table A-19. Machine Gun Flats (Year 3 Post-Mastication) Wetland Vegetation Transect Data by Stratum

Machine Gun Flats												
Date	5/29/2020,	6/4/2020, 6/5/2020, 6/25/20	020									
Surveying Personnel Kayti Christianson, Emily Poor, and Lizzy Eichorn												
Vegetation Type % Cover Species Notes												
Emergent Vegetation	21	ELMA, PEAM	15% ELMA, 6% PEAM									
Floating Vegetation	50	PONO										
Submerged Vegetation												
Open Water	29											
		Notes										
Mashina Cun Elata una inun datad		/2020 Inundated area was (2.2% of the basis boundary. Strate 1 through 0 were repeated from									

Machine Gun Flats was inundated 85 cm on 6/25/2020. Inundated area was 0.3% of the basin boundary. Strata 1 through 9 were repeated from 2019. Transects 3 and 5 were relocated to an area with more representative vegetative composition. All other transects were repeated from 2019.

Transect #	Transect	Relative %	Quadr	at #1	Quadr	at #2	Quadra	at #3	Quadr	at #4	Quadr	at #5	Quadr	at #6
	Length	Cover of Wetland	Species	% Cover										
			AGAV	1	AGAV	1	AGAV	3	DISP	2	DISP	1	ELMA	12
			DISP	2	DISP	2	DISP	1	ELACa	1	ELACa	1	POMO	10
			ELMA	12	ELMA	13	ELMA	9	ELMA	28	ELMA	14	PONO	3
			POMO	2	JUPH	1	JUPH	4	JUBA	1	JUPH	1	BG	1
2	10 m	53%	PONO	1	LYHY	1	LYHY	1	MALE	1	MALE	1	TH	74
			BG	6	POMO	11	POMO	3	POMO	1	POMO	5		
			TH	76	PONO	2	PONO	4	PONO	3	BG	3		
					TH	69	TH	75	TH	63	TH	74		
			TOTAL	100										

		Relative	Quadra	at #1	Quadr	at #2	Quadra	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			AGAV	3	AGAV	4	BRMI	1
			BRMI	2	BRMI	3	CAPY	1
			DECO	1	DECO	3	DECO	4
			ERCA	4	DISP	5	DISP	6
			GEDI	3	ELTR3	1	ERBO	3
			HYRA	2	ERCA	1	GEDI	4
			JUBA	15	GEDI	4	HYGL	4
			LYHY	1	HYGL	2	JUBA	2
		1%	MALE	2	JUBA	1	PLCO	6
3	5 m		POMO	20	LYHY	4	POMO	12
			PSLU	2	MALE	1	PSLU	2
			PSST	1	POMO	10	SIGA	1
			SEGL	5	PSLU	3	SOAS	1
			SIGA	1	SEGL	6	SOOL	1
			SOAS	2	STAJ	4	STAJ	1
			SOOL	2	BG	17	BG	8
			BG	3	TH	31	TH	43
			TH	31				
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRHO	1	BRHO	1	DISP	30	BRMI	4	AICA	1	AICA	1
			BRMI	1	BRMI	1	ERAR12	12	DECO	15	BRMI	1	BRMI	1
			DISP	6	DISP	20	GEDI	8	DISP	1	DECO	30	DECO	2
			ERAR12	24	ERAR12	40	HYGL	3	ERBO	1	DISP	3	DISP	2
			ERBO	1	GEDI	3	PLCO	1	GEDI	5	ERAR12	5	ERAR12	35
			GEDI	5	HYGL	1	STAJ	3	HYGL	11	GEDI	2	FEPE	1
		9%	HYGL	1	SOOL	3	BG	1	JUPH	2	HYGL	4	GEDI	2
4	10 m		SOOL	1	STAJ	3	TH	45	MALE	2	LIBI5	1	LIBI5	5
			STAJ	13	BG	1			STAJ	3	MALE	6	LYHY	1
			ZEDA	1	TH	27			BG	2	SOOL	1	MALE	1
			BG	2					TH	54	BG	3	SOOL	1
			TH	44							TH	43	STAJ	2
													BG	3
													TH	43
			TOTAL	100	TOTAL	100	TOTAL	103	TOTAL	100	TOTAL	100	TOTAL	100

	Transect Transect # Length	Relative	Quadra	at #1	Quadr	at #2	Quadra	at #3
		% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			DISP	1	ELACa	2	AGAV	1
	F		ELACa	3	GEDI	1	JUBA	29
			GEDI	3	JUBA	30	BG	30
5		5%	JUBA	25	PSST	2	TH	40
5	5 m	3%	JUPH	2	BG	25		
			BG	15	TH	40		
			TH	51				
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadr	at #2	Quadra	at #3
Transect #		% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			ELACa	2	ELACa	3	EUOC	20
			EUOC	25	EUOC	28	JUBA	18
			JUBA	15	GEDI	1	LYAR	1
			LYAR	1	JUBA	16	PS sp.	1
6	5 m	3%	PS sp.	1	LYAR	1	SOOL	2
			VELAI	1	PS sp.	1	VELAI	1
			BG 28		BG	20	BG	35
			TH	25	TH	30	TH	22
			TOTAL	98	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AICA	5	AICA	6	AICA	2	AGLAv	1	AGLAv	2	AGLAv	2
			BRMI	1	BRMI	1	BRMI	1	AICA	1	AICA	1	AICA	2
			BRTEt	2	BRTEt	1	BRTEt	3	BRMI	1	BRMI	1	BRMI	1
			CAAMa3	3	CAAMa3	3	CAAMa3	8	CAAMa3	8	BRTEt	1	CAAMa3	2
			DACA	2	DACA	2	CAAT	1	DACA	1	CAAMa3	3	ERAR12	10
			ERAR12	20	ERAR12	32	DACA	2	ERAR12	15	ERAR12	6	ERBO	1
			ERBO	3	ERBO	2	DECO	2	ERBO	2	ERBO	1	JUPH	2
			FEBR	2	FEBR	2	ERAR12	25	FEBR	1	FEBR	1	LYMI	2
		6%	HYGL	2	HYGL	2	ERBO	3	GEDI	1	FEMY	1	PLCO	8
7	10 m		JUBUb	2	JUBUb	1	FEBR	1	HYGL	1	JUBUb	1	PSCH	2
/	10 111		JUCA	1	JUPH	1	JUPH	1	JUBUb	1	JUPH	2	ZEDA	3
			JUPH	1	LYHY	1	LYHY	1	JUPH	2	LYMI	1	BG	50
			LYAR	1	LYMI	1	MA sp.	2	LYMI	1	PLCO	8	TH	15
			MA sp.	1	MA sp.	2	PLCO	15	PLCO	7	PSCH	1		
			MAGR	1	MAGR	1	TR sp.	1	ZEDA	3	ZEDA	2		
			SOOL	1	PLCO	1	TRDE	3	BG	39	BG	34		
			ZEDA	1	ZEDA	3	TRVA	1	TH	15	TH	34		
			BG	20	BG	23	BG	3						
			TH	30	TH	15	TH	25						
			TOTAL	99	TOTAL	100								

		Relative	Quadr	at #1	Quadr	at #2	Quadr	at #3	Quadra	it #4	Quadra	nt #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cove r								
			DACA	25	BRTEt	1	BRMI	1	BRMI	1	FEBR	38	DACA	10
			ERBO	15	DACA	40	BRTEt	1	BRTEt	6	HYGL	1	ERBO	2
			FEBR	10	FEBR	15	DACA	45	DACA	10	MAGR	1	FEBR	60
			FEPE	8	FEPE	5	ERBO	2	ERBO	3	BG	1	FEPE	4
			HYGL	12	GEDI	2	FEBR	5	FEBR	25	TH	TH 59	HYGL	1
			LIBI5	3	LIBI5	3	FEPE	1	FEPE	5			MAGR	2
8	10 m	21%	LYHY	3	BG	10	GEDI	2	HYGL	1			BG	3
			BG	4	TH	24	HYGL	2	LIBI5	3			TH	18
			TH	20			LIBI5	2	BG	12				
							MAGR	2	TH	33				
							BG	10						
							TH	27						
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	99	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3
Transect #			Species	% Cover	Species	% Cover	Species	% Cover
			ELTR3	30	AVBA	1	BRMI	4
			ERCA	3	ELTR3	57	ELACa	5
			GEDI	2	ERCA	4	ELTR3	30
			HYGL	2	HYGL	3	ERCA	5
			LYAR	1	LYHY	1	GEDI	1
			LYHY	1	PLCO	1	HYGL	5
9	5 m	2%	PS?	1	PSLU	1	LYAR	1
			RUAC	6	SEGL	10	POMO	1
			SEGL	2	SOAS	1	SEGL	6
			SOOL	1	SOOL	1	SOAS	1
			BG	12	BG	5	BG	2
			TH	39	TH	15	TH	39
			TOTAL	100	TOTAL	100	TOTAL	100

Machine Gun Flats 2020 Species List										
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code					
Acaena pinnatifida var. californica	California acaena	ACPIC	Lactuca serriola	prickly lettuce	LASE					
Achillea millefolium	common yarrow	ACMI	Leptosiphon parviflorus	variable linanthus	LEPA					
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Linum bienne	pale flax	LIBI5					
Acmispon wrangelianus	Chilean trefoil	ACWR	Logfia gallica	narrowleaf cottonrose	LOGA					
Agrostis avenacea	Pacific bent grass	AGAV	Luzula comosa	Pacific woodrush	LUCO6					
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Lysimachia arvensis	scarlet pimpernel	LYAR					
Aira caryophyllea	silvery hair-grass	AICA	Lysimachia minima	chaffweed	LYMI					
Avena barbata	slender wild oat	AVBA	Lythrum hyssopifolia	grass poly	LYHY					
Baccharis pilularis	coyote brush	BAPI	Madia gracilis	gumweed	MAGR					
Briza maxima	rattlesnake grass	BRMA	Madia sativa	coast tarweed	MASA					
Briza minor	annual quaking grass	BRMI	Madia sp.							
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Malvella leprosa	alkali mallow	MALE					
Bromus carinatus	California brome	BRCA	Microseris paludosa	marsh microseris	MIPA					
Bromus diandrus		BRDI	Oxalis corniculata	creeping woodsorrel	OXCO					
	ripgut grass				PEAM					
Bromus hordeaceus	soft chess	BRHO	Persicaria amphibia	water smartweed						
Calochortus uniflorus	pink star-tulip	CAUN	Phalaris lemmonii	Lemmon's canary grass	PHLE					
Carduus pycnocephalus	Italian thistle	CAPY	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH					
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Plantago coronopus	cut-leaved plantain	PLCO					
Castilleja densiflora ssp. densiflora	dense flower owl's clover	CADED	Plantago erecta	California plantain	PLER					
Castilleja exserta	purple owl's-clover	CAEX	Plantago lanceolata	English plantain	PLLA					
Cirsium brevistylum	Indian thistle	CIBR	Polypogon monspeliensis	rabbitfoot grass	РОМО					
Cirsium quercetorum	brownie thistle	CIQU2	Potamogeton nodosus	longleaf pondweed	PONO					
Cirsium vulgare	bull thistle	CIVU	Pseudognaphalium californicum	California everlasting	PSCA					
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Pseudognaphalium luteoalbum	weedy cudweed	PSLU					
Conium maculatum	poison hemlock	COMA	Pseudognaphalium ramosissimum	pink everlasting	PSRA					
Cotula coronopifolia	brass buttons	COCO	Pseudognaphalium stramineum	cottonbatting plant	PSST					
Cynosurus echinatus	bristly dogtail grass	CYEC	Psilocarphus chilensis	round woolly-marbles	PSCH					
·			•							
Cyperus eragrostis	tall cyperus	CYER	Quercus agrifolia	coast live oak	QUAG					
Danthonia californica	California oat grass	DACA	Ranunculus californicus	California buttercup	RACA					
Deinandra corymbosa	coastal tarweed	DECO	Rorippa curvisiliqua	western yellowcress	ROCU					
Deschampsia danthonioides	annual hair grass	DEDA	Rubus ursinus	California blackberry	RUUR					
Diplacus aurantiacus	sticky monkey flower	DIAU	Rumex acetosella	sheep sorrel	RUAC					
Distichlis spicata	salt grass	DISP	Rumex crispus	curly dock	RUCR					
Eleocharis acicularis var. acicularis	needle spikerush	ELACa	Senecio glomeratus	cutleaf burnweed	SEGL					
Eleocharis macrostachya	pale spikerush	ELMA	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM					
Elymus glaucus	blue wild-rye	ELGL	Silene gallica	small-flower catchfly	SIGA					
Elymus triticoides	beardless wild rye	ELTR3	Sisyrinchium bellum	western blue-eyed grass	SIBE					
Erigeron bonariensis	flax-leaved horseweed	ERBO4	Solanum americanum	small-flowered nightshade	SOAM					
Erigeron canadensis	horseweed	ERCA	Sonchus asper	prickly sow thistle	SOAS					
Erodium botrys	long-beaked filaree	ERBO	Sonchus oleraceus	common sow thistle	SOOL					
Erodium cicutarium	redstem filaree	ERCI	Spiranthes romanzoffiana	hooded lady's tresses	SPRO					
Eryngium armatum	coyote thistle	ERAR12	Stachys ajugoides	bugle hedge nettle	STAJ					
Eschscholzia californica	California poppy	ESCA	Stipa pulchra	purple needle grass	STPU					
Euthamia occidentalis	western goldenrod	EUOC	Stylocline gnaphaloides	everlasting stylocline	STGN					
Festuca bromoides	brome fescue	FEBR	Taraxia ovata	sun cups	TAOV					
Festuca myuros	rattail sixweeks grass	FEMY	Torilis arvensis	tall sock destroyer	TOAR					
Festuca perennis	Italian rye grass	FEPE	Toxicodendron diversilobum	poison oak	TODI					
Galium aparine	goose grass	GAAP	Trifolium angustifolium	narrow-leaved clover	TRAN					
Gamochaeta ustulata	purple cudweed	GAUS	Trifolium barbigerum	bearded clover	TRBA					
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium depauperatum	sack clover	TRDE					
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO	Trifolium dubium	little hop clover	TRDU					
, Hordeum brachyantherum ssp. brachyantherum	meadow barley	HOBRB	Trifolium microcephalum	small head clover	TRMI					
Hordeum marinum ssp. gussoneanum	Mediterranean barley	HOMAG	Trifolium variegatum	variegated clover	TRVA					
Horkelia cuneata	wedge-leaved horkelia	HOCU	Triglochin scilloides	flowering quillwort	TRSC					
Hypericum perforatum ssp. perforatum	Klamathweed	НУРЕР	Triteleia ixioides	coast pretty face	TRIX					
Hypochaeris glabra	smooth cat's-ear	HYGL	Verbena lasiostachys var. lasiostachys	western vervain	VELAL					
			· · ·							
Hypochaeris radicata	rough cat's-ear	HYRA	Vicia villosa ssp. varia	winter vetch	VIVIV8					
Juncus balticus	Baltic rush	JUBA	Zeltnera davyi	Davy's centuary	ZEDA					
Juncus bufonius var. bufonius	common toad rush	JUBUB	Groundcover Codes							
Juncus bufonius var. occidentalis	round-fruited toad rush	JUBUO	BG	Bare Ground						
luncus capitatus	dwarf rush	JUCA	ТН	Thatch/Duff						
Juncus occidentalis	western rush	JUOC	AL	Algae						

Table A-20. Pond 16 (Year 2 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

POND 16									
Date	6/15/2020,	6/15/2020, 8/11/2020							
Surveying Personnel	Kayti Christi	Kayti Christianson, Emily Poor and Lizzy Eichorn							
Vegetation Type	% Cover	Species	Notes						
Emergent Vegetation									
Floating Vegetation									
Submerged Vegetation									
Open Water									
	Notes								

Pond was dry by 8/11/2020. Strata 3 and 5 were repeated from 2015, 2017, and 2019. Strata 1, 4, and 6 were repeated from 2017 and 2019. Transects 3 and 5 were repeated from 2015, 2017, and 2019. Transect 4 was repeated from 2019, whereas Transect 6 was repeated from 2017 and 2019. No transect was placed in strata 1 due to the height and density of the vegetation; instead, a visual cover estimate was conducted to access vegetative cover.

Transect Transect Length Relative % Wetland	Relative %	Quadrat #1		Quadrat #2		Quadrat #3		Quadr	at #4	Quadr	at #5	Quadra	at #6	
		Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	
			ELMA	65	ELMA	75	CRSC2	4	CRSC2	9	CRSC2	9	CRSC2	5
			MALE	2	MALE	2	ELMA	63	ECCR	1	ELMA	50	ECCR	1
			BG	3	BG	7	GNPA	9	ELMA	37	GNPA	7	ELMA	31
3	10 m	34%	TH	30	TH	16	BG	4	GNPA	22	BG	6	GNPA	21
							TH	20	BG	16	TH	28	BG	12
								TH	15			TH	30	
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

Transect	Transect Transect Relative %		Quadrat #1		Quadrat #2		Quadrat #3		Quadr	at #4	Quadra	at #5	Quadrat #6	
#	Length	Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover
			AGPA	1	CAPR	64	BRMI	1	CAPR	69	RUUR	20	CAPR	1
			CAPR	60	JUPH	2	CAPR	70	CIVU	5	CAPR	57	JUBA	75
			JUBA	1	RUUR	8	CIVU	3	ELTR3	1	JUBA	2	RUUR	15
		25%	JUPH	2	TH	25	JUBA	1	JUBA	1	TH	20	TH	8
4	10 m		TH	33	BG	1	RUUR	4	JUPH	1	BG	1	BG	1
			BG	2			TH	20	RUUR	7				
							BG	1	TH	15				
								BG	1					
			TOTAL	99	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

Transect Transect		Relative %	Quadrat #1		Quadrat #2		Quadrat #3		Quadr	at #4	Quadr	at #5	Quadr	at #6
#	Length Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	
			CABA	30	CABA	33	CABA	38	CABA	30	CABA	60	CABA	45
		33%	RUUR	18	RUUR	20	RUUR	35	RUUR	18	RUUR	11	RUUR	16
-	10		SOEL	15	SOEL	14	SOEL	1	SOEL	18	SOEL	1	SOEL	10
5	10 m		TH	29	TH	15	TH	19	TH	25	TH	22	TH	15
			BG	8	BG	18	BG	7	BG	9	BG	6	BG	14
			TOTAL	100	TOTAL	100								

		Relative	Quad	Quadrat #1		at #2	Quadrat #3	
Transect #		% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
		JUBA	85	JUBA	65	JUBA	65	
			TH	10	PSLU	1	TH	32
6	Г на	4%	BG	5	RUCR	2	BG	3
0	5 m	4%			TH	28		
					BG	4		
			TOTAL	100	TOTAL	100	TOTAL	100

	P	ond 16 202	0 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common yarrow	ACMI	Hypochaeris radicata	rough cat's-ear	HYRA
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Iris douglasiana	Douglas iris	IRDO
Agrostis exarata	spike bent grass	AGEX	Juncus balticus	Baltic rush	JUBA
Agrostis pallens	seashore bent grass	AGPA	Juncus effusus	common rush	JUEF
Aira caryophyllea	silvery hair-grass	AICA	Juncus falcatus	falcate rush	JUFA
Arctostaphylos tomentosa ssp. tomentosa	woolly leaf manzanita	ARTOT	Juncus occidentalis	western rush	JUOC
Artemisia douglasiana	mugwort	ARDO	Juncus phaeocephalus	brown-headed rush	JUPH
Asparagus officinalis	garden asparagus	ASOF	Lupinus arboreus	yellow bush lupine	LUAR
Avena barbata	slender wild oat	AVBA	Luzula comosa	Pacific woodrush	LUCO6
Baccharis pilularis	coyote brush	BAPI	Lysimachia arvensis	scarlet pimpernel	LYAR
Briza maxima	rattlesnake grass	BRMA	Lythrum hyssopifolia	grass poly	LYHY
Briza minor	annual quaking grass	BRMI	Madia sativa	coast tarweed	MASA
Bromus hordeaceus	soft chess	BRHO	Navarretia hamata ssp. parviloba	hooked navarretia	NAHAP
Carduus pycnocephalus	Italian thistle	CAPY	Polypogon monspeliensis	rabbitfoot grass	POMO
Carex barbarae	whiteroot	САВА	Pseudognaphalium californicum	California everlasting	PSCA
Carex harfordii	Harford's sedge	CAHA4	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Carex praegracilis	clustered field sedge	CAPR	Pseudognaphalium ramosissimum	pink everlasting	PSRA
Carpobrotus edulis	ice plant	CAED	Pseudognaphalium stramineum	cottonbatting plant	PSST
Cirsium brevistylum	Indian thistle	CIBR	Pteridium aquilinum var. pubescens	western bracken fern	PTAQP
Cirsium vulgare	bull thistle	CIVU	Quercus agrifolia	coast live oak	QUAG
Conium maculatum	poison hemlock	COMA	Rosa californica	California wild rose	ROCA
Crypsis schoenoides	swamp pricklegrass	CRSC2	Rubus ursinus	California blackberry	RUUR
Cyperus eragrostis	tall cyperus	CYER	Rumex acetosella	sheep sorrel	RUAC
Drymocallis glandulosa var. wrangelliana	sticky cinquefoil	DRGLW	Rumex crispus	curly dock	RUCR
Echinochloa crus-galli	barnyard grass	ECCR	Rumex salicifolius	willow dock	RUSA
Elatine californica	California waterwort	ELCA	Salix lasiandra var. lasiandra	shining willow	SALAL
Eleocharis macrostachya	pale spikerush	ELMA	Schoenoplectus californicus	California bulrush	SCCA
Elymus glaucus	blue wild-rye	ELGL	Senecio glomeratus	cutleaf burnweed	SEGL
Elymus gladcas	beardless wild rye	ELTR3	Silvbum marianum	milk thistle	SIMA
Epilobium ciliatum	fringed willowherb	EPCI	Solanum americanum	small-flowered nightshade	SOAM
Erigeron canadensis	horseweed	ERCA	Solidago elongata	West Coast Canada goldenrod	SOEL
Festuca myuros	rattail sixweeks grass	FEMY	Solidago velutina ssp. californica	California goldenrod	SOVEC
Festuca perennis	Italian rye grass	FEPE	Sonchus asper	prickly sow thistle	SOAS
Galium porrigens	climbing bedstraw	GAPO	Sonchus oleraceus	common sow thistle	SOOL
Geranium dissectum	cut-leaved geranium	GAPO	Stachys ajugoides	bugle hedge nettle	STAJ
	lowland cudweed	GEDI	Stachys bullata	California hedge nettle	STAJ
Gnaphalium palustre		HECUO	Toxicodendron diversilobum	0	TODI
Heliotropium curassavicum var. oculatum	Chinese pusley	HECOO	Zeltnera davvi	poison oak	ZEDA
Helminthotheca echioides	bristly oxtongue		,	Davy's centuary	ZEDA
Heteromeles arbutifolia	toyon	HEAR	Groundcover Codes	Para Cround	
Heterotheca grandiflora	telegraph weed	HEGR		Bare Ground	
Horkelia cuneata var. cuneata	wedge-leaved horkelia	HOCUC	TH	Thatch/Duff	
Hypericum anagalloides Hypochaeris glabra	creeping St. John's wort smooth cat's-ear	HYAN HYGL	AL	Algae	

This page intentionally left blank

APPENDIX B

Stratum Cover by Vernal Pool

This page intentionally left blank

	P	OND 5	
Stratum	Relative % Cover of Wetland	Species	% Cover
		AGAV	0.2
		ELMA	50.5
	35%	MALE	0.5
1		POMO	1.0
		TH	46.2
		BG	1.7
		TOTAL	100.0
		DISP	2.3
		ELMA	35.0
2	220/	MALE	0.2
2	32%	РОМО	3.7
		TH	58.8
		TOTAL	100.0

	P	OND 5	
Stratum	Relative % Cover of Wetland	Species	% Cover
		AGGR	0.2
		BRMI	0.3
		CRTR	1.7
		DISP	3.8
		ELMA	4.0
		ERCA	0.3
		GEDI	1.5
		HYGL	0.8
		HYRA	0.3
		JUPH	0.5
3	12%	LYHY	0.2
		PHLE	2.2
		PLCHh	0.3
		POMO	1.2
		PSLU	0.2
		RUCR	0.5
		SOOL	0.2
		STAJ	34.3
		TH	46.0
		BG	1.5
		TOTAL	100.0

Table B-1 (continued). Pond 5 (Reference)Wetland Vegetation Cover by Stratum

	PC	OND 5			
Stratum	Relative % Cover of Wetland	Species	% Cover		
		CRTR	0.3		
		DISP	2.8		
		ELMA	10.3		
		JUPH	2.8		
6	14%	PHLE	2.5		
		POMO	5.7		
		RUCR	2.3		
		TH	73.2		
		TOTAL	100.0		
		AGAV	0.2		
		ERCA	1.5		
		HYGL	1.0		
		JUBA	59.7		
		POMO	0.5		
7	7%	PSST	1.7		
		SEGL	0.8		
		SOOL	0.2		
		TH	33.3		
		BG	1.2		
		TOTAL	100.0		

POND 101 East (East)				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		ELMA	6.7	
		LYHY	0.3	
		MALE	47.7	
		POMO	0.3	
		ROCU	0.3	
1	0.4%	RUAC	0.3	
		RUCR	0.7	
		TRSC	0.7	
		TH	36.0	
		BG	7.0	
		TOTAL	100.0	
	38%	AGAV	0.7	
		ELMA	55.7	
		MALE	1.5	
2		POMO	0.8	
		RUCR	6.2	
		TH	33.3	
		BG	1.8	
		TOTAL	100.0	
		EPBR	0.2	
		ERCA	1.8	
		FEMY	0.2	
		GEDI	2.8	
		JUBA	48.8	
		POMO	0.5	
4	25%	RUAC	6.2	
		RUSA	3.8	
		VELAI	2.2	
		VISAs	0.3	
		TH	31.7	
		BG	1.5	
		TOTAL	100.0	

POND 101 East (East)				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		ACAMa	11.8	
		AGAV	0.5	
		AVBA	0.2	
		BAPI	0.3	
		BRMI	2.5	
		ERBO	1.3	
		ERCA	1.3	
		FEBR	1.2	
		FEMY	0.7	
		HECUo	2.2	
		HYGL	12.0	
		JUBA	0.8	
		LYAR	0.2	
5	3%	MAGR	1.7	
		POMO	0.2	
		PSLU	1.0	
		PSST	4.2	
		RUAC	8.0	
		SOOL	0.5	
		STAJ	6.3	
		TRGR	0.5	
		TRMI	0.8	
		VISAn	1.8	
		VISAs	1.0	
		TH	18.2	
		BG	20.8	
		TOTAL	100.0	

	POND 101 East (East)					
Stratum	Relative % Cover of Wetland	Species	% Cover			
		BRDI	0.3			
		CAPR	41.7			
		CIVU	0.3			
		ERCA	0.3			
		FEMY	0.7			
		GEDI	0.3			
		JUBA	0.3			
6	1%	PSST	0.3			
		RUAC	3.7			
		SOOL	0.7			
		VISAn	0.3			
		VISAs	0.3			
		TH	25.0			
		BG	25.7			
		TOTAL	100.0			

	POND 101 East (East)				
Stratum	Relative % Cover of Wetland	Species	% Cover		
		AGAV	15.5		
		ACAMa	0.5		
		AGGR	0.3		
		BRMI	0.2		
		EPBR	0.5		
			0.2		
		ERCA	0.8		
		FEMY	0.2		
		GEDI	5.5		
	34%	HECUo	0.2		
		HYGL	0.5		
		JUPH	15.8		
8		MALE	0.5		
		MASA	3.8		
		PHLE	0.2		
		POMO	5.2		
		RUCR	1.8		
		SOOL	0.2		
		STAJ	10.7		
		TRBA	0.2		
		TRGR	0.5		
		TRMI	0.3		
		TRVA	1.7		
		VISAn	2.2		
		VISAs	3.8		
		TH	25.2		
		BG	3.8		
		TOTAL	100.2		

POND 997				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		BRMI	0.2	
		CRAQ	0.2	
		ELACa	1.5	
		ELCA	0.3	
		ELMA	1.3	
		ERAR12	29.2	
		HYGL	0.3	
		ISHO	0.3	
		JUBUb	0.7	
		JUBUo	0.2	
1	6%	JUPH	0.3	
		LACO	0.3	
		LYHY	4.7	
		LYMI	0.7	
		PLCHh	1.5	
		PLCO	1.0	
		POMO	8.3	
		PSCH	10.2	
		TH	24.5	
		BG	14.3	
		TOTAL	100.0	
2 (CCG)	4%	-	-	

POND 997					
Stratum	Relative % Cover of Wetland	Species	% Cover		
		ACPA	1.2		
		AICA	2.3		
		BRMA	6.3		
		BRMI	3.0		
		BRTEt	0.3		
		CAAMa3	4.5		
		DACA	23.5		
		DECO	1.7		
		ERAR12	5.8		
		ERBO	0.8		
		FEBR	1.5		
		FEMY	0.8		
		GEDI	1.0		
		GRASS1	0.2		
		HYGL	3.5		
		HYRA	0.2		
		ISCA	0.2		
3	78%	ISCE	0.7		
		JUBUb	1.2		
		JUPH	0.2		
		LYAR	0.5		
		LYHY	1.5		
		LYMI	1.7		
		MAGR	2.8		
		MASA	5.7		
		MIPA	0.2		
		PLCO	3.2		
		POMO	0.2		
		RUAC	2.7		
		SIBE	0.3		
		TRIX	0.7		
		ZEDA	0.3		
		TH	11.3		
		BG	11.3		
		TOTAL	101.2		

Table B-3 (continued). Pond 997 (Reference)Wetland Vegetation Cover by Stratum

	POND 997				
Stratum	Relative % Cover of Wetland	Species	% Cover		
		BAPI	0.2		
		BRMA	5.8		
		BRMI	0.5		
		BRTEt	0.7		
		CAAMa3	0.2		
	12%	DACA	2.0		
		ERAR12	3.5		
		GEDI	0.2		
5		JUBUb	0.3		
		JUPH	55.8		
		LYHY	1.7		
		LYMI	0.7		
		MASA	0.3		
		PLCHh	0.2		
		TH	21.8		
		BG	6.2		
		TOTAL	100.0		

Table B-4. Pond 101 East (West) (Year 2 Post-Mastication) Wetland Vegetation Cover by Stratum

	POND 101	L East (Wes	st)		POND 101	East (West	:)
Stratum	Relative % Cover of Wetland	Species	% Cover	Stratum	Relative % Cover of Wetland	Species	% Cover
		ALSA	1.2			BRDI	0.3
		ELMA	17.0			BRMI	0.3
		GNPA	1.3			DISP	0.3
		HECUo	1.8			ELMA	7.2
		LYHY	0.3			ERAR12	0.3
		MALE	11.5			FEBR	11.2
1	3%	PEMA	0.2	5	44%	FEPE	43.3
		POMO	3.0	5	44%	GEDI	1.2
		ROCU	0.7			HYGL	0.3
		VEBR	1.3			MALE	7.7
		TH	59.0			RUCR	0.7
		BG	2.7			TH	23.2
		TOTAL	100.0			BG	4.0
		ELMA	42.5			TOTAL	100.0
		LAGL3	0.2			ACAMa	0.7
		MALE	0.8			AGAV	3.7
2	10%	PHLE	1.0			BAPI	0.3
		TH	53.7			BRMI	0.7
		BG	1.8			FEMY	0.3
		TOTAL	100.0			FEPE	0.3
		ACAMa	0.7			GEDI	2.3
		BRMI	1.3			HYGL	0.3
		ELMA	4.7			JUBA	3.0
	-	FEPE	0.3			JUPH	28.3
	-	GEDI	4.3		4.004	MASA	2.3
		HECUo	2.0	6	12%	POMO	1.0
		JUPH	4.0			PSST	0.7
	-	LYAR	1.0			RUAC	1.3
4	4%	MAGR	16.0			RUCR	1.0
		MASA	30.7			SEGL	0.3
		PSST	1.3			SOAS	0.3
		RUAC	2.3			SOOL	1.7
		RUCR	0.7			VISAn	1.0
		VISAs	0.7			BG	4.0
		TH	27.7			ТН	46.3
		BG	2.0			TOTAL	100.0
		TOTAL	100.0	L	ıI		L

Table B-4 (continued). Pond 101 East (West) (Year 2 Post-Mastication) Wetland Vegetation Cover by Stratum

	POND 101 East (West)				
Stratum	Relative % Cover of Wetland	Species	% Cover		
		BRMI	0.3		
		ELACa	0.7		
		EUOC	26.0		
		FEPE	1.0		
		GEDI	2.0		
		JUPH	2.3		
		MALE	0.7		
8	4%	PLCHh	0.3		
		РОМО	9.3		
		PSST	0.7		
		RUAC	1.0		
		SOOL	0.3		
		TH	47.0		
		BG	8.3		
		TOTAL	100.0		
		AGAV	29.2		
		BRMI	1.0		
		ELMA	6.3		
		FEBR	0.3		
		FEPE	0.8		
		GEDI	4.3		
		HECUo	7.5		
9	25%	HYGL	0.2		
3	23%	JUBA	0.3		
		POMO	7.0		
		RUCR	8.3		
		SOOL	0.7		
		VISAs	0.5		
		TH	31.3		
		BG	2.2		
		TOTAL	100.0		

POND 41				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		DEDA	1.2	
		ELACa	3.7	
		ELMA	44.5	
		LAGL3	1.7	
		MALE	0.2	
1	14%	PHLE	3.7	
T	14%	PLCHh	0.2	
		POMO	9.3	
		STAJ	2.0	
		TH	32.0	
		BG	1.7	
		TOTAL	100.0	
		DEDA	2.8	
		ELACa	9.0	
		ELMA	4.2	
		GEDI	15.7	
		JUPH	3.0	
		LAGL3	0.8	
2	59%	MALE	2.3	
2	33%	PHLE	2.3	
		PLCHh	1.3	
		POMO	30.3	
		RUCR	1.3	
		STAJ	5.0	
		TH	21.8	
	TOTAL	100.0		

POND 41					
Stratum	Relative % Cover of Wetland	Species	% Cover		
		BRHO	0.3		
		BRMI	0.8		
		DEDA	0.2		
		ELACa	2.2		
		ERBO	0.3		
		ERCA	0.3		
		FEBR	0.5		
		GAUS	0.5		
		GEDI	2.0		
		HYGL	0.3		
		JUBA	0.7		
3	21%	JUPH	57.5		
		LYAR	0.7		
		MASA	2.7		
		MAGR	0.7		
		MALE	0.3		
		POMO	2.8		
		RUAC	0.3		
		RUCR	0.8		
		SOOL	1.8		
		TH	21.8		
		BG	2.5		
		TOTAL	100.2		

Table B-5 (continued). Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

	POND 41				
Stratum	Relative % Cover of Wetland	Species	% Cover		
		AICA	1.2		
		BAPI	1.5		
		BRHO	0.3		
		BRMI	1.7		
		BRTEt	0.7		
		CAAMa3	0.8		
		DACA	24.7		
		ERAR12	1.2		
		FEBR	0.3		
		FEMY	1.0		
		GAUS	0.5		
		GEDI	2.8		
4	6%	HYGL	3.0		
		JUPH	0.2		
		LUCO6	0.3		
		LYAR	0.3		
		LYMI	0.2		
		MASA	0.2		
		MAGR	12.3		
		PLCO	0.8		
		POMO	0.5		
		STAJ	0.7		
		ТН	31.2		
		BG	13.7		
		TOTAL	100.0		
Upland	1%	-	-		

Table B-6. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)
Wetland Vegetation Cover by Stratum

	POND 3 North			POND 3 North				
Stratum	Relative % Cover of Wetland	Species	% Cover		Stratum	Relative % Cover of Wetland	Species	% Cover
		ELMA	61.7				ACPA	0.7
		ELACa	1.2				AICA	0.8
		LAGL3	0.2				BAPI	0.8
1	11%	POMO	0.5				BRHO	1.5
		TH	21.5				BRMI	0.8
		BG	15.0				CAAM	2.3
		TOTAL	100.0				CAUN	0.3
		сосо	0.2				DACA	15.7
		DEDA	0.2				DECO	0.2
		ELACa	0.5				ERAR12	8.5
		ELMA	13.3				ERCA	0.3
		ERAR12	7.2				FEMY	0.7
		FEPE	0.2				FEPE	16.2
		HOMAg	6.0				HYGL	0.2
	JUBUb	0.5				JUBUb	0.2	
		LACO	0.3		3	3 37%	JUPH	0.5
-		LYHY	4.0				LOGA	0.2
2	14%	LYMI	0.8				LYAR	2.5
		PLCHh	1.3				LYHY	1.3
		PLCO	3.2				LYMI	0.2
		POMO	8.3				MA sp.	0.3
		POZI	0.8				MAGR	0.2
		PSCH	2.0				MIPA	2.2
		ZEDA	0.8				PLCO	2.2
		TH	27.7				PLER	0.2
		BG	22.7				POMO	0.2
		TOTAL	100.0	1			SOOL	0.2
	I			-			TRAN	0.7
							TRDU	0.5
							ZEDA	0.3
							TH	20.5

BG

TOTAL

-

18.8

100.0

-

4 (CCG)

38%

POND 3 South			
Stratum	Relative % Cover of Wetland	Species	% Cover
		COCO	0.7
		CRAQ	0.3
		DEDA	0.3
		ELACa	4.2
	17%	ELMA	41.7
		ERAR12	7.3
		JUPH	1.0
1		LAGL3	1.2
T		LYHY	0.7
		MALE	0.8
		PLCHh	2.2
		PLCO	2.5
		POMO	1.7
		ТН	26.0
		BG	9.8
		TOTAL	100.3

Table B-7. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)
Wetland Vegetation Cover by Stratum

POND 3 South				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		AICA	0.2	
		BRMI	1.0	
	-	BRTEt	1.8	
		CAAMa3	0.7	
		DACA	0.3	
		DEDA	0.5	
		ELACa	2.2	
		ERAR12	1.2	
		FEBR	0.5	
		FEMY	0.2	
		FEPE	2.3	
	22%	GEDI	1.5	
		ISCA	0.2	
		ISCE	0.3	
2		JUBUb	0.3	
2	22/0	JUBUo	0.3	
		JUPH	49.8	
		LOGA	0.2	
		LYAR	0.2	
		LYHY	3.0	
		LYMI	0.3	
		MALE	0.3	
		MIPA	1.3	
		PLCO	4.0	
		POMO	3.3	
		PSCH	0.2	
		RACA	0.2	
		SIGA	0.2	
		TRVA	0.2	
		ZEDA	0.3	
		TH	15.8	
		BG	7.3	
		TOTAL	100.2	

Table B-7 (continued). Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 3 South				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		ACMI	2.2	
		AICA	1.3	
		BRMI	1.7	
		BRTEt	1.8	
		CAAMa3	1.0	
		CAUN	0.2	
		DACA	18.2	
		ERAR12	1.0	
		ERBO	0.7	
		ERCA	0.3	
		FEBR	1.0	
		FEPE	0.5	
		GAPH	0.2	
		GEDI	2.0	
		HYGL	1.5	
		HYRA	0.7	
		JUPH	1.0	
3	47%	LOGA	1.0	
		LYAR	1.3	
		LYHY	11.5	
		LYMI	0.8	
		MAGR	0.3	
		MASA	0.7	
		MIPA	0.3	
		PLCO	0.5	
		PLER	0.7	
		РОМО	0.7	
		SIMAm	1.5	
		SOOL	0.8	
		TAOV	0.2	
		TRBA	0.2	
		ZEDA	0.8	
		TH	21.3	
		BG	22.3	
		TOTAL	100.2	

	POND 3 South			
Stratum	Relative % Cover of Wetland	Species	% Cover	
		BRDI	0.3	
		BRHO	2.0	
		BRMI	2.8	
		BRTEt	1.8	
		CAUN	0.2	
		ELMA	8.8	
		ERCA	1.0	
		FEPE	41.2	
		GAUS	0.7	
		GEDI	4.2	
	10%	HYGL	1.0	
		JUPH	2.3	
4		LYAR	0.2	
4		LYHY	1.2	
		MALE	4.3	
		MIPA	1.0	
		PSST	0.2	
		RACA	1.0	
		SIGA	0.8	
		SOOL	2.5	
		TRBA	0.2	
		TRDU	3.5	
		ZEDA	0.2	
		TH	17.0	
		BG	2.8	
		TOTAL	101.2	
5 (CCG)	0.1%	-	-	
Upland	3%	-	-	

Table B-8. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland VegetationCover by Stratum

POND 39			
Stratum	Relative % Cover of Wetland	Species	% Cover
		ELMA	73.0
		ELACa	1.7
1	9%	BG	5.3
		ТН	20.0
		TOTAL	100.0
		AICA	0.2
		AVBA	0.3
		BRDI	1.2
		BRHO	0.7
		BRMI	0.2
		BRTEt	0.2
		DACA	12.5
		DISP	3.5
		ERBO	1.0
	38%	FEMY	4.7
3		FEPE	37.8
		GEDI	3.2
		JUOC	8.0
		MAGR	0.8
		PLCO	3.8
		TRDU	0.7
		VISAn	0.2
		ZEDA	0.2
		ТН	19.0
		BG	2.0
		TOTAL	100.0

POND 39				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		ACAMa	1.5	
		ACPA	0.5	
		AICA	1.5	
		AVBA	0.3	
		BRDI	0.3	
		BRHO	1.7	
		BRMI	1.2	
		CADE	0.2	
		DACA	26.7	
		ERBO	1.7	
		FEBR	0.8	
		FEMY	5.0	
		GEDI	1.2	
		HYGL	1.5	
4	44%	HYRA	0.5	
		JUOC	0.2	
		LYAR	0.2	
		MAGR	3.2	
		PLCO	12.5	
		PLLA	0.7	
		TAOV	0.7	
		TRAN	4.2	
		TRDU	0.7	
		VIHI	0.2	
		VISAn	0.2	
		VISAs	0.2	
		TH	25.2	
		BG	7.7	
		TOTAL	100.0	
Upland	9%	-	-	

POND 40 North			
Stratum	Relative % Cover of Wetland	Species	% Cover
		ELMA	53.3
		GAUS	1.0
2	33%	LYMI	0.3
2	5570	TH	25.7
		BG	19.7
		TOTAL	100.0
		ELMA	12.7
		ERAR12	22.3
		FEPE	0.7
		JUPH	9.3
3	41%	PLCO	8.7
		POMO	2.0
		RUCR	1.0
		TH	30.0
		BG	13.3
		TOTAL	100.0

POND 40 North				
Stratum	% Cover			
		BRMI	1.3	
		DECO	0.7	
		ERAR12	1.0	
	26%	GEDI	3.0	
		JUPH	33.3	
		LYHY	0.7	
4		MAGR	0.3	
4		PLCO	15.0	
		РОМО	1.0	
		RUCR	0.3	
		SIGA	0.3	
		ТН	36.0	
		BG	7.0	
		TOTAL	100.0	

Table B-9. Pond 40 North (Year 3 Post-Burn) Wetland Vegetation Cover by Stratum

Table B-10. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) WetlandVegetation Cover by Stratum

	POND 40 South			
Stratum	Relative % Cover of Wetland	Species	% Cover	
		ELACa	8.3	
		ELMA	4.3	
		FEPE	1.3	
		JUPH	0.7	
		LYHY	1.0	
		PHLE	0.3	
1	6%	PLCHh	50.0	
		PLCO	5.3	
		POMO	1.0	
		RUCR	3.3	
		TH	19.7	
		BG	4.7	
		TOTAL	100.0	
		AICA	6.0	
		BRHO	1.7	
		BRMI	3.7	
		ERBO	1.7	
		FEBR	0.7	
		HYGL	8.7	
			7.0	
		JUPH	7.0	
2	12%	JUPH PLCO	10.7	
2	12%		-	
2	12%	PLCO	10.7	
2	12%	PLCO RUAC	10.7 2.0	
2	12%	PLCO RUAC SIGA	10.7 2.0 2.7	
2	12%	PLCO RUAC SIGA TRAN	10.7 2.0 2.7 6.0	
2	12%	PLCO RUAC SIGA TRAN TRDU	10.7 2.0 2.7 6.0 0.3	

POND 40 South				
Stratum	Relative % Cover of Species Wetland		% Cover	
		BRDI	0.8	
		BRHO	0.7	
		BRMI	0.2	
		DACA	6.7	
		ERBO	0.3	
		FEBR	3.2	
		FEMY	0.2	
		FEPE	35.0	
3	82%	GEDI	4.0	
		HYGL	0.2	
		JUPH	0.5	
		MASA	4.5	
		MAGR	0.7	
		RUAC	2.2	
		TH	36.8	
		BG	4.2	
		TOTAL	100.0	

Table B-11. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland VegetationCover by Stratum

POND 43				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		CRAQ	0.7	
		DEDA	0.3	
		ELACa	4.7	
		ELMA	8.2	
		ERAR12	10.7	
1	46%	ISCE	0.7	
		JUPH	1.5	
		LAGL3	7.7	
		LYHY	1.2	
		LYMI	1.8	
		PLCHh	9.0	
		РОМО	1.8	
		POZI	6.5	
		PSCH	1.8	
		TRSC	0.3	
		TH	31.2	
		BG	12.0	
		TOTAL	100.0	

POND 43				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		AICA	0.3	
		BAPI	0.3	
		BRHO	0.3	
		BRMI	1.0	
		DECO	2.3	
		DEDA	3.3	
		ERAR12	0.3	
		FEBR	0.3	
		GAUS	0.3	
		GEDI	1.3	
		HYGL	0.7	
		JUBUb	0.3	
		JUCA	0.7	
		JUOC	1.0	
2	37%	JUPH	42.3	
		LYHY	3.7	
		LYMI	1.7	
		MAGR	1.3	
		MASA	0.7	
		PLCHh	1.0	
		POMO	1.3	
		POZI	0.7	
		PSCH	1.3	
		PSLU	0.3	
		SIBE	1.0	
		SOOL	1.0	
		TH	10.0	
		BG	21.0	
		TOTAL	100.0	

Table B-11 (continued). Pond 43 (Year 3 Post-Burn,
Year 2 Post-Subsurface Munitions Remediation)Wetland Vegetation Cover by Stratum

POND 43				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		ACAMa	6.0	
		AICA	1.0	
		BRHO	1.0	
		BRMI	1.3	
		CIQU	0.3	
		DACA	44.7	
		DECO	2.3	
		ERAR12	3.3	
		FEBR	1.0	
		GAUS	0.7	
		GEDI	0.7	
	15%	HYGL	0.7	
		JUBUb	0.3	
		JUOC	0.3	
		JUPH	0.3	
3		LYAR	0.3	
		LYHY	0.7	
		LYMI	0.3	
		MAEX	1.3	
		MAGR	4.0	
		PLCO	5.0	
		РОМО	0.3	
		PSCH	0.3	
		SIBE	0.3	
		TRDU	5.0	
		TROB	0.3	
		ZEDA	0.3	
		TH	7.0	
		BG	10.7	
		TOTAL	100.0	
Upland	1%	-	-	

Table B-12. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)
Wetland Vegetation Cover by Stratum

POND 35					
Stratum	Relative % Cover of Wetland	Species	% Cover		Stratu
		COCO	0.7		
		ELMA	1.5		
		FEPE	0.2		
		LAGL3	0.8		
		LYHY	9.0		
1	20%	PLCHh	25.5		
1	20%	PLCO	34.5		
	-	PSCH	2.3		4
		TRSC	1.7		
		TH	11.5		
		BG	12.3		
		TOTAL	100.0		
		DEDA	0.2		
		FEPE	0.3		
		HYGL	0.2		
		LYHY	0.2		
2		NAAT	0.2		
	36%	PLCO	36.7		
		PSCH	1.5		
		TRAN	5.3		
		TH	27.7		
		BG	27.8		
		TOTAL	100.0		

POND 35				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		AICA	1.2	
		AVBA	0.3	
		BRDI	0.5	
		BRHO	1.0	
		BRMI	0.3	
		BRTEt	0.3	
4	44%	DACA	28.3	
		ERBO	0.7	
		FEBR	1.5	
		FEMY	0.5	
		FEPE	28.0	
		GEDI	1.7	
		HOBR	0.2	
		HYGL	0.5	
		PLCO	2.0	
		TRAN	11.2	
		TRDU	0.2	
		TH	19.0	
		BG	2.8	
		TOTAL	100.2	

Table B-13. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 42				
Stratum	Relative % Cover of Wetland	Species	% Cover	
		ELACa	37.3	
		ELMA	3.0	
		ERAR12	4.0	
		JUPH	11.0	
		LAGL3	0.7	
1	11%	LYHY	1.3	
		PLCHh	1.3	
		POMO	0.7	
		TH	28.7	
		BG	12.3	
		TOTAL	100.3	
		ELACa	1.7	
		ELMA	42.3	
		ERAR12	0.3	
		ISHO	0.3	
		LAGL3	0.3	
2	10%	LYHY	0.7	
		PLCHh	0.7	
		POMO	4.3	
		PS sp	0.3	
		TH	49.0	
		TOTAL	100.0	

POND 42			
Stratum	Relative % Cover of Wetland	Species	% Cover
		AGLAV	0.5
		BRTEt	0.7
		CIQU	0.2
		COCO	0.5
		DEDA	0.5
		ELACa	16.5
		ERAR12	14.8
		HERA	0.2
		HYGL	0.2
		JUPH	35.0
		LAGL3	0.5
3	41%	LYAR	0.2
		LYHY	0.8
		LYMI	0.7
		PLCHh	0.8
		POMO	5.8
		PS sp	0.0
		PSCH	0.3
		SEGL	0.3
		SOOL	0.2
		TH	17.3
		BG	4.0
		TOTAL	100.0

Table B-13 (continued). Pond 42 (Year 3 Post-Mastication and Post Burn, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 42			
Stratum	Relative % Cover of Wetland	Species	% Cover
		AICA	1.0
		AVBA	0.3
		BRMI	1.0
		BRTEt	0.3
		DACA	19.0
		DECO	26.7
		ERAR12	0.3
		FEBR	1.0
Λ	1 4 9/	GAPH	2.3
4	14%	GAUS	1.3
		HYGL	0.7
		LYAR	2.0
		PLER	0.3
		РОМО	0.7
		ZEDA	0.7
		TH	18.7
		BG	23.7
		TOTAL	100.0
		COCO	63.3
		POMO	4.7
		ERCA	0.3
5	6%	PS sp	0.3
		TH	29.7
		BG	1.7
		TOTAL	100.0
Upland	17%	-	-

	PO	ND 44	
Stratum	Relative % Cover of Wetland	Species	% Cover
		AGLAv	1.0
		BRMI	0.7
		ELACa	3.7
		ERAR12	12.0
		ERBO	0.3
		FEBR	0.3
		HYGL	0.3
		JUBUb	7.0
		JUPH	1.0
		LAGL3	0.3
1	59%	LYHY	5.7
		LYMI	1.3
		PLCHh	5.7
		PLCO	0.7
		POMO	10.7
		POZI	0.7
		PSCH	10.0
		TRDU	2.0
		TH	16.7
		BG	20.0
		TOTAL	100.0

Table B-14. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

	POND 44		
Stratum	Relative % Cover of Wetland	Species	% Cover
		AGLAv	2.3
		BRMI	0.7
		BRTEt	1.3
		CRAQ	0.3
		DEDA	1.0
	9%	ELACa	1.0
		ELMA	0.3
		ERAR12	5.3
		JUBUb	18.3
2		JUCA	0.3
2		JUPH	2.0
		LYHY	12.3
		LYMI	1.0
		PLCHh	6.7
		PLCO	1.0
		POMO	8.7
		PSCH	2.0
		TH	8.0
		BG	27.3
		TOTAL	100.0

Table B-15 (Continued). Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 44			
Stratum	Relative % Cover of Wetland	Species	% Cover
		ACPA	1.7
		AICA	1.0
		AVBA	0.7
		BRMA	1.3
		BRTEt	0.7
		CAAT	0.3
		DACA	46.7
		ELACa	0.3
		ERAR12	4.3
		FEMY	0.3
		GAPH	0.7
		GEDI	0.3
	18%	HYGL	1.7
3		JUBUb	1.0
		JUPH	1.3
		LYAR	2.7
		LYMI	1.3
		MAGR	12.0
		PLCO	11.3
		POMO	1.0
		TAOV	0.3
		TRCA5	0.3
		TRDU	2.7
		TRPU	0.7
		ZEDA	0.3
		TH	1.3
		BG	3.7
		TOTAL	100.0

POND 44			
Stratum	Relative % Cover of Wetland	Species	% Cover
		AGLAv	0.3
		BRMI	0.7
		BRTEt	1.3
		DEDA	1.0
		ELACa	8.0
		ERAR12	10.7
		GEDI	0.3
		HYGL	0.3
	4%	JUBUb	1.0
		JUCA	0.3
		JUPH	36.3
4		LAGL3	1.3
		LYHY	5.0
		LYMI	1.3
		PLCHh	0.7
		PLCO	0.7
		POMO	1.3
		POZI	0.3
		PSCH	2.0
		TRDU	1.0
		TRVA	0.7
		TH	15.0
		BG	11.0
		TOTAL	100.7
Upland	11%	-	-

POND 56			
Stratum	Relative % Cover of Wetland	Species	% Cover
		ELMA	46.2
		MALE	3.8
1	6%	TH	48.2
		BG	1.8
		TOTAL	100.0
		DISP	25.2
		ELACa	2.7
		ELMA	8.3
2	5%	JUPH	1.7
		TH	53.8
		BG	8.3
		TOTAL	100.0
		ELMA	19.3
	16%	DISP	11.7
3		JUPH	11.2
		TH	55.0
		BG	2.8
		TOTAL	100.0
		DISP	4.8
		JUPH	14.2
		LYHY	0.7
		PHLE	0.5
		PLCHh	0.2
4	24%	POMO	1.3
		STAJ	1.0
		TRSC	1.2
		TH	74.3
		BG	1.8
		TOTAL	100.0

	PC	ND 56	
Stratum	Relative % Cover of Wetland	Species	% Cover
		AGAV	0.8
		BRMI	0.2
		BRTEt	0.5
		DECO	0.3
	45%	DEDA	1.3
		DISP	2.0
		ELACa	1.0
5		ERAR12	15.2
	46%	ERBO	0.3
		JUPH	22.7
		LYHY	0.5
		MALE	5.5
		POMO	1.2
		TH	46.3
		BG	2.2
		TOTAL	100.0
Upland	3%	-	-

Table B-17. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 60			
Stratum	Relative % Cover of Wetland	Species	% Cover
		ELMA	51.3
		MALE	2.5
1	7%	TH	45.3
		BG	0.8
		TOTAL	100.0
	39%	COCO	0.3
		DISP	7.2
		ELMA	44.3
2		JUPH	2.5
		TH	40.5
		BG	5.2
		TOTAL	100.0
		DISP	3.5
	13%	ELMA	20.3
3		JUPH	37.8
		TH	36.8
		BG	1.5
		TOTAL	100.0

	POND 60		
Stratum	Relative % Cover of Wetland	Species	% Cover
		AICA	0.2
		BRMI	1.2
		COCO	0.2
		DISP	8.5
		ELACa	4.8
		ELMA	4.7
		ERCA	0.8
		ISHO	0.2
4 41%		JUPH	1.0
	11%	LYHY	0.7
	41%	PHLE	1.5
		POMO	11.3
		PSLU	0.3
		PSST	0.3
		RUCR	0.3
		SOOL	0.2
		STAJ	12.0
		TH	47.3
		BG	4.5
		TOTAL	100.0

Table B-18. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)
Wetland Vegetation Cover by Stratum

POND 61					
Stratum	Relative % Cover of Wetland	Species	% Cover	Stratum	Relat Cove Wet
		BRTEt	1.3		
		CRAQ	0.3		
		ELACa	2.5		
		ELMA	21.3		
		ISHO	4.8		
		LACO	1.8		
		LAGL3	2.8		
		LYHY	0.5		
1	1%	LYMI	0.3		
		PLCHh	2.0		
		POMO	0.3		
		POZI	0.2		
		PSCH	0.3		
		TRSC	3.0		
		TH	24.5	3	4
		BG	33.8		
		TOTAL	100.0		
2 (CCG)	6%				

Stratum	Relative % Cover of Wetland	Species	% Cover
		AGLAv	0.2
		BRMA	0.2
		BRMI	0.5
		BRTEt	6.7
		CIQU	0.2
		DACA	0.2
		DEDA	0.2
		ELACa	10.0
		ERAR12	16.5
		FEMY	0.2
		GEDI	0.5
		HYGL	0.2
		ISHO	2.5
		JUPH	1.2
3	4%	LAGL3	6.5
		LYHY	6.7
		LYMI	1.8
		MAGR	0.2
		MIPA	0.2
		PLCHh	17.0
		POMO	0.2
		POZI	2.2
		PSCH	1.0
		SOOL	0.7
		TRVA	0.2
		UNK1	0.2
		TH	14.8
		BG	9.7
		TOTAL	100.2

POND 61

Table B-17 (continued). Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 61			
Stratum	Relative % Cover of Wetland	Species	% Cover
		ACAMa	0.2
		ACMI	1.2
		AICA	0.2
		BRHO	0.3
		BRMA	4.0
		BRMI	0.3
		BRTEt	0.8
		DACA	28.8
		ELACa	1.3
		ERAR12	4.5
		FEMY	0.2
4	59%	GEDI	4.5
		HYGL	2.3
		HYRA	0.3
		JUPH	18.8
		LYAR	0.3
		LYMI	1.0
		MAGR	9.3
		MASA	0.8
		MIPA	1.7
		ТН	14.0
		BG	5.2
		TOTAL	100.2
Upland	32%	-	-

Table B-19. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 73			
Stratum	Relative % Cover of Wetland	Species	% Cover
	11%	ELMA	63.7
		JUPH	0.3
1		POMO	0.7
		TH	32.3
		BG	3.0
		TOTAL	100.0
	DEDA ELACa ERAR12	DEDA	0.5
		ELACa	1.7
		7.5	
		GEDI	0.2
2	46%	JUPH	67.5
	40%	LAGL3	1.0
		PLCHh	0.2
		POMO	3.0
		TH 1	18.7
		TOTAL	100.2

POND 73			
Stratum	Relative % Cover of Wetland	Species	% Cover
		AGLAv	0.2
		BRMI	1.0
		CAAMa3	2.0
		DECO	2.2
		DEDA	2.2
		ELACa	1.3
4	41%	ERAR12	30.8
		GEDI	0.2
		HYGL	1.3
		HYRA	0.2
		JUBUb	0.3
		JUCA	0.5
-		JUPH	12.5
		LOGA	0.2
		LYHY	2.0
		LYMI	1.0
		PLCHh	0.3
		POMO	23.2
		PSCH	0.7
		SOOL	0.7
		ZEDA	0.7
		TH	8.2
		BG	8.5
		TOTAL	100.0
Upland	2%	-	-

Table B-20. Machine Gun Flats (Year 3 Post-Mastication) Wetland Vegetation Cov	ver by Stratum
--	----------------

	Machine Gun Flats				
Stratum	Relative % Cover of Wetland	Species	% Cover		
		ELMA	15.0		
1	0.3%	PEAM	6.0		
		PONO	50.0		
		AGAV	0.8		
		DISP	1.3		
		ELACa	0.3		
		ELMA	14.7		
		JUBA	0.2		
		JUPH	1.0		
2	53%	LYHY	0.3		
		MALE	0.3		
		РОМО	5.3		
		PONO	2.2		
		TH	71.8		
		BG	1.7		
		TOTAL	100.0		

	Machine Gun Flats					
Stratum	Relative % Cover of Wetland	Species	% Cover			
		AGAV	2.3			
		BRMI	2.0			
		CAPY	0.3			
		DECO	2.7			
		DISP	3.7			
		ELTR3	0.3			
		ERBO	1.0			
	1%	ERCA	1.7			
		GEDI	3.7			
		HYGL	2.0			
		HYRA	0.7			
		JUBA	6.0			
3		LYHY	1.7			
5		MALE	1.0			
		PLCO	2.0			
		POMO	14.0			
		PSLU	2.3			
		PSST	0.3			
		SEGL	3.7			
		SIGA	0.7			
		SOAS	1.0			
		SOOL	1.0			
		STAJ	1.7			
		TH	35.0			
		BG	9.3			
		TOTAL	100.0			

Machine Gun Flats					
Stratum	Relative % Cover of Wetland	Species	% Cover		
		AICA	0.3		
		BRHO	0.3		
		BRMI			
		DECO 7			
		DISP	10.3		
		ERAR12	19.3		
		ERBO	0.3		
		FEPE	0.2		
		GEDI	4.2		
		HYGL	3.3		
4	9%	JUPH	0.3		
		LIBI5	1.0		
		LYHY	0.2		
		MALE	1.5		
		PLCO	0.2		
		SOOL	1.0		
		STAJ	4.0		
		ZEDA	0.2		
		TH	42.7		
		BG	2.0		
		TOTAL	100.5		
		AGAV	0.3		
		DISP	0.3		
		ELACa	1.7		
		GEDI	1.3		
5		JUBA			
5	5%	JUPH	0.7		
		PSST	0.7		
		TH	43.7		
		BG	23.3		
		TOTAL	100.0		

	Machine Gun Flats					
Stratum	Wetland					
		ELACa	1.7			
		EUOC	24.3			
		GEDI	0.3			
		JUBA	16.3			
		LYAR	1.0			
6	3%	PS sp.	1.0			
		SOOL	0.7			
		VELAI	0.7			
		ТН	25.7			
		BG	27.7			
		TOTAL	99.3			

Table B-22 (Continued). Machine Gun Flats (Year 3 Post-Mastication) Wetland Vegetation Cover by Stratum

Machine Gun Flats					
Stratum	Relative % Cover of Wetland	Species	% Cover		
		AGLAv	0.8		
		AICA	2.8		
		BRMI	1.0		
		BRTEt	1.2		
		CAAMa3	4.5		
		CAAT	0.2		
		DACA	1.2		
		DECO	0.3		
		ERAR12	18.0		
		ERBO	2.0		
		FEBR	1.2		
		FEMY	FEMY	0.2	
		GEDI	0.2		
		HYGL	0.8		
		JUBUb	0.8		
-	C 9/	JUCA	0.2		
7	6%	JUPH	1.5		
		LYAR	0.2		
		LYHY	0.3		
		LYMI	0.8		
		MA sp.	0.8		
		MAGR	0.3		
		PLCO	6.5		
		PSCH	0.5		
		SOOL	0.2		
		TR sp.	0.2		
		TRDE	0.5		
		TRVA	0.2		
		ZEDA	2.0		
		TH	22.3		
		BG	28.2		
		TOTAL	99.8		

cation) Wetland Vegetation Cover by Stratum						
	Machine G	un riats				
Stratum	Relative % Cover of Wetland	Species	% Cover			
		BRMI	0.3			
		BRTEt	1.3			
		DACA	21.7			
	ERBO		3.7			
		FEBR	25.5			
		FEPE	3.8			
8	219/	GEDI	0.7			
0	21%	HYGL	2.8			
		LIBI5	1.8			
		LYHY	0.5			
		MAGR	0.8			
		TH	30.2			
		BG	6.7			
		TOTAL	99.8			
		AVBA	0.3			
		BRMI	1.3			
		ELACa	1.7			
		ELTR3	39.0			
		ERCA	4.0			
		GEDI	1.0			
		HYGL	3.3			
		LYAR	0.7			
		LYHY	0.7			
9	2%	PLCO	0.3			
3	۷/۵	POMO	0.3			
		PS sp.	0.3			
		PSLU	0.3			
		RUAC	2.0			
		SEGL	6.0			
		SOAS	0.7			
		SOOL	0.7			
		TH	31.0			
		BG	6.3			
		TOTAL	100.0			

POND 16					
Stratum	Relative % Cover of Wetland	Species	% Cover		
		CIVU	1.0		
		GNPA	1.0		
		HECUo			
1	4%	MALE	1.0		
1	470	SCCA	65.0		
		TH	5.0		
		BG	25.0		
		TOTAL	100.0		
		CRSC2	4.5		
	34%	ECCR	0.3		
		ELMA	53.5		
3		GNPA	9.8		
5		MALE	0.7		
		TH	23.2		
		BG	8.0		
		TOTAL	100.0		
		AGPA	0.2		
		BRMI	0.2		
		CAPR	53.5		
		CIVU	1.3		
		ELTR3	0.2		
4	25%	JUBA	13.3		
		JUPH	0.8		
		RUUR	9.0		
		TH	20.2		
		BG	1.2		
		TOTAL	99.8		

Table C-23. Pond 16 (Year 2 Post-Subsurface Munitions Remediation)Wetland Vegetation Cover by Stratum

	POND 16				
Stratum	Relative % Cover of Wetland	Species	% Cover		
		CABA	39.3		
		RUUR	19.7		
5	33%	SOEL	9.8		
5		TH	20.8		
		BG	10.3		
		TOTAL	100.0		
		JUBA	71.7		
		PSLU	0.3		
6	4%	RUCR	0.7		
b	4%	TH	23.3		
		BG	4.0		
		TOTAL	100.0		

APPENDIX C

CTS and Aquatic Invertebrate Data from Aquatic Surveys at Vernal Pools Monitored in 2020 This page intentionally left blank

Vernal Pool Sampling		# of Larvae	# of Larvae	Total Le	Total Length of Larvae (mm)		Snout-Vent Length of Larvae (mm)			Survey Hours
Date	Observed	Measured	Mean*	Range	Mode	Mean*	Range	Mode	ŕ	
	3/17/2020	0	-	-	-	-	-	-	-	30 mins
5	4/15/2020	0	-	-	-	-	-	-	-	4 hrs 30 mins
	5/18/2020	0	-	-	-	-	-	-	-	1 hr
101 East (East)	4/17/2020	0	-	-	-	-	-	-	-	3 hrs
101 East	4/17/2020	0	-	-	-	-	-	-	-	3 hrs
(West)	5/19/2020	0	-	-	-	-	-	-	-	18 mins
41	4/16/2020	0	-	-	-	-	-	-	-	2 hrs 15 mins
	3/17/2020	0	-	-	-	-	-	-	-	11 mins
3 North	4/16/2020	0	-	-	-	-	-	-	-	30 mins
	5/20/2020	0	-	-	-	-	-	-	-	8 mins
3 South	4/16/2020	0	-	-	-	-	-	-	-	45 mins
20	3/17/2020	0	-	-	-	-	-	-	-	5 mins
39	4/16/2020	0	-	-	-	-	-	-	-	17 mins
	4/16/2020	0	-	-	-	-	-	-	-	18 mins
40 North	5/20/2020	0	-	-	-	-	-	-	-	10 mins
40 South	4/16/2020	0	-	-	-	-	-	-	-	4 mins
43	4/15/2020	0	-	-	-	-	-	-	-	15 mins
35	4/16/2020	0	-	-	-	-	-	-	-	21 mins
42	4/15/2020	0	-	-	-	-	-	-	-	1 hr 30 mins
42	5/19/2020	0	-	-	-	-	-	-	-	26 mins
44	4/15/2020	0	-	-	-	-	-	-	-	21 mins

Vernal Pool Sampling		# of Larvae	# of Larvae	Total Le	ength of Larv	vae (mm)	Snout-V	ent Length c (mm)	of Larvae	Survey Hours	
	Date	Observed	Measured	Mean*	Range	Mode	Mean*	Range	Mode		
	3/16/2020	0	-	-	-	-	-	-	-	1 hr 36 mins	
56	4/13/2020	0	-	-	-	-	-	-	-	3 hrs 20 mins	
	5/19/2020	0	-	-	-	-	-	-	-	30 mins	
	3/16/2020	1	1	16	16	16	7	7	7	1 hr	
60	4/14/2020	5	5	34	26-38	38	17	15-19	18	2 hrs 40 mins	
	5/18/2020	7	7	88	70-101	N/A	49	41-55	52	1 hr	
61	4/14/2020	0	-	-	-	-	-	-	-	21 mins	
73	4/20/2020	0	-	-	-	-	-	-	-	1 hr	
	3/16/2020	5	5	25	23-29	N/A	12	9-15	N/A	2 hrs 4 mins	
Machine Gun Flats	4/14/2020	3	3	36	26-51	N/A	23	19-29	N/A	8 hrs 12 mins	
1 1015	5/18/2020	0	-	-	-	-	-	-	-	4 hrs 50 mins	
10	4/20/2020	0	-	-	-	-	-	-	-	2 hrs	
16	5/19/2020	0	-	-	-	-	-	-	-	1 hr 10 mins	

Table C-1. CTS Aquatic Survey Results for Vernal Pools Monitored in 2020 at Former Fort Ord

*The mean was rounded to the nearest whole number

								Α	quatic Ir	nvertebr	ate							
Vernal Pool	CA Fairy Shrimp	Clam Shrimp (Order Conchostraca)	Water Flea (Order Cladocera)	Seed Shrimp (Order Ostracoda)	Copepods (Order Eucopepoda)	Scuds	Mayfly Larvae (Order Ephemeroptera)	Dragonfly Larvae (Order Anisoptera)	Damselfly Larvae (Order Zygoptera)	Backswimmer (Family Corixidae)	Waterboatmen (Family Corixidae)	Predaceous Diving Beetle (Family Dytiscidae)	Giant Water Bug (Family Belostomatidae)	Water Scorpion (Family Nepidae)	Mosquito (Family Culicidae)	Water Scavenger Beetle (Family Hydrophilidae)	Dipteran Larvae (Order Diptera)	Snail
5	-	•	•	•	•	-	•	-	•	•	•	•	-	-	•	•	•	•
101 East (East)	•	-	•	•	•	-	•	-	•	٠	•	•	-	-	•	•	•	•
101 East (West)	-	-	•	•	•	-	•	•	•	•	•	•	-	-	•	•	•	-
41	•	-	•	•	•	-	-	-	•	٠	•	•	-	-	•	•	•	-
3 North	•	-	•	•	•	•	•	•	•	•	•	•	-	-	•	•	•	•
3 South	•	-	•	•	•	-	•	-	•	٠	•	•	-	-	•	•	•	-
39	•	-	•	•	•	-	•	-	•	-	•	•	-	-	•	•	•	•
40 North	•	•	٠	•	•	-	•	-	•	•	-	•	-	-	•	•	•	-
40 South	•	-	•	•	•	-	-	-	-	-	-	-	-	-	•	-	•	-
43	•	-	-	•	•	-	•	-	-	٠	-	•	-	-	•	-	•	-
35	•	•	•	•	•	-	•	-	-	٠	•	-	-	-	•	-	-	-
42	•	-	٠	•	٠	-	•	•	•	٠	٠	•	-	-	•	•	٠	-
44	٠	-	-	•	٠	-	•	-	•	٠	•	•	-	-	٠	-	٠	-
56	-	•	•	•	٠	-	•	•	•	٠	•	•	•	-	•	•	•	•

Table C-2. Aquatic Invertebrates Observed During Aquatic Surveys at Vernal Pools Monitored in 2020

								A	quatic Ir	nvertebr	ate							
Vernal Pool	CA Fairy Shrimp	Clam Shrimp (Order Conchostraca)	Water Flea (Order Cladocera)	Seed Shrimp (Order Ostracoda)	Copepods (Order Eucopepoda)	Scuds	Mayfly Larvae (Order Ephemeroptera)	Dragonfly Larvae (Order Anisoptera)	Damselfly Larvae (Order Zygoptera)	Backswimmer (Family Corixidae)	Waterboatmen (Family Corixidae)	Predaceous Diving Beetle (Family Dytiscidae)	Giant Water Bug (Family Belostomatidae)	Water Scorpion (Family Nepidae)	Mosquito (Family Culicidae)	Water Scavenger Beetle (Family Hydrophilidae)	Dipteran Larvae (Order Diptera)	Snail
60	-	•	•	•	•	-	•	•	•	•	•	•	-	-	•	•	•	•
61	•	-	•	-	•	-	-	-	•	•	•	•	-	-	•	•	•	-
73	•	-	٠	•	•	-	-	-	•	•	•	•	-	-	•	•	٠	-
Machine Gun Flats	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•	•	•
16	•	•	•	•	•	-	•	•	•	•	•	•	•	-	•	•	•	•

Table C-2. Aquatic Invertebrates Observed During Aquatic Surveys at Vernal Pools Monitored in 2020

Vernal Pool	Sampling Date	Abundance (# of Individuals)
	3/17/2020	Not detected
5	4/15/2020	Not detected
	5/18/2020	Not detected
101 East (East)	4/17/2020	Moderate (15)
	4/17/2020	Not detected
101 East (West)	5/19/2020	Not detected
41	4/16/2020	Moderate (15)
	3/17/2020	Not detected
3 North	4/16/2020	Low (6)
	5/20/2020	Not detected
3 South	4/16/2020	Moderate (13)
39	3/17/2020	Not detected
39	4/16/2020	Low (5)
40 North	4/16/2020	Moderate (36)
40 North	5/20/2020	Not detected
40 South	4/16/2020	Low (1)
43	4/15/2020	Moderate (40)

Table C-3. Fairy Shrimp Aquatic Survey Results for Vernal Pools Monitored in 2020 at Former Fort Ord

Vernal Pool	Sampling Date	Abundance (# of Individuals)			
35	4/16/2020	High (186)			
42	4/15/2020	High (125)			
42	5/19/2020	Not detected			
44	4/15/2020	High (258)			
	3/16/2020	Not detected			
56	4/13/2020	Not detected			
	5/19/2020	Not detected			
	3/16/2020	Not detected			
60	4/14/2020	Not detected			
	5/18/2020	Not detected			
61	4/14/2020	High (172)			
73	4/20/2020	Low (1)			
	3/16/2020	Not detected			
Machine Gun Flats	4/14/2020	Low (1)			
	5/18/2020	Not detected			
16	4/20/2020	High (267)			
10	5/19/2020	Not detected			

Table C-3. Fairy Shrimp Aquatic Survey Results for Vernal Pools Monitored in 2020 at Former Fort Ord

APPENDIX D

Site Photos

This page intentionally left blank

Figure D-1. Pond 5 (Reference): Vegetation Photo Point 1 on 6/10/2020

Figure D- 2. Pond 5 (Reference): Vegetation Photo Point 2 on 6/10/2020

Figure D- 3. Pond 101 East (East) (Reference): Vegetation Photo Point on 6/09/2020

Figure D- 4. Pond 997 (Reference): Vegetation Photo Point on 6/2/2020

Figure D- 5. Pond 101 East (West) (Year 2 Post-Mastication): Vegetation Photo Point on 6/8/2020

Figure D- 6. Pond 41 (Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 6/1/2020

Figure D-7. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 6/5/2020

Figure D- 8. Contra Costa goldfields (*Lasthenia conjugens*) at Pond 3 North on 5/13/2020.

Figure D- 9. Close-up of Contra Costa goldfields (*Lasthenia conjugens*) At Pond 3 North on 5/22/2020.

Figure D- 10. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point 1 on 6/8/2020

Figure D- 11. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 5/22/2020

Figure D- 12. Pond 40 North (Year 3 Post-Burn): Vegetation Photo Point on 6/16/2020

Figure D- 13. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point 1 on 5/27/2020

Figure D- 14. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point 2 on 5/27/2020

Figure D- 15. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Photo Point on 5/28/2020

Figure D- 16. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 5/21/2020

Figure D- 17. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 6/16/2020

Figure D- 18. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 6/1/2020

Figure D- 19. Pond 56 (Year 3 Post-Mastication): Vegetation Photo Point on 6/17/2020

Figure D- 20. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 6/17/2020

Figure D- 21. California tiger salamander (*Ambystoma californiense*) at Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) on 5/18/2020.

Figure D- 22. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point 1 on 5/20/2020

Figure D- 23. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point 2 on 5/20/2020

Figure D- 24. Contra Costa goldfields (*Lasthenia conjugens*) at Pond 61 Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) on 5/19/2020

Figure D- 25. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 6/3/2020

Figure D- 26. Machine Gun Flats (Year 3 Post-Mastication): Vegetation Photo Point 1 on 6/4/2020

Figure D- 27. Machine Gun Flats (Year 3 Post-Mastication): Vegetation Photo Point 2 on 6/4/2020

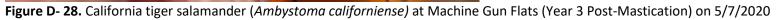


Figure D- 29. Pond 16 (Year 2 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 8/11/2020

APPENDIX E

Vegetation Species Richness of Native and Non-Native Species and Wetland Indicator Category by Vernal Pool This page intentionally left blank

Table E-1. Pond 5 (Reference) Vegetation Species Richness of Native and Non-Native Species by Stratum

	Pond 5							
Stratum	Native	Non-Native	Unidentified					
1	2	2	0					
2	3	1	0					
3	9	9	0					
6	5	2	0					
7	3	5	0					
Basin Total	39	30	0					

Table E-2. Pond 101 East (East) (Reference) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 101 East (East)							
Stratum	Stratum Native Non-Native Unidentified						
1	4	4	0				
2	2	3	0				
4	5	5	0				
5	10	14	0				
6	4	8	0				
8	14	11	0				
Basin Total	51	35	0				

Table E-3. Pond 997 (Reference) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 997								
Stratum	Stratum Native Non-Native Unidentified							
1	13	5	0					
3	17	14	1					
5	5 10 4 0							
Basin Total	56	26	0					

Table E-4. Pond 101 East (West) (Year 2 Post-
Mastication) Vegetation Species Richness of
Native and Non-Native Species by Stratum

	Pond 101 East (West)							
Stratum	Native	Non-Native	Unidentified					
1	7	3	0					
2	4	0	0					
4	7	8	0					
5	4	7	0					
6	6	13	0					
8	6	6	0					
Basin Total	41	34	0					

Table E-5. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by

Stratum								
	Pond 41							
Stratum	Stratum Native Non-Native Unidentified							
1	8	1	0					
2	9	3	0					
3	9	11	0					
4	4 12 10 0							
Basin Total	39	21	0					

Table E-6. Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 3 North							
Stratum Native Non-Native Unidentified							
1	3	1	0				
2	11	6	0				
3	15	14	1				
Basin Total	46	28	0				

Table E-7. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

itative openeo by otherain							
Pond 3 South							
Stratum Native Non-Native Unidentified							
1	9	4	0				
2	18	12	0				
3	17	15	0				
4	13	10	0				
Basin Total	60	32	0				

Table E-8. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 39				
Stratum	Native	Non-Native	Unidentified	
1	2	0	0	
3	6	12	0	
4	7	19	0	
Basin Total	53	32	0	

Table E-9. Pond 40 North (Year 3 Post-Burn) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 40 North			
Stratum	Native	Non-Native	Unidentified
2	3	0	0
3	3	4	0
4	5	6	0
Basin Total	31	28	0

Table E-11. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 43			
Stratum	Native	Non-Native	Unidentified
1	13	2	0
2	15	11	0
3	15	12	0
Basin Total	62	23	1

Table E-10. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 40 South			
Stratum	Native	Non-Native	Unidentified
1	5	5	0
2	1	11	0
3	4	10	0
Basin Total	36	30	0

Table E-12. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 35			
Stratum	Native	Non-Native	Unidentified
1	5	4	0
2	3	5	0
4	3	14	0
Basin Total	29	31	0

Table E-13. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by

	Pond 42				
Stratum	Native	Non-Native	Unidentified		
1	6	2	0		
2	6	2	1		
3	12	7	1		
4	7	8	0		
5	1	2	1		
Basin Total	57	33	3		

Table E-14. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 44			
Stratum	Native	Non-Native	Unidentified
1	10	8	0
2	12	5	0
3	13	12	0
4	13	8	0
Basin Total	41	26	0

Table E-15. Pond 56 (Year 3 Post-Mastication)Vegetation Species Richness of Native and Non-
Native Species by Stratum

Pond 56			
Stratum	Native	Non-Native	Unidentified
1	2	0	0
2	4	0	0
3	3	0	0
4	6	2	0
5	8	5	0
Basin Total	42	25	0

Table E-17. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 61			
Stratum	Native	Non-Native	Unidentified
1	12	2	0
3	17	8	1
4	11	9	0
Basin Total	68	29	1

Table E-16. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 60			
Stratum	Native	Non-Native	Unidentified
1	2	0	0
2	3	1	0
3	3	0	0
4	9	8	0
Basin Total	32	25	0

Table E-18. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 73			
Stratum	Native	Non-Native	Unidentified
1	2	1	0
2	6	2	0
4	12	9	0
Basin Total	43	25	1

Table E-19. Machine Gun Flats (Year 4 Post-Mastication) Vegetation Species Richness ofNative and Non-Native Species by Stratum

Machine Gun Flats			
Stratum	Native	Non-Native	Unidentified
2	7	3	0
3	8	15	0
4	7	11	0
5	5	2	0
6	4	3	1
7	15	12	2
8	3	8	0
9	3	13	1
Basin Total	77	43	3

Table E-20. Pond 16 (Year 2 Post-SubsurfaceMunitions Remediation) Vegetation SpeciesRichness of Native and Non-Native Species by

Stratum

Pond 16			
Stratum	Native	Non-Native	Unidentified
3	3	2	0
4	6	2	0
5	3	0	0
6	1	2	0
Basin Total	52	29	0

Vernal Pool	Native	Non-Native	Unidentified	Total
5	39	30	0	69
101 East (East)	51	35	0	86
997	56	26	0	82
101 East (West)	41	34	0	75
41	39	21	0	60
3 North	46	28	0	74
3 South	60	32	0	92
39	53	32	0	85
40 North	31	28	0	59
40 South	36	30	0	66
43	62	23	1	86
35	29	31	0	60
42	57	33	3	93
44	41	26	0	67
56	42	25	0	67
60	32	25	0	57
61	68	29	1	98
73	43	25	1	69
Machine Gun Flats	77	43	3	123
16	52	29	0	81

Table E-21. Vegetation Species Richness of Native and Non-Native Species within Entire Vernal PoolBasin at Vernal Pools Monitored in 2020

Pond 5							
Stratum	OBL	FACW	FAC	FACU	UPL	NL	
1	1	1	0	1	0	1	
2	1	2	0	1	0	0	
3	4	6	2	2	1	3	
6	1	5	1	0	0	0	
7	0	2	1	1	1	3	
Basin Total	8	12	9	16	1	23	

Table E-22. Pond 5 (Reference) Number of Wetland Plants by Indicator Category by Stratum

Table E-23. Pond 101 East (East) (Reference) Number of Wetland Plants by Indicator Category by Stratum

Pond 101 East (East)								
Stratum	OBL	FACW	FAC	FACU	UPL	NL		
1	4	1	1	2	0	0		
2	1	1	1	1	0	1		
4	0	3	1	3	1	2		
5	1	3	4	4	3	9		
6	0	2	1	4	3	2		
8	1	4	4	4	3	9		
Basin Total	5	17	15	15	4	30		

Table E-24. Pond 997 (Reference) Number of Wetland Plants by Indicator Category by Stratum

	Pond 997						
Stratum	OBL	FACW	FAC	FACU	UPL	NL	
1	7	8	2	0	0	1	
3	3	7	5	5	0	12	
5	2	5	2	0	0	5	
Basin Total	11	15	10	13	1	32	

Table E-25. Pond 101 East (West) (Year 2 Post-Mastication) Number of Wetland Plantsby Indicator Category by Stratum

	Pond 101 East (West)							
Stratum	OBL	FACW	FAC	FACU	UPL	NL		
1	3	4	1	1	0	1		
2	2	1	0	1	0	0		
4	1	2	5	1	1	5		
5	1	2	3	1	0	4		
6	0	3	4	3	2	7		
8	2	3	3	2	1	1		
Basin Total	9	18	13	12	3	20		

Pond 41							
Stratum	OBL	FACW	FAC	FACU	UPL	NL	
1	5	3	0	1	0	0	
2	5	4	1	1	0	1	
3	1	4	3	5	1	6	
4	1	5	5	3	0	8	
Basin Total	6	15	11	11	1	16	

Table E-26. Pond 41 (Year 2 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Table E-27 Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Pond 3 North							
Stratum	OBL	FACW	FAC	FACU	UPL	NL	
1	3	1	0	0	0	0	
2	6	7	3	0	0	1	
3	1	7	5	5	1	11	
Basin Total	11	15	12	10	3	23	

Table E-28. Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Pond 3 South								
Stratum	OBL	FACW	FAC	FACU	UPL	NL		
1	7	4	1	1	0	0		
2	4	9	7	3	0	7		
3	1	8	5	6	1	11		
4	2	3	4	4	1	9		
Basin Total	9	20	13	13	2	35		

Table E-29. Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Number ofWetland Plants by Indicator Category by Stratum

Pond 39							
Stratum	OBL	FACW	FAC	FACU	UPL	NL	
1	2	0	0	0	0	0	
3	0	2	4	5	1	6	
4	0	1	4	7	2	12	
Basin Total	7	17	13	12	3	33	

Pond 40 North						
Stratum	OBL	FACW	FAC	FACU	UPL	NL
2	1	1	0	0	0	1
3	1	3	3	0	0	0
4	1	3	2	0	0	5
Basin Total	4	7	10	12	2	24

Table E-30. Pond 40 North (Year 3 Post-Burn) Number of Wetland Plants by Indicator Category by Stratum

Table E-31. Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)Number of Wetland Plants by Indicator Category by Stratum

Pond 40 South						
Stratum	OBL	FACW	FAC	FACU	UPL	NL
1	4	3	3	0	0	0
2	0	1	2	5	0	4
3	0	1	3	4	0	6
Basin Total	5	14	10	14	2	21

Table E-32. Pond 43 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Number ofWetland Plants by Indicator Category by Stratum

Pond 43							
Stratum	OBL	FACW	FAC	FACU	UPL	NL	
1	8	6	0	0	0	1	
2	3	10	1	3	1	8	
3	1	8	4	3	0	11	
Basin Total	10	16	9	11	1	39	

Table E-33. Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Pond 35								
Stratum	OBL	FACW	FAC	FACU	UPL	NL		
1	6	1	2	0	0	0		
2	1	2	2	0	0	3		
4	0	1	4	5	0	7		
Basin Total	7	6	7	9	3	28		

Pond 42									
Stratum	OBL FACW FAC FACU UPL								
1	5	3	0	0	0	0			
2	6	2	0	0	0	1			
3	5	8	2	0	1	4			
4	0	2	3	2	0	8			
5	1	1	0	1	0	1			
Basin Total	11	18	11	14	2	37			

Table E-34. Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Table E-35. Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Pond 44								
Stratum	OBL	FACW	FAC	FACU	UPL	NL		
1	5	7	2	2	0	2		
2	5	8	2	1	0	1		
3	1	5	3	4	0	12		
4	5	8	3	2	0	3		
Basin Total	5	12	9	11	2	28		

Table E-36. Pond 56 (Year 3 Post-Mastication) Number of Wetland Plants by Indicator Category by Stratum

Pond 56										
Stratum	OBL	OBL FACW FAC FACU UPL N								
1	1	0	0	1	0	0				
2	2	2	0	0	0	0				
3	1	2	0	0	0	0				
4	4	4	0	0	0	0				
5	2	5	1	2	0	3				
Basin Total	8	11	12	12	2	22				

Table E-37. Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Pond 60									
Stratum	m OBL FACW FAC FACU UPL								
1	1	0	0	1	0	0			
2	2	2	0	0	0	0			
3	1	2	0	0	0	0			
4	6	5	3	2	1	0			
Basin Total	8	10	8	9	1	21			

Pond 61								
Stratum	Stratum OBL FACW FAC FACU UPL N							
1	9	4	0	0	0	1		
3	6	8	3	1	1	7		
4	1	3	3	5	0	8		
Basin Total	10	17	12	11	2	46		

Table E-38. Pond 61 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Table E-39. Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)Number of Wetland Plants by Indicator Category by Stratum

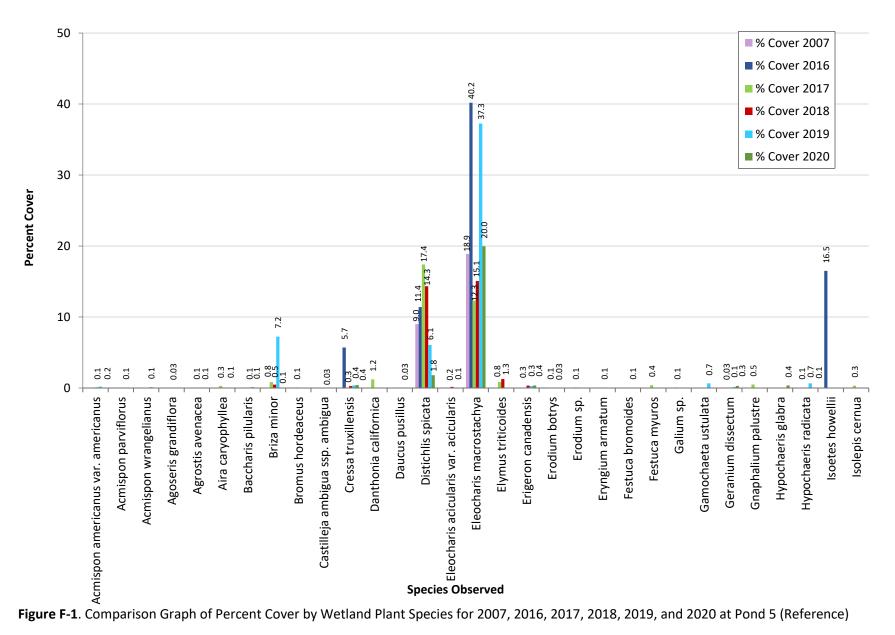
Pond 73								
Stratum	OBL	FACW	FAC	FACU	UPL	NL		
1	1	2	0	0	0	0		
2	3	4	0	0	0	1		
4	3	9	1	2	1	5		
Basin Total	9	15	10	9	1	25		

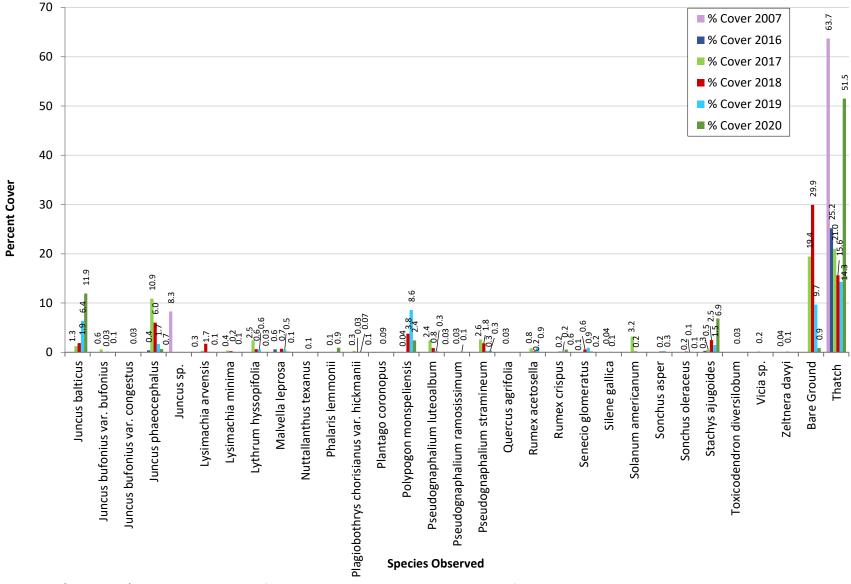
Table E-40. Machine Gun Flats (Year 3 Post-Mastication) Number of Wetland Plants
by Indicator Category by StratumMachine Gun FlatsStratumOBLFACWFACFACUUPLNL24401013244517

Stratum	OBL	FACW	FAC	FACU	UPL	NL
2	4	4	0	1	0	1
3	2	4	4	5	1	7
4	2	3	3	4	1	5
5	1	3	1	0	0	2
6	1	2	2	0	1	2
7	1	7	6	4	1	10
8	1	0	3	1	0	6
9	2	2	4	3	1	5
Basin Total	9	23	18	23	1	49

Table E-41. Pond 16 (Year 2 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

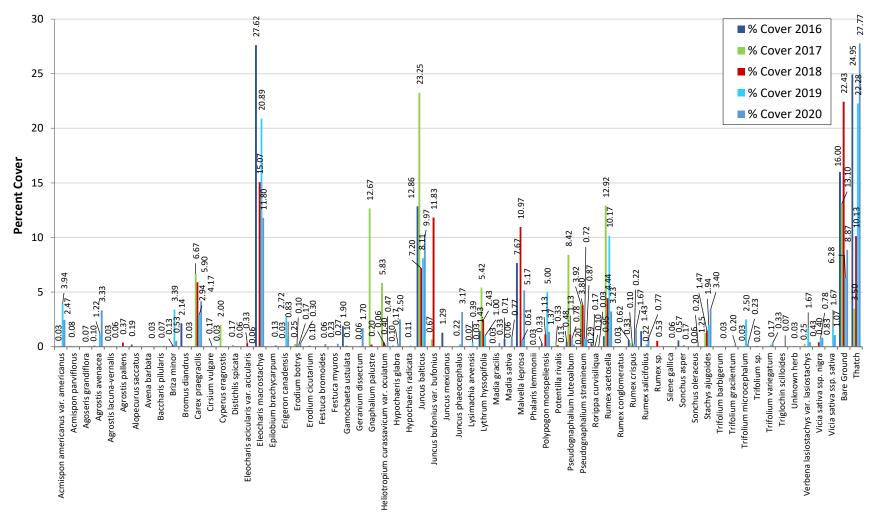
	Pond 16								
Stratum	atum OBL FACW FAC FACU UPL								
3	2	1	1	1	0	0			
4	0	3	3	1	1	0			
5	0	0	2	1	0	0			
6	0	2	1	0	0	0			
Basin Total	8	15	15	14	2	27			


Number of Wetland Plants Observed at Vernal Pools Monitored in 2020									
Vernal Pool	OBL	FACW	FAC	FACU	UPL	NL	Total		
5	8	12	9	16	1	23	69		
101 East (East)	5	17	15	15	4	30	86		
997	11	15	10	13	1	32	82		
101 East (West)	9	18	13	12	3	20	75		
41	6	15	11	11	1	16	60		
3 North	11	15	12	10	3	23	74		
3 South	2	3	4	4	1	9	23		
39	7	17	13	12	3	33	85		
40 North	4	7	10	12	2	24	59		
40 South	5	14	10	14	2	21	66		
43	10	16	9	11	1	39	86		
35	7	6	7	9	3	28	60		
42	11	18	11	14	2	37	93		
44	5	12	9	11	2	28	67		
56	5	12	9	11	2	28	67		
60	8	10	8	9	1	21	57		
61	10	17	12	11	2	46	98		
73	9	15	10	9	1	25	69		
Machine Gun Flats	9	23	18	23	1	49	123		
16	8	15	15	14	2	27	81		


Table E-42. Wetland Plants by Indicator Category within Entire Vernal Pool Basin at Vernal Pools Monitored in 2020

This page intentionally left blank

APPENDIX F


Species Composition of Follow-Up Wetland Vegetation Monitoring by Vernal Pool This page intentionally left blank

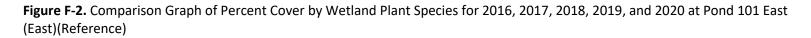


Figure F-1 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 2007, 2016, 2017, 2018, 2019, and 2020 at Pond 5 (Reference)

Burleson Consulting Inc. A Terracon Company

Species Observed

Former Fort Ord Wetland Monitoring

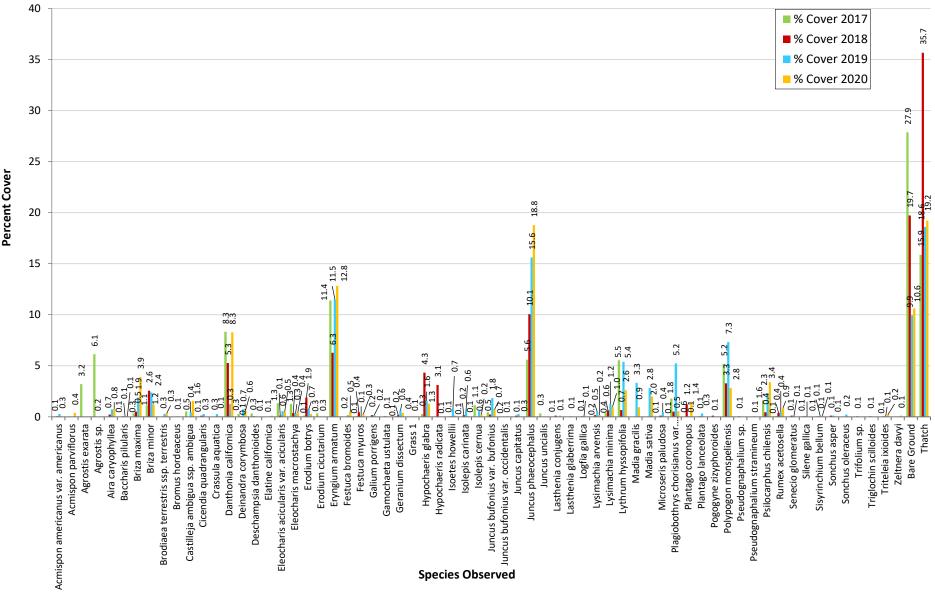
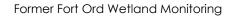



Figure F-3. Comparison Graph of Percent Cover by Wetland Plant Species for 2017, 2018, 2019, and 2020 at Pond 997 (Reference)

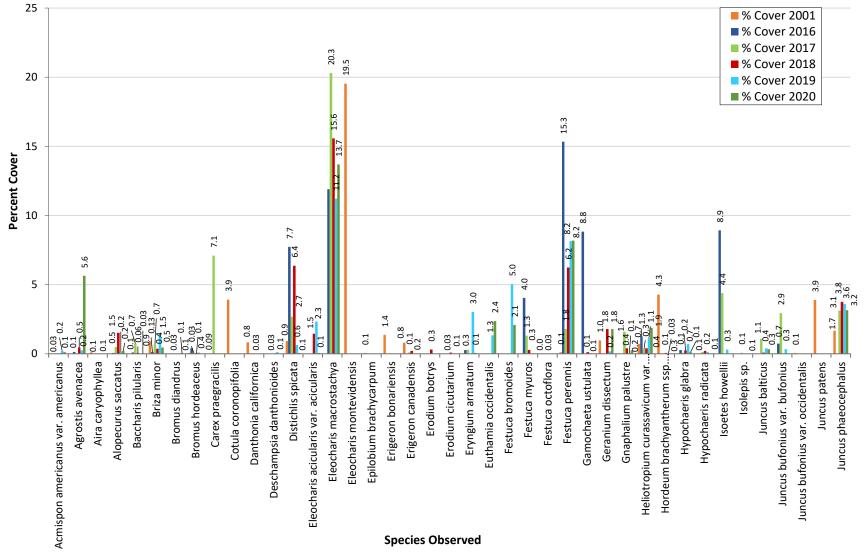
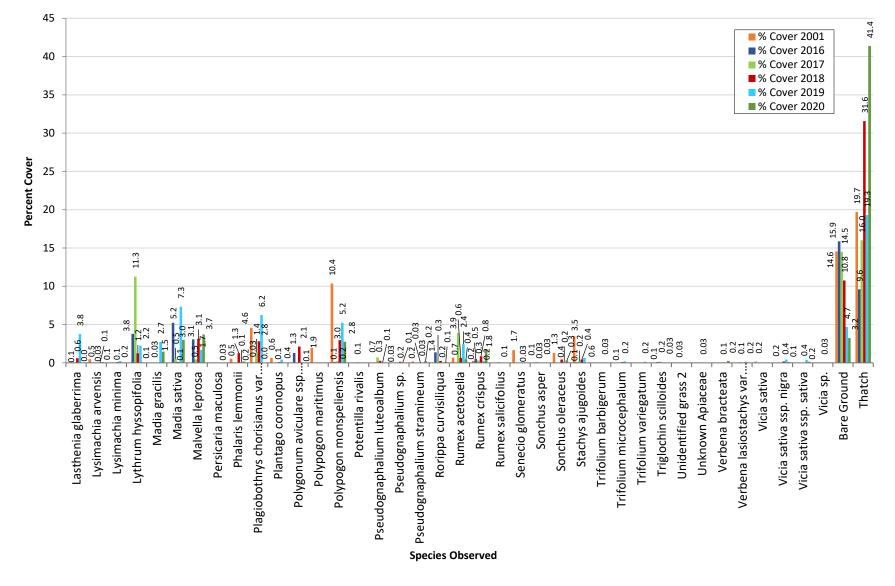



Figure F-4. Comparison Graph of Percent Cover by Wetland Plant Species for 2001, 2016, 2017, 2018, 2019, and 2020 at Pond 101 East (West) (Year 2 Post-Mastication)

Figure F-4 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 2001, 2016, 2017, 2018, 2019, and 2020 at Pond 101 East (West) (Year 2 Post-Mastication)

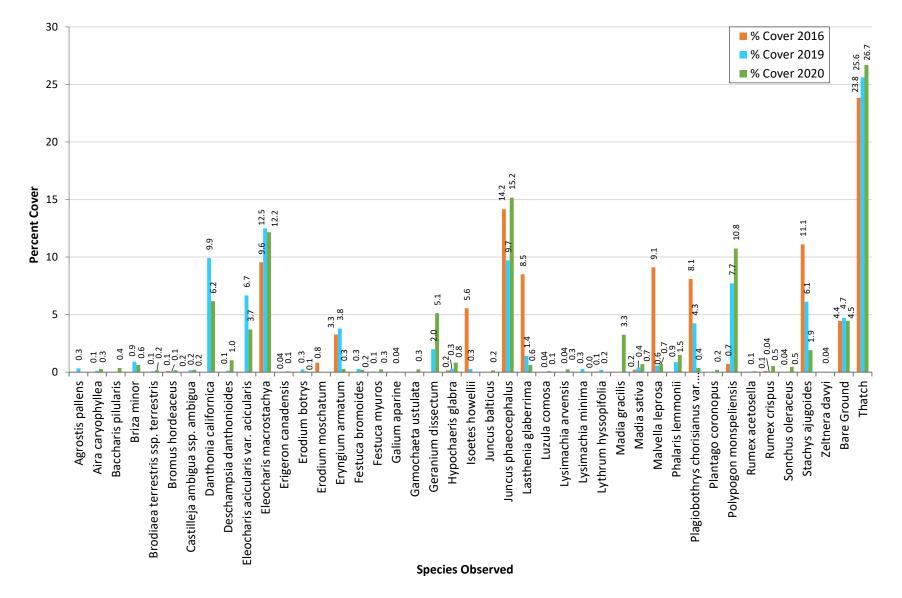
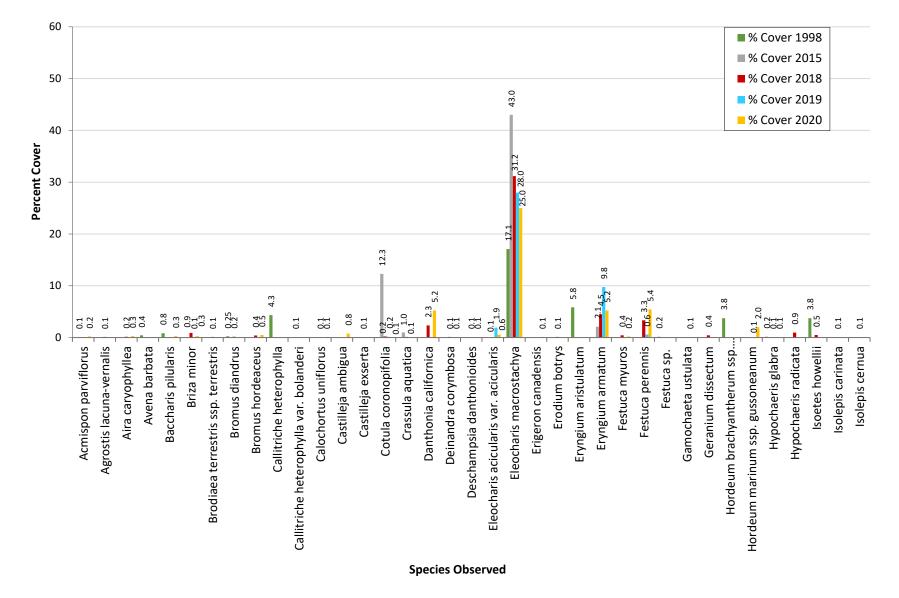
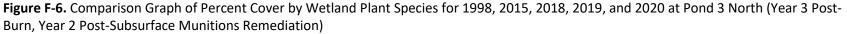
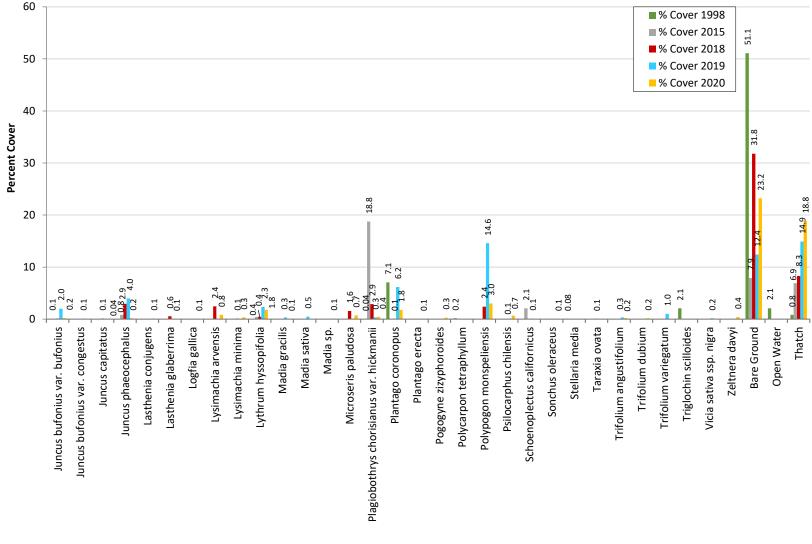
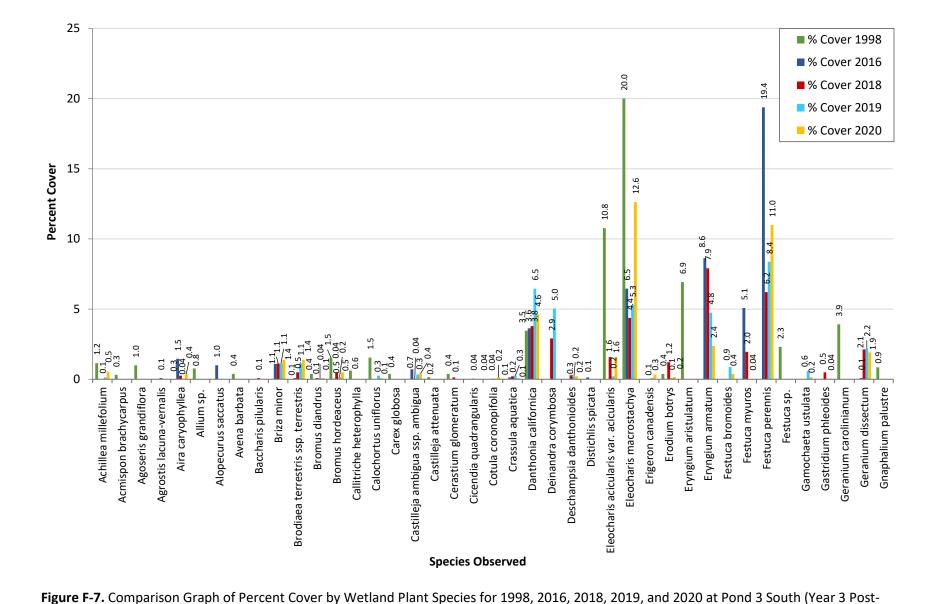
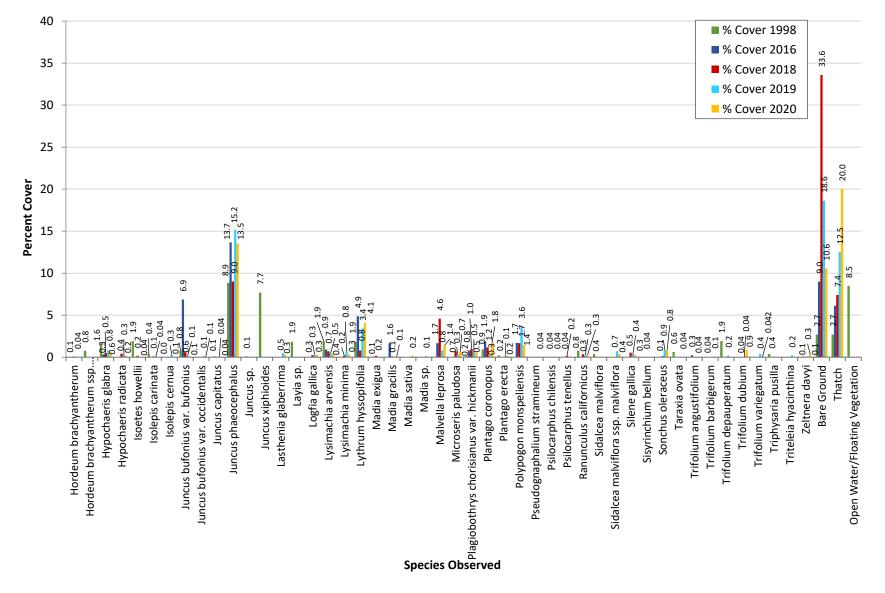
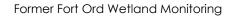
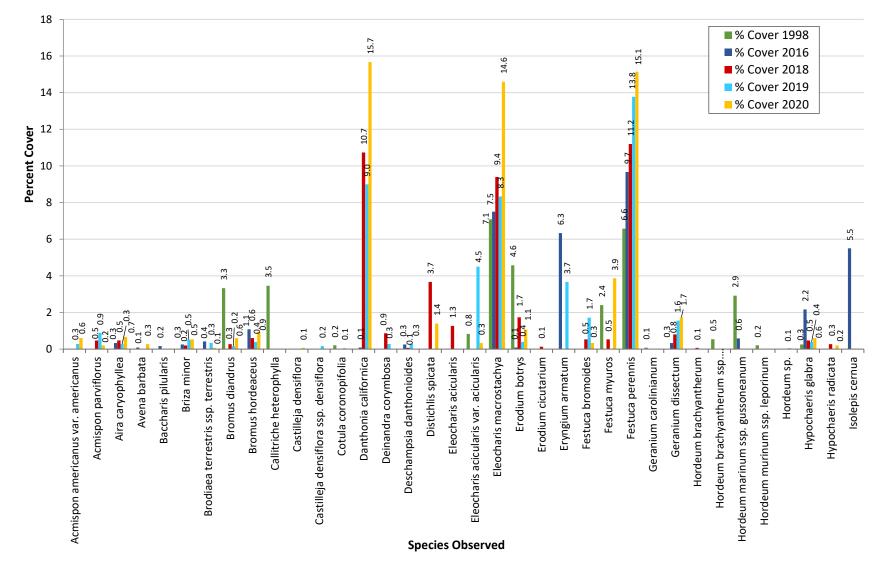





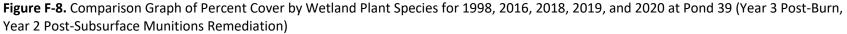
Figure F-5. Comparison Graph of Percent Cover by Wetland Plant Species for 2016, 2019 and 2020 at Pond 41 (Year 2 Post-Subsurface Munitions Remediation)






Figure F-6 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2015, 2018, 2019, and 2020 at Pond 3 North (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)




Burn, Year 2 Post-Subsurface Munitions Remediation)

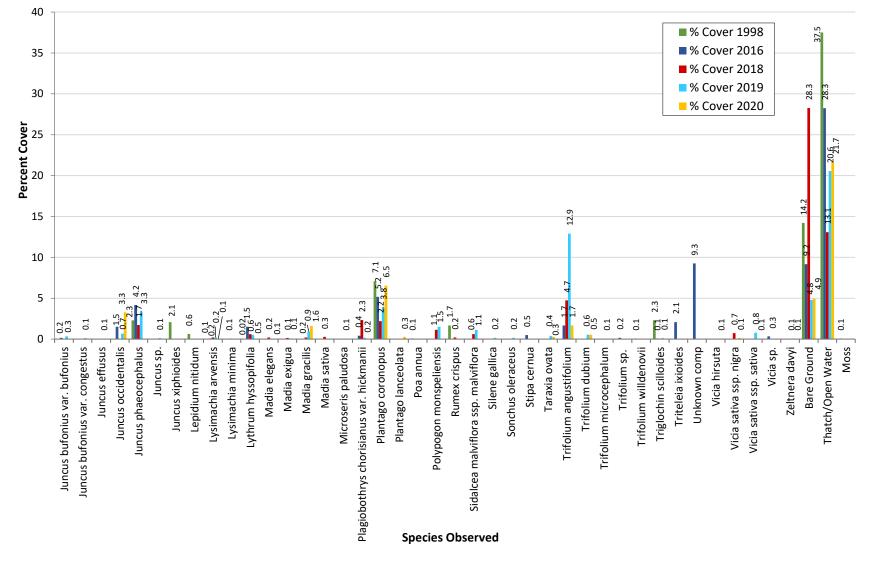


Figure F-7 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2016, 2018, 2019, and 2020 at Pond 3 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)

Figure F-8 (Continued). Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2016, 2018, 2019, and 2020 at Pond 39 (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)

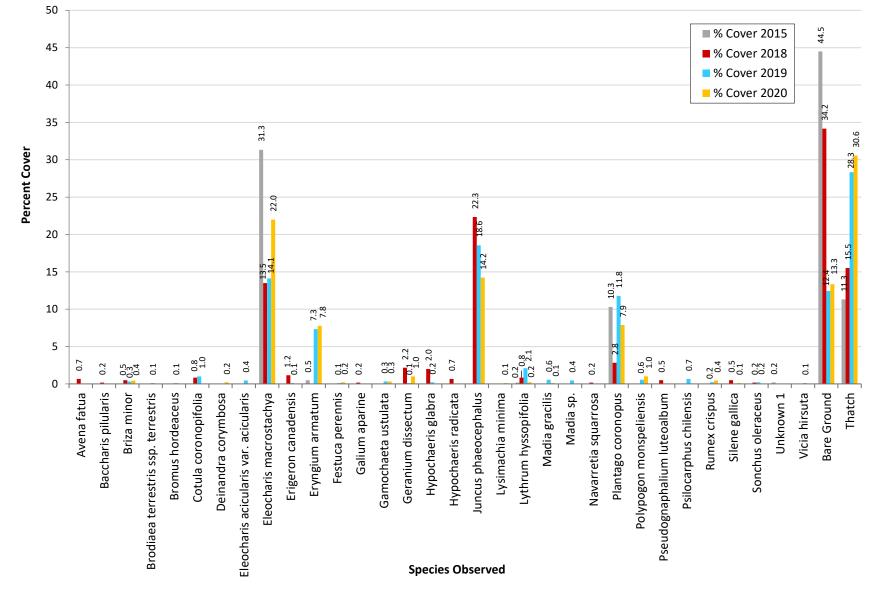
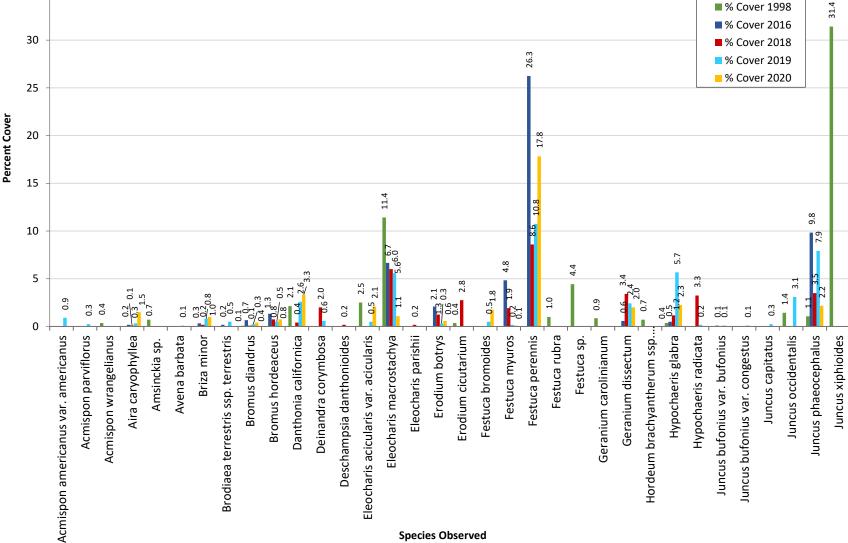
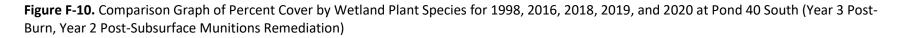
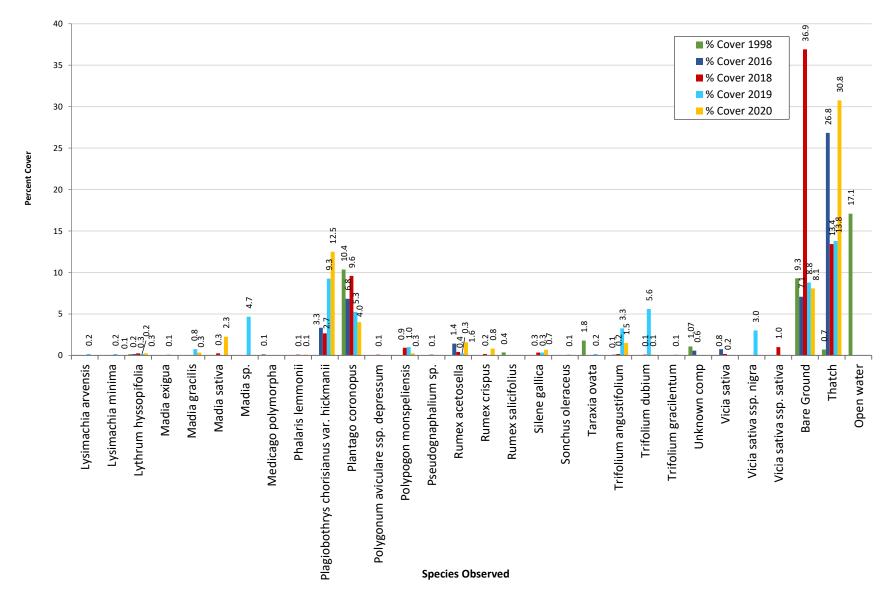
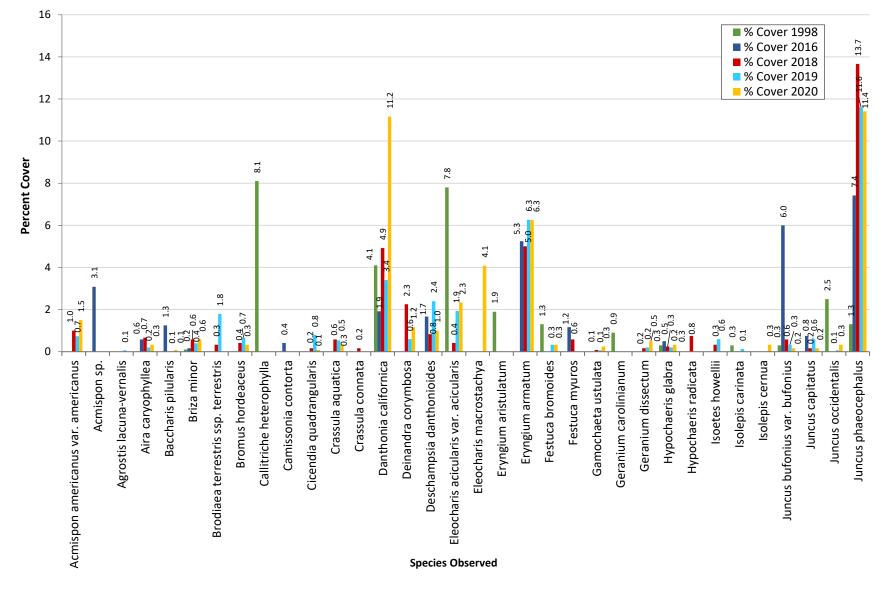
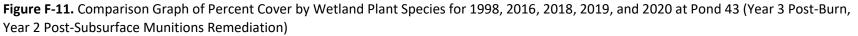
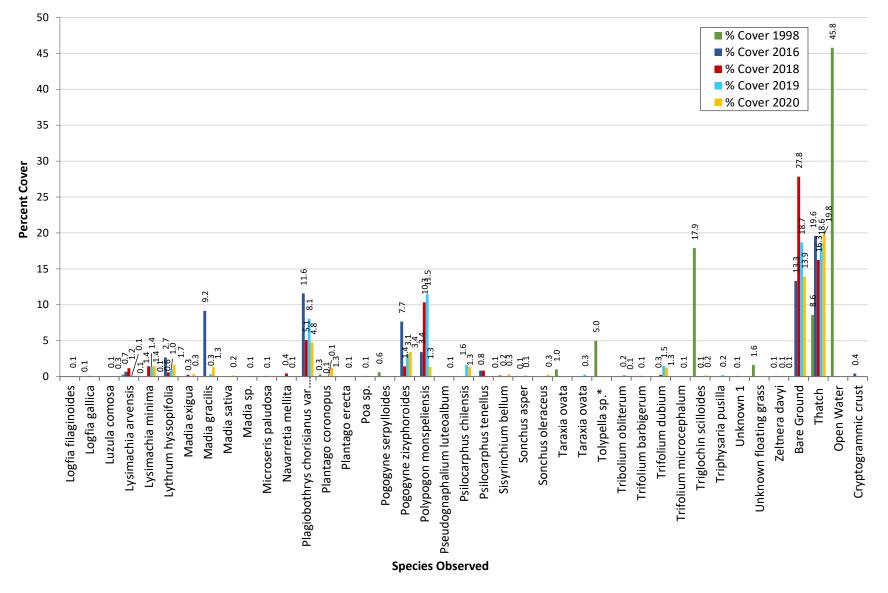





Figure F-9. Comparison Graph of Percent Cover by Wetland Plant Species for 2015, 2018, 2019, and 2020 at Pond 40 North (Year 3 Post-Burn)






35

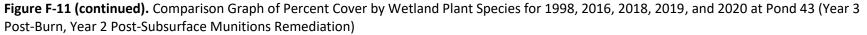
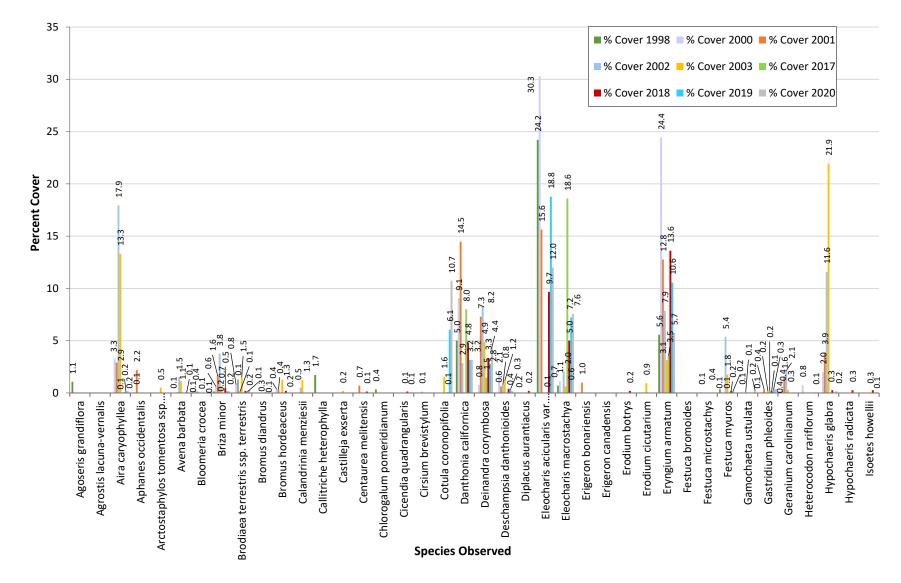
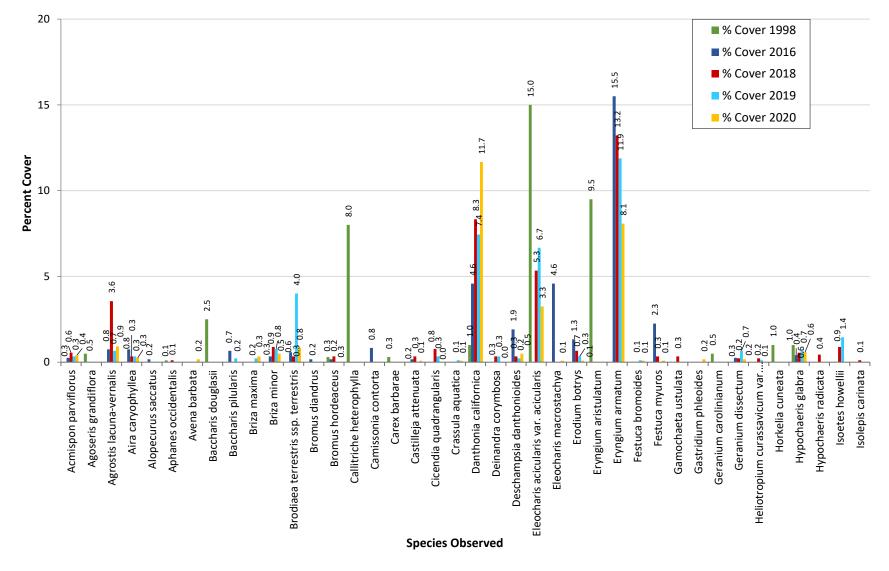
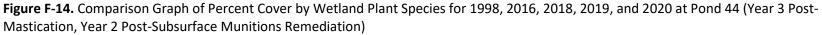
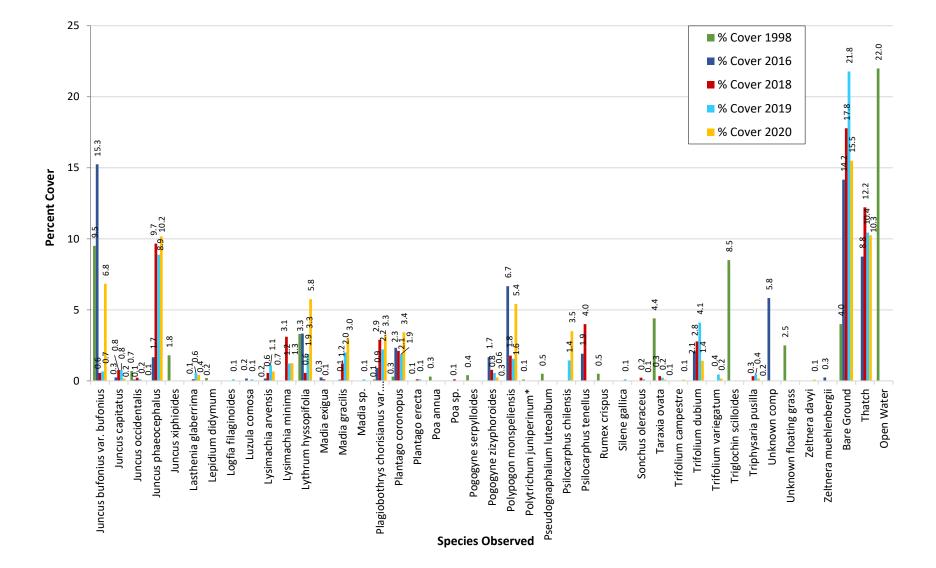


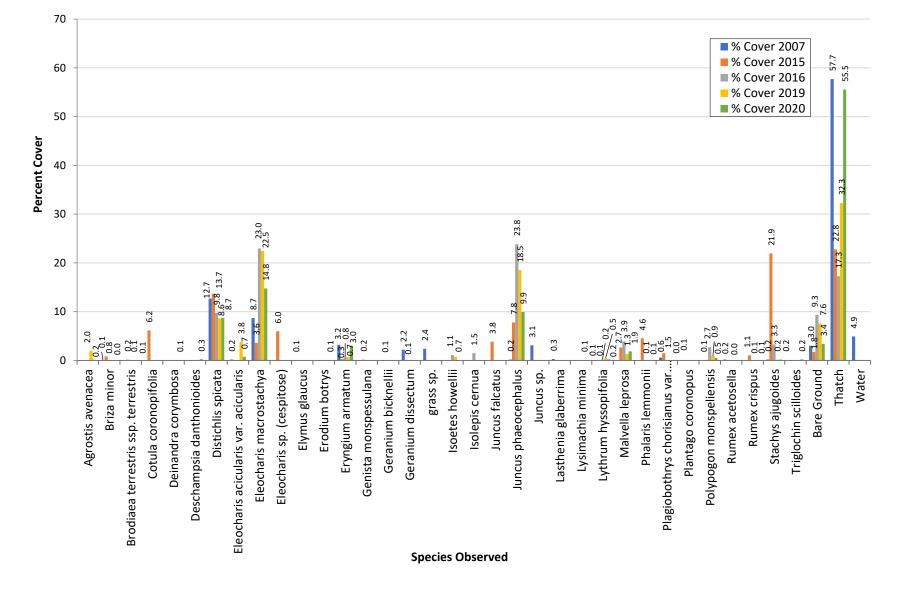
Figure F-10 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2016, 2018, 2019, and 2020 at Pond 40 South (Year 3 Post-Burn, Year 2 Post-Subsurface Munitions Remediation)

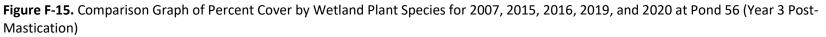


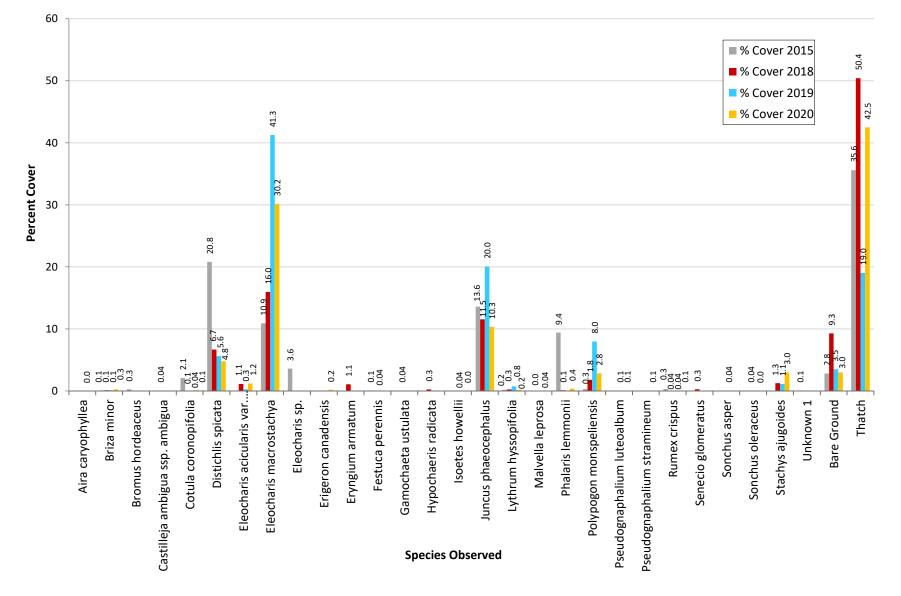

Figure F-12. Comparison Graph of Percent Cover by Wetland Plant Species for 2016, 2018, 2019, and 2020 at Pond 35 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)

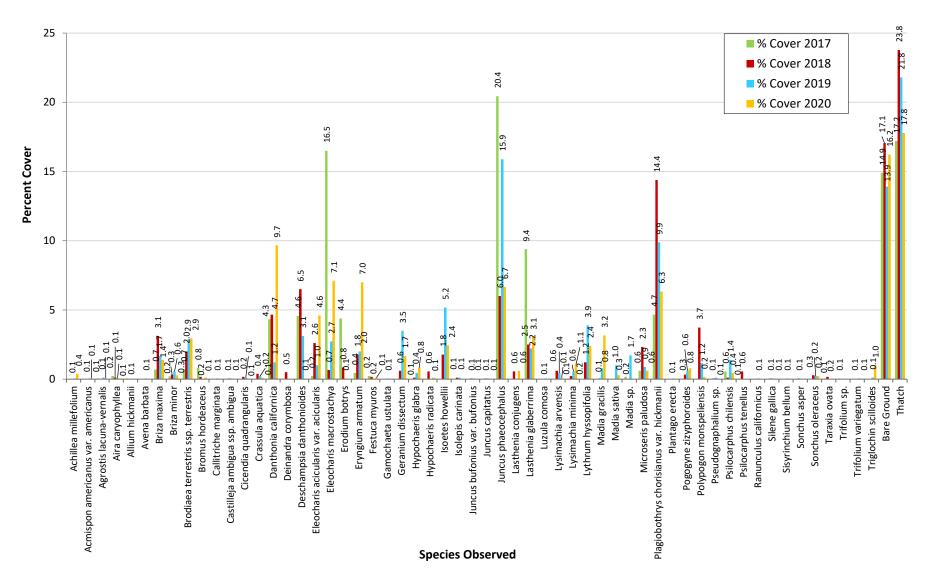


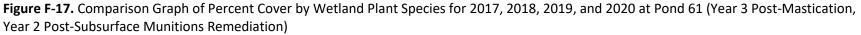

Figure F-13. Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2000, 2001, 2002, 2003, 2017, 2018, 2019, and 2020 at Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation)


Figure F-13 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2000, 2001, 2002, 2003, 2017, 2018, 2019, and 2020 at Pond 42 (Year 3 Post-Mastication and Post-Burn, Year 2 Post-Subsurface Munitions Remediation)






Figure F-14 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2016, 2018, 2019, and 2020 at Pond 44 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)



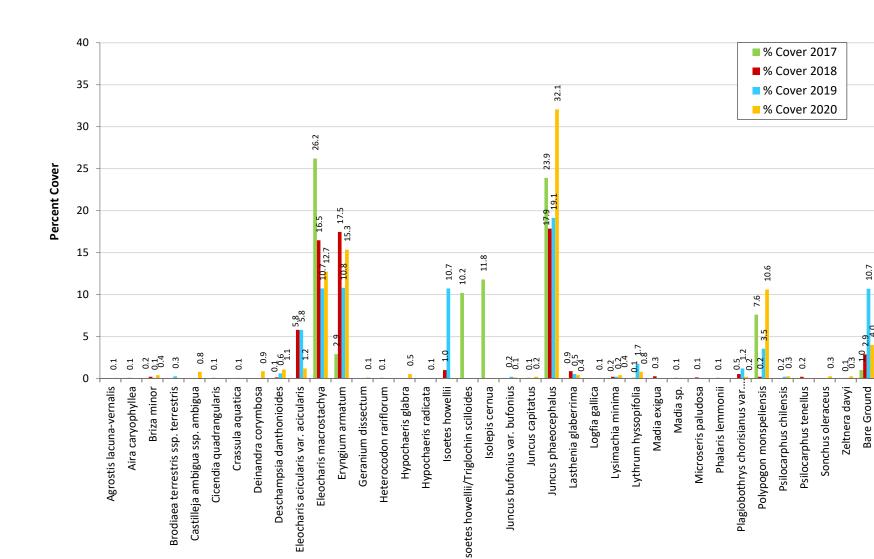


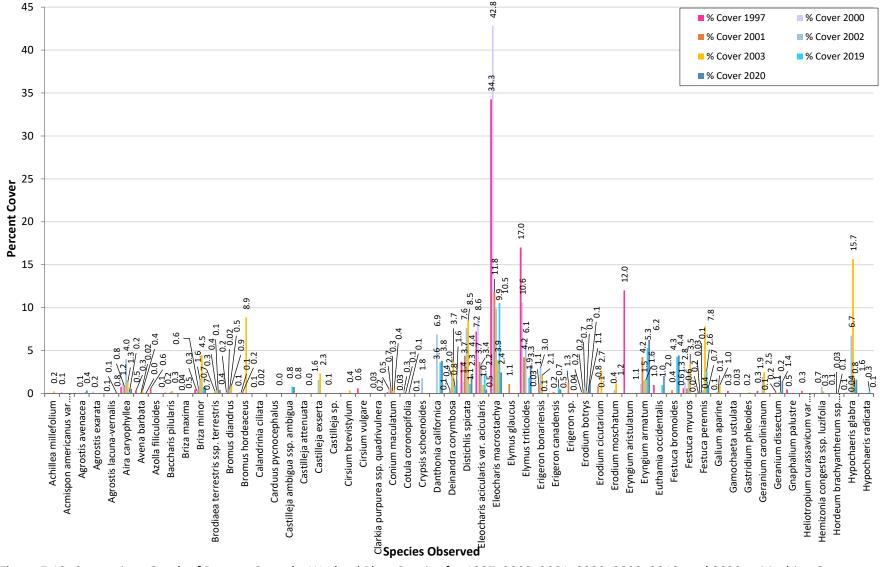
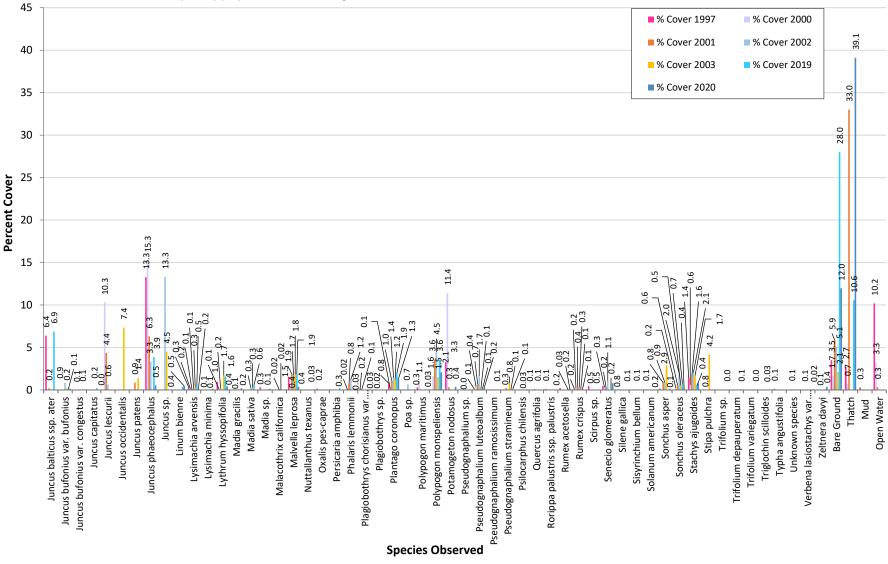
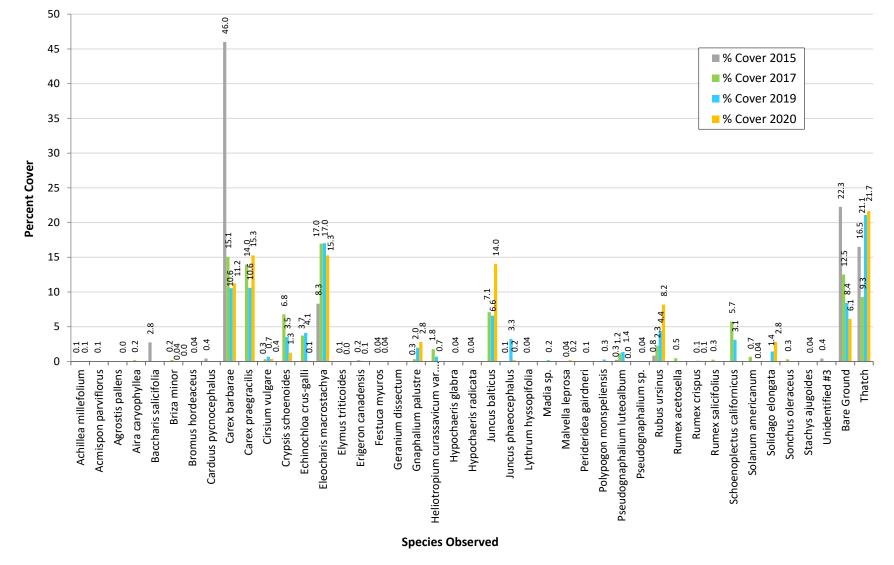
Figure F-16. Comparison Graph of Percent Cover by Wetland Plant Species for 2015, 2018, 2019, and 2020 at Pond 60 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)

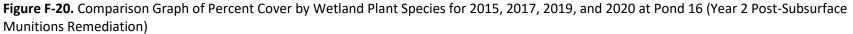
36.9

Thatch

Species Observed

Figure F-18. Comparison Graph of Percent Cover by Wetland Plant Species for 2017, 2018, 2019, and 2020 at Pond 73 (Year 3 Post-Mastication, Year 2 Post-Subsurface Munitions Remediation)


Figure F-19. Comparison Graph of Percent Cover by Wetland Plant Species for 1997, 2000, 2001, 2002, 2003, 2019, and 2020 at Machine Gun Flats (Year 3 Post-Mastication)

(2 of 2) (J-Z) Percent Cover of Species at Machine Gun Flats in 1997, 2000, 2001, 2002, 2003, and 2019

Figure F-19 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 1997, 2000, 2001, 2002, 2003, 2019, and 2020 at Machine Gun Flats (Year 3 Post-Mastication)

