2022 ANNUAL REPORT WETLAND VEGETATION AND WILDLIFE MONITORING CONTRACT NO. W91238-18-D-0007

FORMER FORT ORD

Prepared for: US Army Corps of Engineers Sacramento District 1325 J Street Sacramento, CA 95814-2922

Prepared by: Burleson Consulting Inc., A Terracon Company 1900 Garden Road, Suite 210 Monterey, CA 93940

April 2023

This page intentionally left blank

CONTENTS

Section

Page

1		INTR	ODU	ICTION	1
2		MET	HOD	S	8
	2.:	1	Vege	etation Monitoring	8
	2.2	2	Wild	llife Monitoring	10
		2.2.1	_	California Tiger Salamander	10
		2.2.2	2	California Fairy Shrimp	10
	2.3	3	Eval	uation for Data Quality Objectives and Success Criteria	11
3		RESU	JLTS.		13
	3.:	1	Pond	d 5	14
		3.1.1	_	Vegetation Monitoring	14
		3.1.2	2	Wildlife Monitoring	16
	3.2	2	Pond	d 101 East (East)	16
		3.2.1	_	Vegetation Monitoring	16
		3.2.2	2	Wildlife Monitoring	17
	3.3	3	Pond	d 997	18
		3.3.1	_	Vegetation Monitoring	18
		3.3.2	2	Wildlife Monitoring	20
	3.4	4	Pond	d 16	20
		3.4.1	_	Vegetation Monitoring	20
		3.4.2	2	Wildlife Monitoring	23
	3.5	5	Pond	d 39	23
		3.5.1	_	Vegetation Monitoring	23
		3.5.2	2	Wildlife Monitoring	24
	3.6	6	Pond	d 40 South	25
		3.6.1	_	Vegetation Monitoring	25
		3.6.2	2	Wildlife Monitoring	26
	3.7	7	Pond	d 41	26
		3.7.1	_	Vegetation Monitoring	26
		3.7.2	<u>)</u>	Wildlife Monitoring	28
	3.8	8	Pond	d 42	28
		3.8.1	_	Vegetation Monitoring	28

	3.8.	2	Wildlife Monitoring
	3.9	Pon	d 61
	3.9.	1	Vegetation Monitoring
	3.9.	2	Wildlife Monitoring
	3.10	Pon	d 75
	3.10	0.1	Vegetation Monitoring
	3.10	0.2	Wildlife Monitoring
4	DIS	CUSSI	ION
	4.1	Pon	d 5 – Reference
	4.1.	1	Vegetation Monitoring
	4.1.	2	Wildlife Monitoring
	4.1.	.3	Conclusion
	4.2	Pon	d 101 East (East) – Reference44
	4.2.	.1	Vegetation Monitoring45
	4.2.	.2	Wildlife Monitoring
	4.2.	.3	Conclusion54
	4.3	Pon	d 997 – Reference
	4.3.	1	Vegetation Monitoring55
	4.3.	.2	Wildlife Monitoring
	4.3.	.3	Conclusion
	4.4	Pon	d 16 – Year 466
	4.4.	1	Vegetation Monitoring
	4.4.	.2	Wildlife Monitoring
	4.4.	.3	Conclusion78
	4.5	Pon	d 39 – Year 4
	4.5.	1	Vegetation Monitoring79
	4.5.	2	Wildlife Monitoring
	4.5.	3	Conclusion
	4.6	Pon	d 40 South – Year 490
	4.6.	1	Vegetation Monitoring91
	4.6.	2	Wildlife Monitoring
	4.6.	3	Conclusion
	4.7	Pon	d 41 – Year 4
	4.7.	1	Vegetation Monitoring103
	4.7.	2	Wildlife Monitoring112

	4.7.3	Conclusion	
4.	8 Pon	d 42 – Year 4	
	4.8.1	Vegetation Monitoring	
	4.8.2	Wildlife Monitoring	
	4.8.3	Conclusion	
4.	9 Pon	d 61 – Year 4	
	4.9.1	Vegetation Monitoring	
	4.9.2	Wildlife Monitoring	
	4.9.3	Conclusion	
4.	10 Pon	d 75 – Baseline	
	4.10.1	Vegetation Monitoring	
	4.10.2	Wildlife Monitoring	
	4.10.3	Conclusion	
5	CONCLUS	SION	
6	REFEREN	ICES	

FIGURES

Figure 1-1. Location Map of Vernal Pools on Former Fort Ord Monitored in 2022
Figure 1-2. Location Map of Ponds 5, 101 East (East), 997, 39, 40 South, 41, 42, and 61
Figure 1-3. Location Map of Ponds 16 and 754
Figure 1-4. Cumulative Monthly Precipitation for the 2021-2022 Water-Year compared to the 30-Year5
Figure 1-5. Monthly Precipitation, Maximum and Minimum Temperatures for the 2021-2022 Water6
Figure 3-1. Pond 5 (Reference) Vegetation Strata and Transects on Former Fort Ord, 2022 15
Figure 3-2. Pond 101 East (East) (Reference) Vegetation Strata and Transects on Former Fort Ord 17
Figure 3-3. Pond 997 (Reference) Vegetation Strata and Transects on Former Fort Ord, 2022 18
Figure 3-4. Contra Costa Goldfields Populations at Pond 997 (Reference), 2022 20
Figure 3-5. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and21
Figure 3-6. Vernal Pool Bent Grass Occurrence at Pond 16 (Year 4 Post-Subsurface Munitions
Figure 3-7. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and24
Figure 3-8. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and 25
Figure 3-9. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and27
Figure 3-10. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and29
Figure 3-11. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and
Figure 3-12. Contra Costa Goldfields Populations at Pond 61 (Year 4 Post-Subsurface Munitions
Figure 3-13. Pond 75 (Baseline) Vegetation Strata and Transects on Former Fort Ord, 2022
Figure 4-1. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 36
Figure 4-2. Pond 5 (Reference) Vegetation Strata and Transects for 2016 and 2022
Figure 4-3. Rank Abundance Curves at Pond 5 (Reference) in 2016-2018
Figure 4-4. Rank Abundance Curves at Pond 5 (Reference) in 2019-2022
Figure 4-5. Rank Abundance Curves at Pond 5 (Reference) in 2016-2022
Figure 4-6. Percent Cover of Dominant Species at Pond 5 (Reference)

Figure 4-7. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond...45 Figure 4-11. Rank Abundance Curves at Pond 101 East (East) (Reference) in 2016-2022.51 Figure 4-13. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at55 Figure 4-15. Rank Abundance Curves at Pond 997 (Reference) in 2017-2019......59 Figure 4-16. Rank Abundance Curves at Pond 997 (Reference) from 2020-2022. Figure 4-19. Contra Costa Goldfields Populations at Pond 997 (Reference) in 2017 and 202265 Figure 4-20. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at67 Figure 4-22. Rank Abundance Curves at Pond 16 (Year 4 Post-Subsurface Munitions Remediation)71 Figure 4-23. Rank Abundance Curves at Pond 16 (Year 4 Post-Subsurface Munitions Remediation)72 Figure 4-24. Rank Abundance Curves at Pond 16 (Year 4 Post-Subsurface Munitions Remediation) in ... 73 Figure 4-28. Rank Abundance Curves at Pond 39 (Year 4 Post-Subsurface Munitions Remediation) in ...83 Figure 4-29. Rank Abundance Curves at Pond 39 (Year 4 Post-Subsurface Munitions Remediation)84 Figure 4-30. Rank Abundance Curves at Pond 39 (Year 4 Post-Subsurface Munitions Remediation) in ... 85 Figure 4-32. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at91 Figure 4-33. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and 92 Figure 4-38. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 103 Figure 4-39. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and104 Figure 4-40. Rank Abundance Curves at Pond 41 (Year 4 Post-Subsurface Munitions Remediation) in . 106 Figure 4-41. Rank Abundance Curves at Pond 41 (Year 4 Post-Subsurface Munitions Remediation) in .107 Figure 4-42. Rank Abundance Curves at Pond 41 (Year 4 Post-Subsurface Munitions Remediation) in .108 Figure 4-44. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 114 Figure 4-45. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and115 Figure 4-46. Rank Abundance Curves at Pond 42 (Year 4 Post-Subsurface Munitions Remediation) 118 Figure 4-47. Rank Abundance Curves at Pond 42 (Year 4 Post-Subsurface Munitions Remediation). 119 Figure 4-48. Rank Abundance Curves at Pond 42 (Year 4 Post-Subsurface Munitions Remediation) 120 Figure 4-50. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at 127 Figure 4-52. Rank Abundance Curves at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) 131 Figure 4-53. Rank Abundance Curves at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) 132 Figure 4-54. Rank Abundance Curves at Pond 61 (Year 4 Post-Subsurface Munitions Remediation). 133

TABLES

Table 1-1. 2022 Monitoring Status of Vernal Pools on Former Fort Ord7
Table 3-1. Vegetation Species Richness of Native and Non-Native Species Observed on Transects at13
Table 3-2. Vegetation Species Richness of Obligate and Facultative Wetland Species Observed on mansects at
Table 3-3. Pond 5 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary 14
Table 3-4. Pond 5 (Reference) Dominant Species by Stratum Results 15
Table 3-5. Pond 101 East (East) (Reference) Vegetative Strata Percentage within the Vernal Pool
Table 3-6. Pond 101 East (East) (Reference) Dominant Species by Stratum Results
Table 3-7. Pond 997 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary .18
Table 3-7. Fond 997 (Reference) Vegetative Strata Fercentage within the Verna Fool Basin Boundary 118 Table 3-8. Pond 997 (Reference) Dominant Species by Stratum Results
Table 3-9. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage21
Table 3-3. Poind 16 (Year 4) Dominant Species by Stratum Results
Table 3-10. Point 16 (Year 4) Dominant Species by Stratum Results
Table 3-12. Pond 39 (Year 4) Dominant Species by Stratum Results
Table 3-13. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata
Table 3-14. Pond 40 South (Year 4) Dominant Species by Stratum Results 26 Table 3-15. Pand 41 (Year 4 Past Subsymptone Neuritient Parameters) // contacting Strate Parameters 26
Table 3-15. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage26
Table 3-16. Pond 41 (Year 4) Dominant Species by Stratum Results
Table 3-17. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage28
Table 3-18. Pond 42 (Year 4) Dominant Species by Stratum Results
Table 3-19. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage 30
Table 3-20. Pond 61 (Year 4) Dominant Species by Stratum Results
Table 3-21. Pond 75 (Baseline) Vegetative Strata Percentage within the Vernal Pool Basin Boundary 33
Table 3-22. Pond 75 (Baseline) Dominant Species by Stratum Results 34 Table 4.1. Particle 1.1. Particle
Table 4-1. Pond 5 (Reference) Summary of Historical Surveys for Hydrology, Vegetation, and Wildlife 35
Table 4-2. Pond 5 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary 36
Table 4-3. Pond 5 (Reference) Absolute Percent Cover 38
Table 4-4. Pond 5 (Reference) Native and Non-Native Species Richness
Table 4-5. Pond 5 (Reference) Relative Percent Cover of Native and Non-Native Plants 43
Table 4-6. Pond 5 (Reference) Wetland and Non-Wetland Species Richness 43
Table 4-7. Pond 5 (Reference) Relative Percent Cover of Wetland and Non-Wetland Species
Table 4-8. Pond 5 (Reference) Historical Wildlife Monitoring Results 44
Table 4-9. Success at Pond 5 (Reference) Based on Performance Standards and Applicable Data
Table 4-10. Pond 101 East (East) (Reference) Summary of Historical Surveys for Hydrology45
Table 4-11. Pond 101 East (East) (Reference) Vegetative Strata Percentage within the Vernal Pool46
Table 4-12. Pond 101 East (East) (Reference) Absolute Percent Cover
Table 4-13. Pond 101 East (East) (Reference) Native and Non-Native Species Richness 52
Table 4-14. Pond 101 East (East) (Reference) Relative Percent Cover of Native and Non-Native Plants53
Table 4-15. Pond 101 East (East) (Reference) Wetland and Non-Wetland Species Richness

Table 4-16. Pond 101 East (East) (Reference) Relative Percent Cover of Wetland and Non-Wetland53 Table 4-19. Pond 997 (Reference) Summary of Historical Surveys for Hydrology, Vegetation, and........55 Table 4-20. Pond 997 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary56 Table 4-21. Pond 997 (Reference) Absolute Percent Cover58 Table 4-28. Success at Pond 997 (Reference) Based on Performance Standards and Applicable Data.....66 Table 4-29. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical Surveys...67 Table 4-30. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage..... 69 Table 4-32. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool........69 Table 4-33. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Native and Non-Native Species ... 74 Table 4-34. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool........75 Table 4-36. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool........75 Table 4-37. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland76 Table 4-38. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool........76 Table 4-40. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.......77 Table 4-41. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Historical Wildlife Monitoring 78 Table 4-43. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical Surveys...79 Table 4-44. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage.....80 Table 4-46. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.......82 Table 4-47. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Native and Non-Native Species .. 86 Table 4-48. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.......87 Table 4-50. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool........87 Table 4-51. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland88 Table 4-52. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool........88 Table 4-54. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.........89 Table 4-55. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Historical Wildlife Monitoring 90 Table 4-57. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical......90 Table 4-58. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata91 Table 4-59. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Absolute Percent Cover ... 93 Table 4-60. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal......93 Table 4-61. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Native and Non-Native.....99 Table 4-62. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal......99 Table 4-63. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover.....99

Table 4-64. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal......99 Table 4-65. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Wetland and100 Table 4-66. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal..... 100 Table 4-67. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover... 100 Table 4-68. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal..... 101 Table 4-70. Success at Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Based on 102 Table 4-71. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical Surveys. 102 Table 4-72. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage...103 Table 4-73. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Absolute Percent Cover...........105 Table 4-74. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool......105 Table 4-76. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool......110 Table 4-77. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of110 Table 4-78. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool......110 Table 4-79. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland111 Table 4-80. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool......111 Table 4-81. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of111 Table 4-82. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool......111 Table 4-83. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Historical Wildlife Monitoring..112 Table 4-85. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical Surveys. 113 Table 4-86. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage... 114 Table 4-87. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Absolute Percent Cover............116 Table 4-88. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool......116 Table 4-89. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Native and Non-Native Species 122 Table 4-90. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool......122 Table 4-91. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of123 Table 4-92. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool......123 Table 4-93. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland124 Table 4-94. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool......124 Table 4-95. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of125 Table 4-96. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool......125 Table 4-97. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Historical Wildlife Monitoring.. 126 Table 4-99. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical Surveys. 127 Table 4-100. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage. 128 Table 4-101. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Absolute Percent Cover........130 Table 4-102. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.....130 Table 4-104. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.....135 Table 4-105. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of 135 Table 4-106. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.....135 Table 4-107. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland 136 Table 4-108. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.....136 Table 4-109. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of 136 Table 4-110. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool.....137 Table 4-111. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Contra Costa Goldfields..........137

vii

Table 4-112. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Historical Wildlife Monitoring 139
Table 4-113. Success at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Based on140
Table 4-114. Pond 75 (Baseline) Summary of Historic Surveys for Hydrology, Vegetation, and Wildlife 140
Table 4-115. Pond 75 (Baseline) Vegetative Strata Percentage within the Vernal Pool Basin Boundary 141
Table 4-116. Pond 75 (Baseline) Absolute Percent Cover 143
Table 4-117. Pond 75 (Baseline) and Reference Vernal Pool Absolute Percent Cover in 2022
Table 4-118. Pond 75 (Baseline) Native and Non Native Species Richness 146
Table 4-119. Pond 75 (Baseline) and Reference Vernal Pool Native and Non-Native Species Richness 146
Table 4-120. Pond 75 (Baseline) Relative Percent Cover of Native and Non-Native Species
Table 4-121. Pond 75 (Baseline) and Reference Vernal Pool Relative Percent Cover of Native and 147
Table 4-122. Pond 75 (Baseline) Wetland and Non-Wetland Species Richness 147
Table 4-123. Pond 75 (Baseline) and Reference Vernal Pool Wetland and Non-Wetland Species 147
Table 4-124. Pond 75 (Baseline) Relative Percent Cover of Wetland Species 148
Table 4-125. Pond 75 (Baseline) and Reference Vernal Pool Relative Percent Cover of Wetland and 148
Table 4-126. Success at Pond 75 (Baseline) Based on Performance Standards and Applicable Data148
Table 5-1. Vegetation Result Extremes in 2022 in Comparison to All Previous Years 150
Table 5-2. Wetland and Non-Wetland Relative Percent Cover Extremes in 2022 Compared to All 151
Table 5-3. 2022 Remediated Vernal Pools and Performance Standards Status 152

APPENDICES

- A VEGETATION TRANSECT DATA
- **B** STRATUM COVER BY VERNAL POOL
- C SITE PHOTOS
- D VEGETATION SPECIES RICHNESS OF NATIVE AND NON-NATIVE SPECIES AND WETLAND INDICATOR CATEGORY BY VERNAL POOL
- E SPECIES COMPOSITION OF FOLLOW-UP VEGETATION MONITORING BY VERNAL POOL

viii

F RANK ABUNDANCE CURVES

ACRONYMS AND ABBREVIATIONS

Burleson Consulting Inc., A Terracon Company Contra Costa goldfields
Chenega Tri Services, LLC
centimeter(s)
California Tiger Salamander
Data Quality Objective
Facultative Plant
Facultative Upland Plant
Facultative Wetland Plant
California Fairy Shrimp
Harding Lawson and Associates
Habitat Management Plan
meter(s)

MEC	Munitions and Explosives of Concern
NCEI	National Centers for Environmental Information
NL	Not Listed
NOAA	National Oceanic and Atmospheric Administration
NPSDM	Naval Postgraduate School Department of Meteorology
NWSFO	National Weather Service Forecast Office
OBL	Obligate Wetland Plant
РВО	Programmatic Biological Opinion
RACs	rank abundance curves
sp.	species
UPL	Obligate Upland Plant
USACE	United States Army Corps of Engineers
USFWS	United States Fish and Wildlife Service
UXO	Unexploded Ordnance
Wetland Plan	Wetland Monitoring and Restoration Plan for Munitions and Contaminated Soil Remediation
%	Percent

This page intentionally left blank

1 INTRODUCTION

The United States Army Corps of Engineers (USACE) contracted Burleson Consulting Inc., A Terracon Company (Burleson) to conduct wetland monitoring at former Fort Ord, Monterey County, California (see Figure 1-1). Wetland monitoring includes three types of monitoring: hydrology, vegetation, and wildlife. Burleson was contracted to complete vegetation and wildlife monitoring in 2022. Hydrology monitoring was completed by Chenega Tri-Services, LLC (Chenega) and is reported separately (Chenega, 2023). These monitoring activities are centered around historical vernal pools on former Fort Ord.

The Burleson team monitored wetland vegetation including federally endangered Contra Costa goldfields (*Lasthenia conjugens;* CCG) however wildlife surveys were not completed as the vernal pools did not hold sufficient depth. These monitoring requirements were documented in the *Installation-wide Multispecies Habitat Management Plan* (HMP), the *Programmatic Biological Opinion for Cleanup and Property Transfer Actions Conducted at the Former Fort Ord, Monterey County, California* (PBO); and the *Wetland Monitoring and Restoration Plan for Munitions and Contaminated Soil Remedial Activities at Former Fort Ord* (Wetland Plan) (USACE, 1997; USFWS, 2017; Burleson, 2006).

This report presents the results of monitoring within a number of vernal pools on former Fort Ord. Vernal pools assessed in 2022 included reference vernal pools 5, 101 East (East), 997; and remediated vernal pools 16, 39, 40 South, 41, 42, 61, and 75 (see Figure 1-2 and Figure 1-3). The populations of CCG were mapped and evaluated at Ponds 997 and 61. A new occurrence of vernal pool bent grass was mapped at Pond 16. Invertebrate and protocol-level California tiger salamander (*Ambystoma califoriense*; CTS) aquatic sampling surveys were not completed for the 2021-2022 water-year because none of the vernal pools held water long enough to trigger the wildlife surveys.

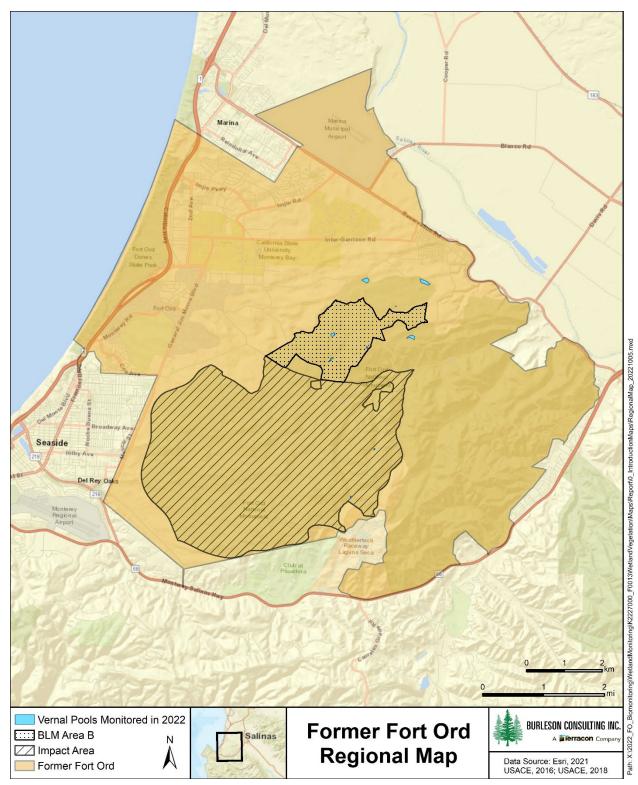


Figure 1-1. Location Map of Vernal Pools on Former Fort Ord Monitored in 2022

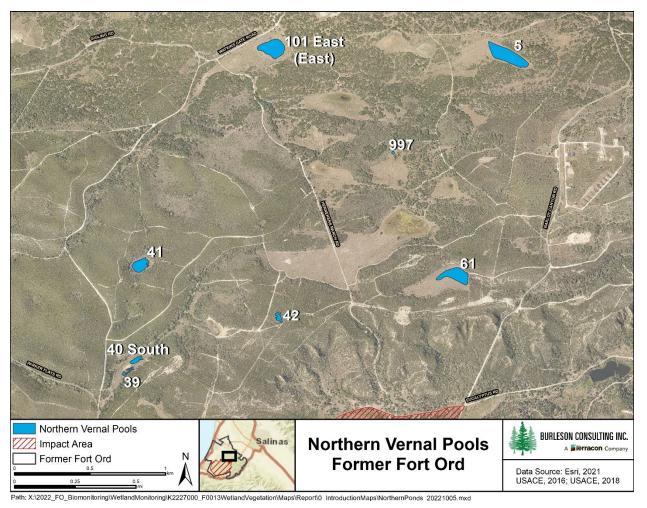
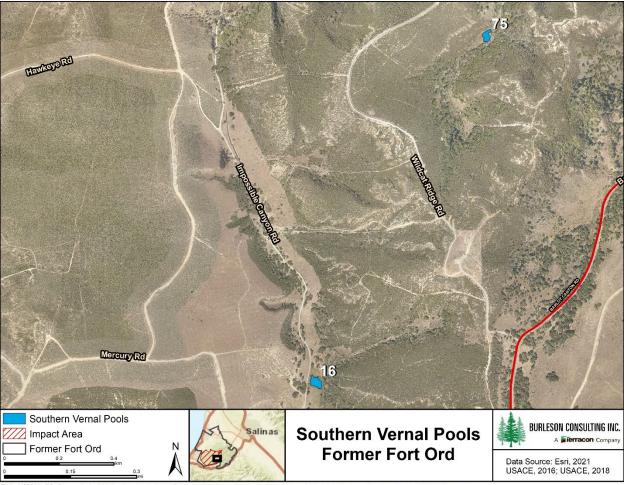



Figure 1-2. Location Map of Ponds 5, 101 East (East), 997, 39, 40 South, 41, 42, and 61

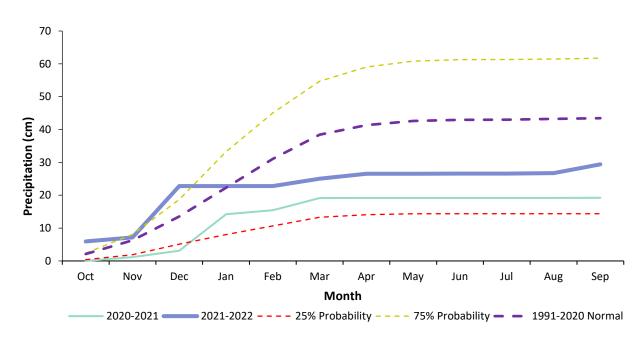
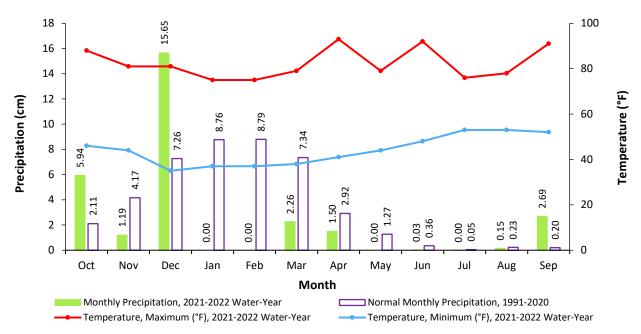

Path: X:\2022_FO_Biomonitoring\WetlandMonitoring\K2227000_F0013WetlandVegetation\Maps\Report\0 IntroductionMaps\SouthernPonds 20221005.mxd

Figure 1-3. Location Map of Ponds 16 and 75


In the 2021-2022 water-year, the Monterey Peninsula Regional Airport meteorological tower recorded precipitation that was approximately 14 centimeters (cm) less than normal cumulative precipitation, making it the second of two consecutive drought years. It was the sixth-lowest recorded cumulative precipitation in 31 years of data collection (NPSDM, 2022; see Figure 1-4). There was unusually heavy rainfall from October through December which constituted the bulk of precipitation for the water-year. January and February were completely dry. The rain events that occurred in March and April brought some moisture to the area but were still below-normal, yielding 3.76 cm of precipitation. Only 0.03 cm of additional precipitation occurred in June (see Figure 1-5). The total cumulative precipitation was approximately 67 percent (%) of normal. The Monterey Peninsula Regional Airport meteorological tower is located approximately two miles southwest of Site 39 on former Fort Ord. The Monterey Peninsula Regional Airport tower replaced the National Weather Service Forecast Office (NWSFO) tower on April 1, 2019 and is located within one kilometer of the NWSFO tower. All 2021-2022 values in this report are from the new Monterey Peninsula Regional Airport tower.

The NWSFO determines normal rainfall based on a 30-year average that at the end of each decade is moved forward another 10 years. Prior to 2021, the dataset was from 1981-2010. In this report and the 2021 annual report, normal rainfall was updated resulting in some water-years to be recategorized based on their relationship to normal. The normal dataset used for comparison in this report is from the

NWSFO tower and is defined as the mean precipitation from years 1991-2020. Water-years are categorized as normal if cumulative precipitation was within one inch of the NWSFO normal. The two water-years that were recategorized were 1998-1999 and 1999-2000, which changed from below-normal to normal.

Figure 1-4. Cumulative Monthly Precipitation for the 2021-2022 Water-Year compared to the 30-Year Normal (mean 1991-2020), the 2020-2021 Water-Year, and the 25% and 75% Probabilities (NPS, 2022; National Centers for Environmental Information [NCEI] and National Oceanic and Atmospheric Administration [NOAA], 2022)

Figure 1-5. Monthly Precipitation, Maximum and Minimum Temperatures for the 2021-2022 Water-Year and Normal Monthly Precipitation (NPS, 2022).

The goal of hydrology, wetland vegetation, and wildlife monitoring efforts is to evaluate vernal pools potentially affected by remediation activities against success criteria identified in the HMP, PBO, and Wetland Plan (USACE, 1997; USFWS, 2017; Burleson, 2006). The Wetland Plan outlines the Data Quality Objectives (DQO) used to evaluate success criteria for this report. The DQOs focus on vernal pool depth, inundation, vegetation, water quality, and wildlife. The PBO outlines success criteria specifically for CTS and CCG. Reestablishment of these species will be considered successful if, at the end of monitoring, wetland function, wildlife usage, wetland plant cover, diversity and dominance, and CCG abundance are directly comparable to the conditions before remediation. Monitoring results guide decision-making to evaluate if and when corrective actions are necessary and to provide insight for potential mitigation or evaluation of monitoring methodologies. The objectives of monitoring were to document the ability of vernal pools to support CTS and California fairy shrimp (*Linderiella occidentalis*; fairy shrimp), understand hydrologic function and water quality conditions, document baseline conditions, and provide data for follow-up comparison. Table 1-1 presents the status of vernal pools monitored in 2022 at former Fort Ord.

Vernal Pool	Monitoring Status
Pond 5	Reference
Pond 16	Year 4 Post-Subsurface Munitions Remediation (> 10 ft ²)
Pond 39	Year 4 Post-Subsurface Munitions Remediation (> 10 ft ²)
Pond 40 South Year 4 Post-Subsurface Munitions Remediation (> 10	
Pond 41	Year 4 Post-Subsurface Munitions Remediation (> 10 ft ²)
Pond 42	Year 4 Post-Subsurface Munitions Remediation (> 10 ft ²)
Pond 61	Year 4 Post-Subsurface Munitions Remediation (> 10 ft ²)
Pond 75	Baseline
Pond 101 East (East)	Reference
Pond 997	Reference

This page intentionally left blank

2 METHODS

Sampling methods for wetland vegetation monitoring and aquatic surveys were consistent with the PBO and Wetland Plan (USFWS, 2017; Burleson, 2006).

Vernal pools must be monitored for baseline condition prior to any remedial activities such as prescribed burns, mastication, excavation, or artificial draining (USFWS, 2017). As described in the PBO, the Army will conduct two years of pre-activity larval CTS sampling, to the extent possible, in the vernal pools where more than 50% of the watershed is affected by prescribed burns; thus, vernal pools may be monitored multiple years for baseline (USFWS, 2017).

Vernal pools are then monitored following any remedial activity for 3 to 5 years depending on the type of disturbance. Post-burn monitoring occurs in vernal pools if more than 50% of the watershed of a vernal pool is affected and is conducted annually for the first three years following a burn (USFWS, 2017). Although not specifically indicated in the PBO, the Army applies the same standard to vernal pools where more than 50% of the watershed was masticated, but no mastication of vegetation occurred within the inundation area. If vegetation is mowed within the inundation area, the vernal pool is monitored for vegetation in first, third, and fifth years, following mastication (Burleson, 2006). Vernal pools where subsurface munitions remediation activities disturbed less than 10 square feet and were shallower than four feet deep are monitored in first, third, and fifth years, following remediation, whereas vernal pools with greater and/or deeper disturbance are monitored annually for five years following remediation (Burleson 2006). In cases of vernal pools where more than one type of remedial activity occurred, the most stringent monitoring frequency is followed. Three reference vernal pools that were not remediated are also monitored for comparison on an annual basis.

In 2018, Ponds 16, 39, 40 South, 41, 42, and 61 were investigated for geophysical anomalies that potentially represented munitions and explosives of concern (MEC) items, and all had subsurface munitions remediation that exceeded the ten square foot threshold (KEMRON, 2020). They were monitored in 2022 for year 4 post-subsurface munitions remediation. Ponds 5, 101 East (East), and 997 were monitored as reference vernal pools and Pond 75 was monitored for an additional year of baseline conditions.

2.1 Vegetation Monitoring

Prior to collecting transect data, vernal pools were visited in early spring to assess the condition and initiate a list of plant species present. Vernal pools were visited more than once prior to collection of quadrat data to identify species present, evaluate vegetative strata, and determine the ideal time to collect data. Vegetation quadrat data were collected between April 28 and May 10, 2022. Data were collected as the vernal pools dried and the vegetation was sufficiently identifiable (see Appendices A, B, C, D, and E). Biologists visually assessed the historical vernal pool basins for each resource and identified homogeneous vegetative strata.

Vernal pool basins are defined by the hydrogeomorphic basin feature and the distinctly different vegetative community compared to the surrounding upland area. Because the basins vary from year to year and from wet to dry weather cycles over decades, the center portions of the basins typically support wetland vegetation associations, whereas outer portions at the highest elevations may not. The basin may vary from year to year from a combination of factors that include the amount of precipitation and timing, the duration of inundation, decaying vegetation from the previous season, sediment load, soil chemistry, and other stochastic processes. For some vernal pools, these variables only minimally

impact the vernal pool basin and for others, it can expand, contract, and change dramatically. The basin boundary is identifiable in the field because the hydrologic regime often precludes the presence of mature stands of upland tree and shrub communities within the basin boundaries. For vernal pools located within grasslands, basin boundaries are typically defined by a change from mesic grasses to monotypic stands of upland grasses.

For this report, vegetative strata refer to the different homogenous vegetative communities that are distributed around the vernal pools in a zonate pattern. These are characteristically concentric circles similar to a bullseye. Open water typically recedes towards the center through the dry season. Differing depths and duration of inundation result in suites of plant species which are organized into discernable zones. These can be readily differentiated and mapped. During the visual assessment, biologists recorded the percent of submergent, emergent, and floating vegetative cover within the inundated areas when present. Inundated areas were characterized by the presence of standing water with wetland vegetation, whereas open water areas were characterized by standing water without vegetation. An upland stratum is characterized by upland species but is only mapped when it is within the vernal pool and therefore surrounded by wetland species, such as mima mounds. The upland transition on the periphery of the vernal pool is not mapped.

Strata were differentiated based on dominant species and overall species composition. The team used a stratified random guadrat method to collect data within each accessible stratum (Barbour et al., 1980). When strata were inundated, vegetation was too dense or tall to enter, or in areas with safety concern due to potential MEC presence, visual cover data were estimated to define strata. In vernal pools that have been monitored using the same methodology in previous years, the transect locations were repeated when the strata were defined by the same dominant species and the transect locations were representative of the species composition for that strata. Otherwise, biologists placed a new transect in the most homogenous representative area for each accessible stratum. These were mapped using a Trimble® Juno ® T41 Series GPS unit. Transects were 5-meters (m) or 10-m in length depending on stratum size. Biologists used a random number table to determine placement of a 0.25 m² guadrat along each transect. The quadrat was placed a minimum of three times for every 5 m of transect. Biologists recorded the absolute percent cover by plant species, thatch, and bare ground (see Appendix A). Species percent cover was averaged for each stratum of the sampled vernal pools (see Appendix B). Biologists mapped strata the same day as quadrat sampling using a Trimble® Juno ® T41 Series GPS unit and calculated absolute percent cover of the strata using ArcGIS (Esri, 2022). In addition, photo points were taken to show the extent of each vernal pool for comparison with previous years (See Appendix C).

Plant species observed at each vernal pool were recorded. Most species were identified in the field using *The Plants of Monterey County, an Illustrated Field Key; Second Edition* (Matthews and Mitchell, 2015), *Monterey County Wildflowers, a Field Guide, First Edition* (Matthews and Mitchell, 2016), *Plants of San Francisco Bay Region, Mendocino to Monterey, Third Edition* (Beidleman and Kozloff, 2003) and *The Jepson Manual: Vascular Plants of California, Second Edition* (Baldwin *et al.*, 2012). Plants were categorized as native, non-native, or unidentified (see Appendix D Tables D-1 – D-11. Additional categorization of the plants occurred to identify them as one of the following: obligate wetland (OBL), facultative wetland (FACW), facultative (FAC), facultative upland (FACU), obligate upland (UPL), or not listed (NL) (see Appendix D Tables D-12 – D-22) (Lichvar *et al.*, 2016). When species could not be identified in the field, samples were collected from the vernal pool (not from the quadrats) and identified in the office.

Contra Costa goldfields (*Lasthenia conjugens*) and vernal pool bent grass (*Agrostis lacuna-vernalis*) were mapped using a Trimble[®] Juno [®] T41 Series GPS unit. CCG populations were mapped by creating polygons and bsolute cover was visually estimated. Vernal pool bent grass occurrences were mapped to document the extent of the species across former Fort Ord. Vernal pool bent grass is a recently described Fort Ord endemic 1B.1 ranked species by CNPS but is currently not federally listed (Peterson *et al.,* 2011).

2.2 Wildlife Monitoring

Following the HMP, PBO, and Wetland Plan, biologists typically conduct aquatic surveys for CTS and fairy shrimp (USACE, 1997; USFWS, 2017; Burleson, 2006). Wildlife surveys are scheduled in March, April, and May for CTS and fairy shrimp. The criterion used to identify suitable fairy shrimp habitat requires that a vernal pool retain an average of 10 cm of water for at least 18 consecutive days. The criterion used to identify suitable CTS breeding habitat requires that a vernal pool retain an average depth of at least 25 cm from the first rain event through March (Burleson, 2006). Surveys would have begun for fairy shrimp and CTS if the vernal pools maintained a minimum depth of 10 cm during the March hydrology events, however none of the scheduled vernal pools met that criterion and wildlife surveys were not conducted.

When surveys do occur, nets, boots, and other equipment would be scrubbed with 10% diluted bleach solution and completely dried between monitoring different vernal pools to reduce the possibility of spreading disease. Additionally, nets, boots, and equipment would be treated with 10% diluted bleach solution and dried at the end of each day. Cleaning solutions would be applied to equipment in areas away from aquatic resources, on disturbed or developed roads to reduce contamination.

2.2.1 California Tiger Salamander

Although no surveys were completed this year, survey methods for CTS follow the *Interim Guidance on Site Assessment and Field Surveys for Determining Presence or a Negative Finding of the California Tiger Salamander* (USFWS and California Department of Fish and Game, 2003) with modifications to maintain consistency of the data as described in the Wetland Plan. Some exceptions are typically made as needed: aquatic sampling continued after initial detection and dip nets were used exclusively. Additional aquatic sampling may be completed to provide additional insight into vernal pool function.

When surveys do occur, CTS larvae are collected using long-handled, fine-meshed, D-shaped dipnets to allow biologists to record individual metrics and derive an approximate CTS count for each vernal pool. All sites are sampled using dipnets to minimize aquatic habitat disturbance as well as to maintain safety due to potential presence of unexploded ordnance (UXO). This methodology was chosen to allow direct comparison to past results. Depending on the extent of aquatic habitat, two to six biologists sample each site. Biologists collect samples from each vernal pool until the habitat was adequately represented.

Biologists measure and record the length of a subset of 30 individual CTS larvae collected. When the total number of CTS collected is less than 30, all individuals are measured. California tiger salamander and other amphibian species encountered are identified and the total numbers recorded.

2.2.2 California Fairy Shrimp

Normally, aquatic sampling for fairy shrimp and other aquatic invertebrates is conducted using a finemeshed dip net and followed the *Interim Survey Guidelines to Permittees for Recovery Permits Under Section 10(a)(1)(A) of the Endangered Species Act for the Listed Vernal Pool Branchiopods* (USFWS and California Department of Fish and Game, 1996). Representative portions of the bottom, edges, and vertical water column of each vernal pool are then sampled. When fairy shrimp are present, the abundance is estimated by collecting 5-20 swipes throughout the vernal pool. The number of swipes relates to the size and complexity of the vernal pool and is consistent with the range of frequencies outlined in protocols from previous reports. More swipes occur at larger and/or more complex vernal pools than at small vernal pools. Following dip netting, the number of collected fairy shrimp are totaled and the abundance as reported as follows:

- Low abundance: 1 to 10 individuals;
- Moderate abundance: 11 to 100 individuals;
- High abundance: 101 to 300 individuals; and
- Very high abundance: greater than 300 individuals.

2.3 Evaluation for Data Quality Objectives and Success Criteria

Data quality objectives (DQO) and performance standards outlined in the Wetland Plan were used to measure successful wetland function following MEC and soil remediation activities (Burleson, 2006). DQOs can be summarized as:

- DQO 1: depth average of 25 cm through March for CTS and average of at least 10 cm through May for fairy shrimp
- DQO 2: inundation consistent with baseline and similar to reference vernal pool trends
- DQO 3: vegetation similar hydrophytic vegetation as reference control wetlands
- DQO 4: water quality adequate for the presence of CTS and/or fairy shrimp
- DQO 5: wildlife consistent with baseline and similar to reference control wetland trends

Hydrological conditions, inundation areas, and water quality were assessed by Chenega using DQO 1, DQO 2, and DQO 4 and are not included in this report (Chenega, 2023).

Plant cover and species diversity were assessed using DQO 3. Species diversity was assessed by examining species richness and species abundance. Wetland vegetation monitoring results were analyzed to identify whether the vernal pool was similar to baseline and reference vernal pools and if wetland function was consistent through time. The disturbed vernal pool should have the following characteristics by the end of the last year of monitoring:

- A number of native wetland species present in the vernal pool comparable to the number present in the vernal pool before MEC and contaminated soils removal or in control wetlands, and
- A relative dominance of native wetland species in the vernal pool comparable to the relative dominance in the vernal pool before MEC and contaminated soil removal or in control wetlands.

Wildlife usage would typically be assessed using DQO 5, however because wildlife surveys were not completed the DQO was not accessed in this report. DQOs 1 and 4 apply to depths and the relationship between water quality and wildlife presence and were assessed as part of the Hydrology Monitoring Annual Report (Chenega, 2023). In years when wildlife surveys are completed for DQO 5, the vernal pool is considered successful if the post-remediation wildlife usage is similar to pre-disturbance usage. The Wetland Plan indicates that a vernal pool that supported CTS and fairy shrimp prior to remediation activities should continue to support those species following such activities (Burleson, 2006).

In addition to the Wetland Plan, the PBO outlines the following success criteria specifically for CTS and CCG (USFWS, 2017). Species reestablishment will be considered successful if, at the end of monitoring, each of the following is directly comparable to the conditions before the start of work:

- 1. Wetland function, as measured by the parameters of hydrologic conditions (inundation area and depth, pH, temperature, dissolved oxygen levels);
- 2. Wildlife usage, specifically CTS larval presence;
- 3. Plant cover and wetland plant species diversity and dominance; and
- 4. CCG abundance.

These four conditions were assessed in conjunction with the DQOs. Wetland function was assessed with DQO 1, DQO 2, and DQO 4 and was discussed in the Hydrology Monitoring Annual Report (Chenega, 2023). Wildlife usage is assessed with DQO 5. Plant cover and wetland plant species diversity and dominance were assessed with DQO 3. Contra Costa goldfield abundance was assessed with DQO 3.

Historical data for cumulative precipitation, wetland vegetation, and wildlife presence or absence for all reference and post-remediation vernal pools were summarized by vernal pool. Wetland vegetation was compared across years and to reference vernal pools based on the stratum, absolute percent vegetative cover, species richness, native plant species richness, relative percent native species cover, wetland plant species richness, relative percent wetland plant cover, and species composition (see Appendices A, B, D, and E).

Rank-abundance curves (RACs) were generated to illustrate species composition and relative species abundance at the vernal pools. The species rank was plotted on the x-axis and the proportional abundance on the y-axis, with species identified using their species code. The RACs show the distribution of the species, relative abundance, species evenness, and species richness. They can characterize the species composition further than the community metrics such as the Shannon-Wiener diversity index or the species evenness index (Calow, 1999). We created rank abundance curves using the rankabundance function in the BiodiversityR package (Kindt, 2019). For RACs with species codes and individual years, the y-axis was put into log-10 scale and for the RACs with all years on one plot, the x-axis and y-axis were both in log-10 scale (see Appendix F).

This page intentionally left blank

3 RESULTS

Vegetation monitoring was conducted at Ponds 5, 101 East (East), 997, 16, 39, 40 South, 41, 42, 61, and 75. Across all monitored vernal pools, the mean number of native plant species was 15 and non-native species was 15 (see Table 3-1). Of these species, a mean of 15 were wetland species, either obligate (OBL), facultative wetland (FACW), or facultative (FAC) (see Table 3-2). In addition to vegetative strata mapping and transect surveys, populations of CCG were surveyed at Ponds 61 and 997, and vernal pool bent grass was mapped at one new location at Pond 16.

Vernal Pool	Monitoring Status	Native	Non-Native		
Pond 5	Reference	14	14		
Pond 101 East (East)	Reference	21	16		
Pond 997	Reference	16	18		
Mean (Reference)	-	17	16		
16	Year 4 Post-Subsurface Munitions Remediation	13	7		
39	Year 4 Post-Subsurface Munitions Remediation	11	25		
40 South	Year 4 Post-Subsurface Munitions Remediation	10	22		
41	Year 4 Post-Subsurface Munitions Remediation	14	13		
42	Year 4 Post-Subsurface Munitions Remediation	20	21		
61	Year 4 Post-Subsurface Munitions Remediation	19	12		
75	Baseline	10	5		
Mean (Remediated)	-	14	15		
Mean (All)	-	15	15		

Table 3-1. Vegetation Species Richness of Native and Non-Native Species Observed on Transects atVernal Pools Monitored in 2022

Table 3-2. Vegetation Species Richness of Obligate and Facultative Wetland Species Observed onTransects at Vernal Pools Monitored in 2022

Vernal Pool	Monitoring Status	OBL	FACW	FAC	Wetland Species
Pond 5	Reference	4	6	2	12
Pond 101 East (East)	Reference	4	6	8	18
Pond 997	Reference	4	7	4	15
Mean (Reference)	-	4	6	5	15
16	Year 4 Post-Subsurface Munitions Remediation	2	4	1	7
39	Year 4 Post-Subsurface Munitions Remediation	5	6	8	19
40 South	Year 4 Post-Subsurface Munitions Remediation	4	4	4	12
41	Year 4 Post-Subsurface Munitions Remediation	5	7	3	15
42	Year 4 Post-Subsurface Munitions Remediation	5	10	4	19
61	Year 4 Post-Subsurface Munitions Remediation	5	8	3	16
75	Baseline	1	5	3	9
Mean (Remediated)	-	4	6	4	14
Mean (All)	-	4	6	4	14

Aquatic wildlife monitoring was not conducted because vernal pools did not hold sufficient depth to trigger the wildlife surveys in 2022. Ponds 5, 39, 41, 42, 61, and 101 East (East) held some water for part of the season. Pond 61 held water from December 2021 through February 2022 and was dry by March (Chenega, 2023). Likewise, Pond 5 held water in December 2021 through February 2022, however there were still peripheral inundations in early March. Pond 42 held water from December 2021 to January 2022, Pond 101 East (East) held water from January through February 2022. Pond 41 held water briefly in January. Pond 39 held water the longest, from October 2021 to February 2022. Ponds 16, 40 South, 75 and Reference Pool 997 never held water for any part of the water-year.

3.1 Pond 5

Pond 5 is a reference vernal pool that was monitored as a control for comparison to the remediated vernal pools. In 2022, Pond 5 was monitored for hydrology and vegetation. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2023).

3.1.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 5 on May 6 and May 10, 2022. These monitoring data represent reference conditions. Pond 5 held water from January through February during the 2021-2022 water-year, with shallow peripheral ponding observed in December and March (Chenega, 2023). Biologists identified five vegetative strata at the vernal pool (see Table 3-3 and Figure 3-1). Stratum 1 and the associated transect were repeated from 2016 and 2018-2021. Strata 2 and 3 were repeated from 2016-2021. Stratum 7 was repeated from 2019-2021. Stratum 8 was repeated from 2021. Transects 2 and 8 were relocated because the previous locations were no longer within the correct strata. Transect 3 was repeated from 2020 and 2021. Transect 7 was relocated to a more representative location and reduced from 10 m to 5 m.

Stratum	Percentage	
1	35%	
2	21%	
3	8%	
7	1%	
8	35%	

Table 3-3. Pond 5 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

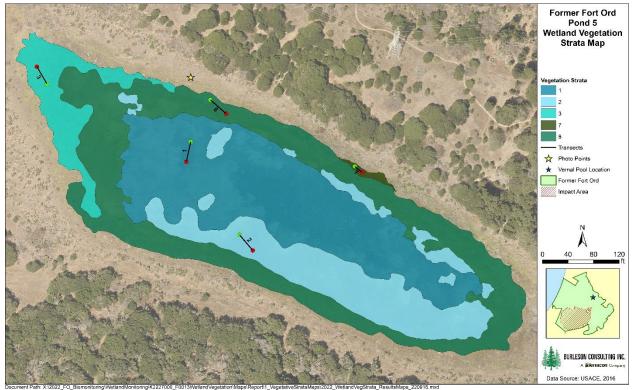


Figure 3-1. Pond 5 (Reference) Vegetation Strata and Transects on Former Fort Ord, 2022

Seventy-six plant species were observed within the vernal pool basin boundary. Of these species, 42 were native, 31 were non-native, and three were unidentified. Seven species were OBL wetland plants, 23 were FACW or FAC, 16 were FACU or UPL, and 30 were not listed. Appendix B provides the species cover results for each stratum. Appendix D identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum. Table 3-4 provides a summary of the dominant species cover results for each stratum.

	Transact Longth	Dominant Species	
Stratum	Stratum Transect Length (m)	Common Name	Absolute Cover on Transect (%)
1	10	pale spikerush	35.2
1	10	alkali mallow	9.0
2	10	salt grass	24.2
		bugle hedge nettle	11.3
3	10	smooth cat's-ear	9.5
	salt grass	8.2	
7	5	Baltic rush	41.0
9 1	10	cut-leaved geranium	12.2
8 10		Lemmon's canary grass	9.5

Table 3-4. Pond 5	Reference	Dominant S	necies h	Stratum	Results
	NCICI CIICC		pecies by	Juatani	nesuits

3.1.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 5 because the vernal pool did not have sufficient depth to trigger surveys.

3.2 Pond 101 East (East)

Pond 101 East (East) is a reference vernal pool that was monitored as a control for comparison to the remediated vernal pools. In 2022, Pond 101 East (East) was monitored for hydrology and vegetation. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2023).

3.2.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 101 East (East) on May 5, 2022. These monitoring data represent reference conditions. Pond 101 East (East) held water briefly in January and early February but was completely dry by the February 17 hydrology monitoring event (Chenega, 2023). Biologists identified four strata at the vernal pool (see Table 3-5 and Figure 3-2). Stratum 3 was repeated from 2016 and 2021. Stratum 4 was repeated from 2016, 2020, and 2021 whereas stratum 5 was repeated from 2017-2021. Stratum 9 and the corresponding transect were newly established in 2022. Transects 3 and 5 were repeated from 2021, whereas Transect 4 was relocated because the previous location was no longer within the correct stratum.

Table 3-5. Pond 101 East (East) (Reference) Vegetative Strata Percentage within the Vernal PoolBasin Boundary

Stratum	Percentage	
3	33%	
4	10%	
5	55%	
9	2%	

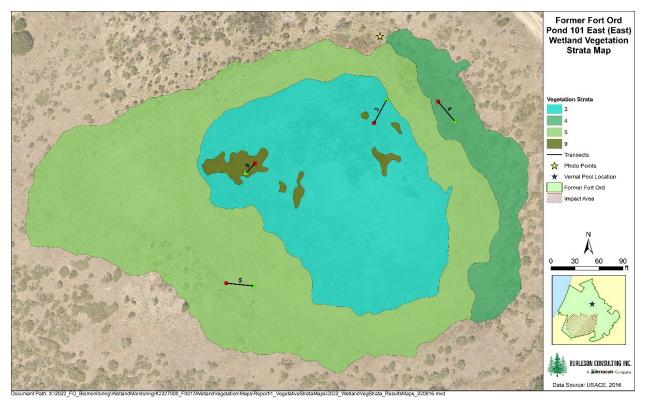


Figure 3-2. Pond 101 East (East) (Reference) Vegetation Strata and Transects on Former Fort Ord, 2022

Seventy-two plant species were observed within the vernal pool basin boundary. Of these species, 40 were native, 29 were non-native, and three were unidentified. Six species were OBL wetland plants, 26 were FACW or FAC, 14 were FACU or UPL, and 26 were not listed. Appendix B provides the species cover results for each stratum. Appendix D identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum. Table 3-6 provides a summary of the dominant species cover results for each stratum.

	Dominan		Species	
Stratum	Transect Length (m)	Common Name	Absolute Cover on Transect (%)	
3	10	pale spikerush	30.0	
5	10	alkali mallow	29.3	
4	10	Baltic rush	14.7	
4		cut-leaved geranium	6.8	
		cut-leaved geranium	14.5	
5	10	long-beaked filaree	9.7	
		rough cat's-ear	6.7	
9	5	smooth goldfields	42.0	

Table 3-6. Pond 101 East (East) (Reference) Dominant Species by Stratum Results

3.2.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 101 East (East) because the vernal pool did not have sufficient depth to trigger surveys.

3.3 Pond 997

Pond 997 is a reference vernal pool that was monitored as a control for comparison to the remediated vernal pools. In 2022, Pond 997 was monitored for hydrology and vegetation. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2023).

3.3.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 997 on May 2 and 3, 2022. These monitoring data represent reference conditions. Pond 997 remained dry throughout the 2021-2022 water-year (Chenega, 2023). Biologists identified three wetland strata at the vernal pool (see Table 3-7 and Figure 3-3). Strata and Transects 1 and 3 were repeated from 2017-2021. Stratum 2 was repeated from the same range of years but consisted of CCG and no transects were placed in this stratum. Figure 3-4 illustrates the extent and density of the CCG population at Pond 997.

Table 3-7. Pond 997 (Reference) Vegetative Strata Percentage within the Vernal Pool BasinBoundary

Stratum	Percentage	
1	5%	
2 (CCG)	6%	
3	89%	



Figure 3-3. Pond 997 (Reference) Vegetation Strata and Transects on Former Fort Ord, 2022

Sixty-four plant species were observed within the vernal pool basin boundary. Of these species, 40 were native, 23 were non-native, and one was unidentified. Five species were OBL wetland plants, 22 were FACW or FAC, nine were FACU or UPL, and 28 were not listed. Appendix B provides the species cover results for each stratum. Appendix D identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum. Table 3-8 provides a summary of the dominant species cover results for each stratum.

Transact Longth		Dominant Species		
Stratum Transect Length (m)	Common Name	Absolute Cover on Transect (%)		
		coyote thistle	8.3	
1	10	long-beaked filaree	6.0	
		brome fescue	6.0	
2	N/A	Contra Costa goldfields	N/A	
	long-beaked filaree	15.2		
2	2 10	smooth cat's-ear	11.2	
3 10	10	rattlesnake grass	10.0	
	California oat grass	8.0		

Table 3-8. Pond 997 (Reference) Dominant Species by Stratum Results

3.3.1.1 Contra Costa Goldfields

Contra Costa goldfields at Pond 997 were mapped on March 30, 2022; they occupied 0.015 acre, with a density of 20% cover. No transects were placed in stratum 2 to avoid disturbing the population. Figure 3-4 illustrates the extent of the CCG population at Pond 997.

Figure 3-4. Contra Costa Goldfields Populations at Pond 997 (Reference), 2022

3.3.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 997 because the vernal pool did not have sufficient depth to trigger surveys.

3.4 Pond 16

Pond 16 was in year 4 of monitoring for post-subsurface munitions remediation in 2022. Pond 16 was monitored for hydrology and vegetation. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2023).

3.4.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 16 on May 9 and May 10, 2022. These monitoring data represent year 4 post-subsurface munitions remediation conditions. Pond 16 remained dry throughout the 2021-2022 water-year (Chenega, 2023). Biologists identified six strata at the vernal pool (see Table 3-9 and Figure 3-5). Strata 3 and 5 were repeated from 2015, 2017, and 2019-2021. Strata 1, 4, and 6 were repeated from 2017 and 2019-2021. Stratum 8 and the associated transect were repeated from 2021. Transect 1 was repeated from 2017 and 2019. Transects 3 and 4 were relocated because the previous locations were no longer within the correct strata. Transect 3 was also reduced from 10 m to 5 m to better represent the extent of vegetation across the vernal pool. Transect 5 was repeated from 2015, 2017, and 2019-2021. Transect 6 was repeated from 2017 and 2019-2021.

Stratum	Percentage	
1	5%	
3	34%	
4	10%	
5	32%	
6	12%	
8	7%	

Table 3-9. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage
within the Vernal Pool Basin Boundary

Figure 3-5. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2022

Eighty-seven species were observed within the vernal pool basin boundary. Of these species, 53 were native, 32 were non-native, and two were unidentified. Four species were OBL wetland plants, 31 were FACW or FAC, 19 were FACU or UPL, and 33 were not listed. Appendix B provides the species cover results for each stratum. Appendix D identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum. Table 3-10 provides a summary of the dominant species cover results for each stratum.

	Dominant Species		t Species
Stratum	Transect Length (m)	Common Name	Absolute Cover on Transect (%)
1	5	California bulrush	7.0
3	5	pale spikerush	44.0
4	5	clustered field sedge	52.7
5	10	whiteroot	30.3
6	5	Baltic rush	38.7
8	10	rabbitfoot grass	49.2

3.4.1.1 Vernal Pool Bent Grass

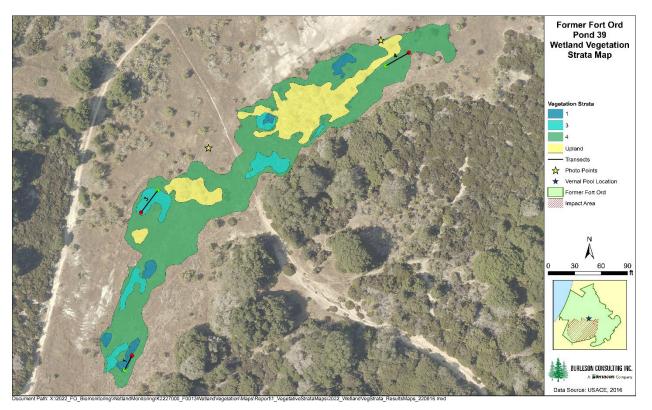
Vernal pool bent grass was observed and mapped at Pond 16 on June 28, 2022 (see Figure 3-6). This was the first time that the species has been documented at Pond 16, expanding the current known range farther south than has been previously recorded. Vernal pool bent grass has been documented at Ponds 3 North, 3 South, 16, 42, 43, 44, 61, 73, 101 East (East), 997, and outer transition zones of Machine Gun Flats.

Figure 3-6. Vernal Pool Bent Grass Occurrence at Pond 16 (Year 4 Post-Subsurface Munitions Remediation), 2022

3.4.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 16 because the vernal pool did not have sufficient depth to trigger surveys.

3.5 Pond 39


Pond 39 was in year 4 of monitoring for post-subsurface munitions remediation in 2022. Pond 39 was monitored for hydrology and vegetation. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2023).

3.5.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 39 on April 29 and May 2, 2022. These monitoring data represent year 4 post-subsurface munitions remediation conditions. Pond 39 was dry by the February 17 hydrology monitoring event (Chenega, 2023). Biologists identified three strata at the vernal pool (see Table 3-11 and Figure 3-7). Strata 1 and 3 were repeated from 2016 and 2018-2021. Stratum 4 was repeated from 2018-2021. Transect 1 was relocated to a more representative location and reduced from 10 m to 5 m. Transect 3 was relocated because the previous location was no longer within the correct stratum, whereas Transect 4 was repeated from 2019.

Table 3-11. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage	
1	3%	
3	9%	
4	67%	
Upland	21%	

Figure 3-7. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2022

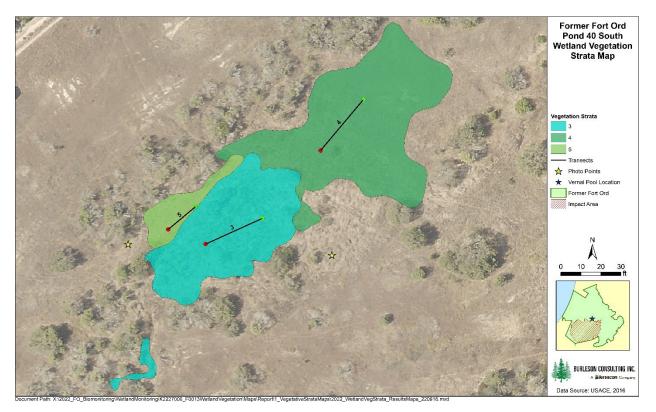
Seventy-six plant species were observed within the vernal pool basin boundary. Of these species, 42 were native, 33 were non-native, and one was unidentified. Seven species were OBL wetland plants, 25 were FACW or FAC, 12 were FACU or UPL, and 32 were not listed. Appendix B provides the species cover results for each stratum. Appendix D identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum. Table 3-12 provides a summary of the dominant species cover results for each stratum.

	Transact Longth	Dominant Species	
Stratum	Transect Length (m)	Common Name	Absolute Cover on Transect (%)
1 5	Hickman's popcornflower	30.0	
	pale spikerush	22.7	
3	10	Italian rye grass	35.7
4	10	long-beaked filaree	25.0

3.5.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 39 because the vernal pool did not have sufficient depth to trigger surveys.

3.6 Pond 40 South


Pond 40 South was in year 4 of monitoring for post-subsurface munitions remediation in 2022. Pond 40 South was monitored for hydrology and vegetation. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2023).

3.6.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 40 South on April 29, 2022. These monitoring data represent year 4 post-subsurface munitions remediation conditions. Pond 40 South remained dry throughout the 2021-2022 water-year (Chenega, 2023). Biologists identified three strata at the vernal pool (see Table 3-13 and Figure 3-8). Stratum 3 was repeated from 2016 and 2018-2021. Strata 4 and 5 and the corresponding transects were identified and established in 2022. Transect 3 was relocated because the previous location was no longer within the correct stratum.

Table 3-13. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Vegetative StrataPercentage within the Vernal Pool Basin Boundary

Stratum	Percentage	
3	37%	
4	56%	
5	7%	

Figure 3-8. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2022

Sixty plant species were observed within the vernal pool basin boundary. Of these species, 27 were native, 32 were non-native, and one was unidentified. Four species were OBL wetland plants, 14 were FACW or FAC, 13 were FACU or UPL, and 29 were not listed. Appendix B provides the species cover results for each stratum. Appendix D identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum. Table 3-14 provides a summary of the dominant species cover results for each stratum.

	Transect Length	Dominant Species	
Stratum	(m)	Common Name	Absolute Cover on Transect (%)
3	10	Italian rye grass	54.5
4 10	long-beaked filaree	39.8	
	narrow-leaved clover	25.0	
5 5	cut-leaved plantain	20.3	
	Hickman's popcornflower	14.3	

Table 3-14. Pond 40 South (Year 4) Dominant Species by Stratum Results

3.6.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 40 South because the vernal pool did not have sufficient depth to trigger surveys.

3.7 Pond 41

Pond 41 was in year 4 of monitoring for post-subsurface munitions remediation in 2022. Pond 41 was monitored for hydrology and vegetation. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2023).

3.7.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 41 on May 3, 2022. These monitoring data represent year 4 post-subsurface munitions remediation conditions. Pond 41 briefly held water in January with some peripheral ponding present but was otherwise dry throughout the 2021-2022 water-year (Chenega, 2023). Biologists identified four strata at the vernal pool (see Table 3-15 and Figure 3-9). Strata 1, 2, and 3 were repeated from 2016 and 2019-2021. Stratum 4 was repeated from 2019-2021. Transects 1, 3, and 4 were relocated because the previous locations were no longer within the correct strata. Transect 2 was relocated to an area with more representative vegetative composition.

Table 3-15. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage	
1	3%	
2	91%	
3	5%	
4	1%	

Figure 3-9. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2022

Fifty-eight plant species were observed within the vernal pool basin boundary. Of these species, 35 were native, 22 were non-native, and one was unidentified. Six species were OBL wetland plants, 21 were FACW or FAC, 13 were FACU or UPL, and 18 were not listed Appendix B provides the species cover results for each stratum. Appendix D identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum. Table 3-16 provides a summary of the dominant species cover results for each stratum.

Stratum Transect Length (m)	Dominant Species		
	Common Name	Absolute Cover on Transect (%)	
		smooth goldfields	10.7
1	1 5	alkali mallow	8.0
	cut-leaved geranium	7.3	
2	2 10	cut-leaved geranium	24.0
2 10	Lemmon's canary grass	10.5	
3	10	brown-headed rush	21.7
4 5	California oat grass	17.7	
	5	long-beaked filaree	13.3

Table 3-16. Pond 41 (Year 4) Dominant Species by Stratum Results

3.7.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 41 because the vernal pool did not have sufficient depth to trigger surveys.

3.8 Pond 42

Pond 42 was in year 4 of monitoring for post-subsurface munitions remediation in 2022. Pond 42 was monitored for hydrology and vegetation. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2023).

3.8.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 42 on May 4, 2022. These monitoring data represent year 4 post-subsurface munitions remediation conditions. Pond 42 was completely dry by the February 1 hydrology monitoring event (Chenega, 2023). Biologists identified five strata at the vernal pool (see Table 3-17 and Figure 3-10). Strata 1 through 4 were repeated from 2017-2021. Stratum 5 was repeated from 2019-2021. Transects 1, 3, and 4 were relocated because the previous locations were no longer within the correct strata. Transect 2 was repeated from 2018-2021. Transect 5 was repeated from 2020 and 2021.

Table 3-17. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage
1	18%
2	7%
3	22%
4	25%
5	12%
Upland	16%

Figure 3-10. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2022

Eighty-five plant species were observed within the vernal pool basin boundary. Of these species, 51 were native, 33 were non-native, and one was unidentified. Eight species were OBL wetland plants, 21 were FACW or FAC, 19 were FACU or UPL, and 37 were not listed. Appendix B provides the species cover results for each stratum. Appendix D identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum. Table 3-18 provides a summary of the dominant species cover results for each stratum.

Transect Length		Dominant Species	
Stratum (m)	Common Name	Absolute Cover on Transect (%)	
		needle spikerush	17.0
1	1 5	annual hair grass	10.7
		coyote thistle	10.7
2	5	pale spikerush	37.0
3	10	brown-headed rush	28.2
		smooth cat's-ear	7.7
4 5	coastal tarweed	5.7	
	coyote thistle	4.3	
	long-beaked filaree	4.3	
5	5	rabbitfoot grass	41.7

3.8.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 42 because the vernal pool did not have sufficient depth to trigger surveys.

3.9 Pond 61

Pond 61 was in year 4 of monitoring for post-subsurface munitions remediation in 2022. Pond 61 was monitored for hydrology and vegetation. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2023).

3.9.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 61 on April 28, 2022. These monitoring data represent year 4 post-subsurface munitions remediation conditions. Pond 61 was dry by the March 2 hydrology monitoring event (Chenega, 2023). Biologists identified three strata at the vernal pool (see Table 3-19 and Figure 3-11). Strata 2 through 4 were repeated from 2017-2021. Transect 3 was relocated to an area with more representative vegetative composition, whereas Transect 4 was repeated from 2017-2021. Stratum 2 consisted of CCG and no transect was placed in this stratum. Figure 3-12 illustrates the extent and density of the CCG populations at Pond 61.

Table 3-19. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage	
2 (CCG)	6%	
3	4%	
4	57%	
Upland	33%	

Figure 3-11. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects on Former Fort Ord, 2022

Ninety-four plant species were observed within the vernal pool basin boundary. Of these species, 66 were native, 26 were non-native, and two were unidentified. Nine species were OBL wetland plants, 31 were FACW or FAC, 13 were FACU or UPL, and 41 were not listed. Appendix B provides the species cover results for each stratum. Appendix D identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum. Table 3-20 provides a summary of the dominant species cover results for each stratum.

		Dominant Species	
Stratum	Transect Length (m)	Common Name	Absolute Cover on Transect (%)
2	N/A	Contra Costa goldfields	N/A
3	10	Hickman's popcornflower	32.5
4	10	rattlesnake grass	26.7

3.9.1.1 Contra Costa Goldfields

Contra Costa goldfields at Pond 61 were mapped on March 30, 2022; they occupied 0.14 acre with a density of 5-80% cover. No transects were placed in stratum 2 to avoid disturbing the population. Figure 3-12 illustrates the extent of the CCG population at Pond 61.

Figure 3-12. Contra Costa Goldfields Populations at Pond 61 (Year 4 Post-Subsurface Munitions Remediation), 2022

3.9.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 61 because the vernal pool did not have sufficient depth to trigger surveys.

3.10 Pond 75

Pond 75 was in the second year of baseline monitoring in 2022. Pond 75 was monitored for hydrology and vegetation. Hydrology results are reported separately in the Hydrology Monitoring Annual Report (Chenega, 2023).

3.10.1 Vegetation Monitoring

Vegetation monitoring was completed at Pond 75 on May 9, 2022. These monitoring data represent baseline conditions. Pond 75 remained dry throughout the 2020-2021 water-year (Chenega, 2023). Biologists identified four strata at the vernal pool (see Table 3-21 and Figure 3-13). Strata 1 through 4 were repeated from 2021. Transects 1, 2, and 4 were repeated from 2021; whereas Transect 3 was relocated to an area with more representative vegetative composition.

Stratum	Percentage 16% 67%		
1	16%		
2	67%		
3	5%		
4	12%		

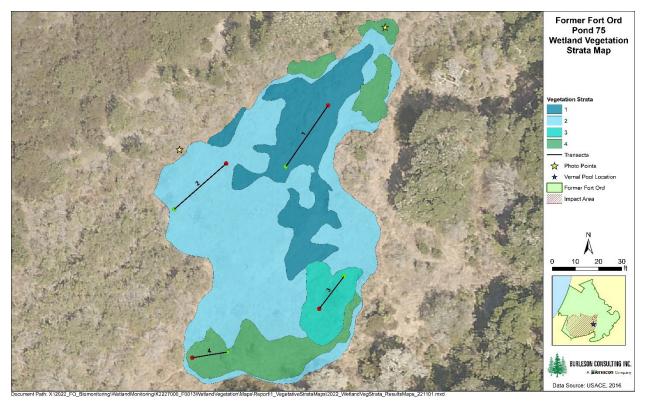


Figure 3-13. Pond 75 (Baseline) Vegetation Strata and Transects on Former Fort Ord, 2022

Forty-three species were observed within the vernal pool basin boundary. Of these species, 28 were native and 15 were non-native. One species was an OBL wetland plant, 16 were FACW or FAC, 8 were FACU or UPL, and 18 were not listed. Appendix B provides the species cover results for each stratum. Appendix D identifies the number of native, non-native, and unidentified species within each stratum as well as the number of species within each wetland indicator category for each stratum. Table 3-22 provides a summary of the dominant species cover results for each stratum.

	Transact Longth	Dominant Species			
Stratum	Transect Length (m)	Common Name	Absolute Cover on Transect (%)		
		pale spikerush	14.5		
1	10	milk thistle	12.7		
		cut-leaved geranium	11.3		
2	10	beardless wild rye	51.8		
3	5	western goldenrod	26.3		
4	5	brown-headed rush	36.3		

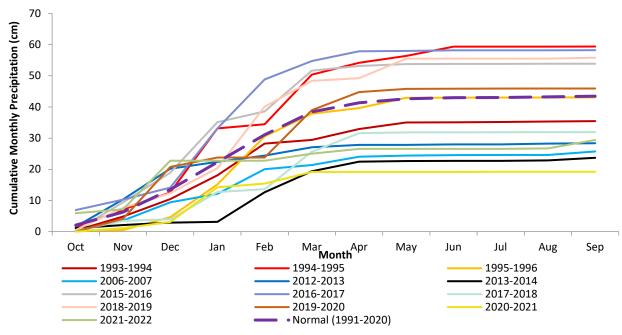
Table 3-22. Pond 75 (Baseline) Dominant Species by Stratum Results

3.10.2 Wildlife Monitoring

Wildlife surveys were not conducted at Pond 75 because the vernal pool did not have sufficient depth to trigger surveys.

4 DISCUSSION

Data quality objectives (DQO) and performance standards outlined in the Wetland Plan were used to measure successful wetland function following MEC and soil remediation activities (Burleson, 2006). Evaluation for the DQOs was included in the Methods Section 2.4. DQOs for wetland vegetation and wildlife are summarized below:


- DQO 3: vegetation similar hydrophytic vegetation as reference control wetlands
- DQO 5: wildlife consistent with baseline and similar to reference control wetland trends

4.1 Pond 5 – Reference

Pond 5 has been monitored for 14 years as a reference vernal pool. Table 4-1 summarizes the years in which monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which hydrology monitoring was conducted at Pond 5 (see Figure 4-1). Above-normal water-years were 1994-1995, 2015-2016, 2016-2017, and 2018-2019. All other monitoring, including this year, 2021-2022, was conducted either in a normal or below-normal water-year, drought year, or consecutive drought year.

Table 4-1. Pond 5 (Reference) Summary of Historical Surveys for Hydrology, Vegetation, andWildlife

		Water-Year												
Survey	1993- 1994	1994- 1995	1995- 1996	2006- 2007	2009- 2010	2012- 2013	2013- 2014	2015- 2016	2016- 2017	2017- 2018	2018- 2019	2019- 2020	2020- 2021	2021- 2022
Hydrology	1554	1995	1990	2007	2010	2013	2014	2010	2017	2018	2015	2020	2021	•
Vegetation	•	•	•	•		-	-	•	•	•	•	•	•	•
Wildlife	•	•	•	•	•			•	•	•	•	•	•	•

Figure 4-1. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 5 (Reference) Compared to the 30-Year Normal (mean 1991-2020) (NPS, 2022; NCEI NOAA, 2022)

4.1.1 Vegetation Monitoring

Vegetation data were collected at Pond 5 in 2007 and 2016-2022 (Shaw, 2008; Burleson, 2017, 2018, 2019, 2020, 2021, 2022, and 2023). Data from 1994, 1995, and 1996 only represent dominant species and are not included in the following analyses because the data were collected using a different methodology than was used in subsequent years (Jones and Stokes, 1996). In 2007, data were collected in three zones using a 1.0 m² quadrat placed at three locations within each zone, and data for all strata were collected using methodologies described in the Methods section of this report. Data from 2016 and 2022 were compared stratum-to-stratum in Table 4-2 as well as visually in Figure 4-2.

Stratum	Perce	Percentage			
	2016	2022			
1	26%	35%			
2	32%	21%			
3	38%	8%			
4	4%	N/A			
7	N/A	1%			
8	N/A	35%			

Table 4-2. Pond 5 (Reference) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

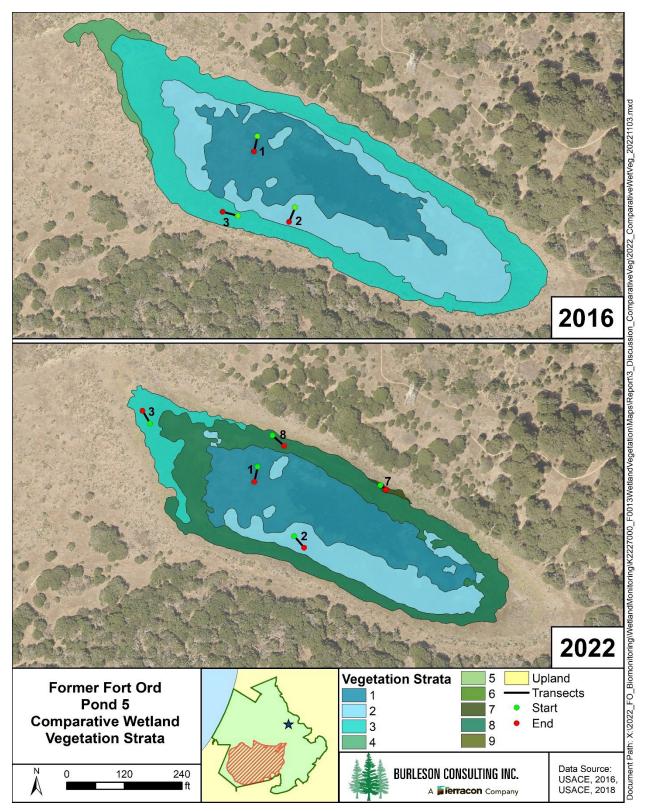


Figure 4-2. Pond 5 (Reference) Vegetation Strata and Transects for 2016 and 2022

The absolute percent vegetative cover observed in 2022 was generally less than previous years and similar to 2021 (see Table 4-3). Vegetative cover ranged from 36.3% in 2007 to 76.0% in 2019, whereas thatch/bare ground ranged from 24.0% in 2019 to 63.7% in 2007.

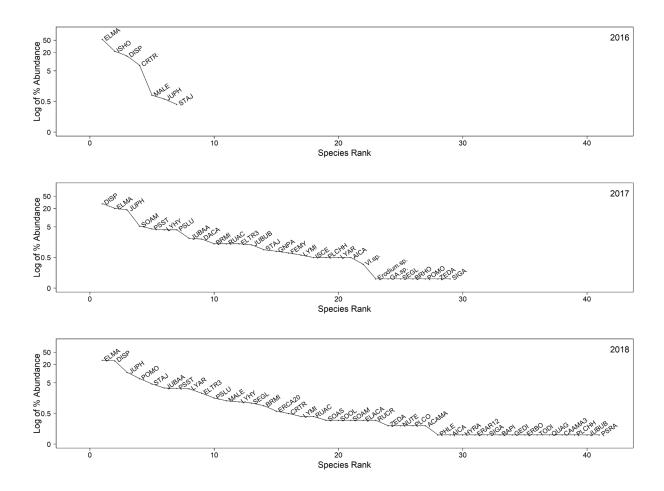
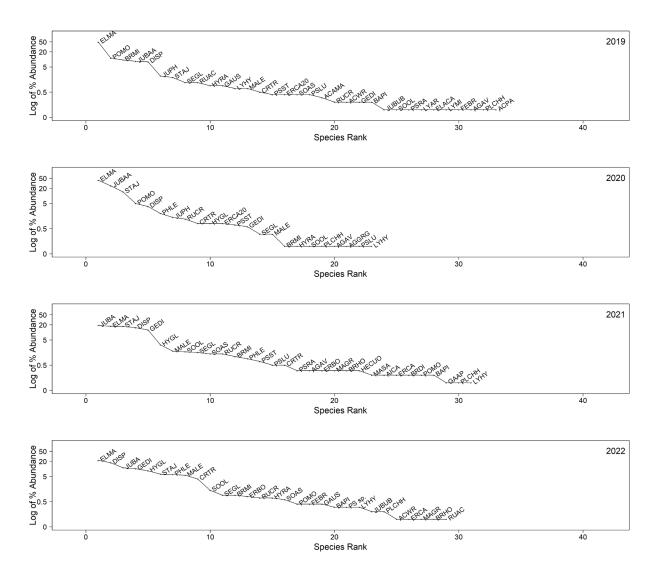
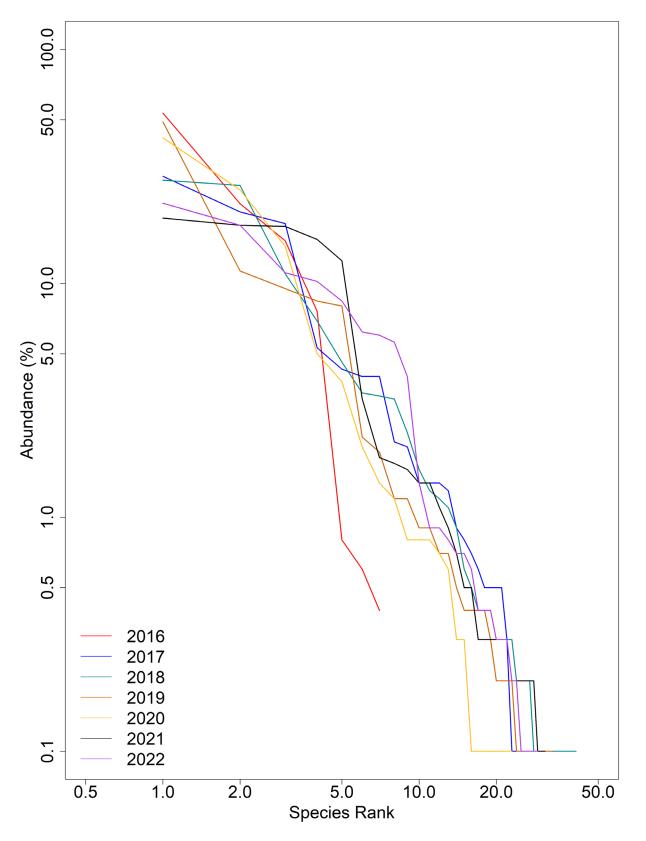

Year	Vegetative Cover	Thatch/Bare Ground
2007	36.3%	63.7%
2016	75.1%	25.2%
2017	60.5%	40.4%
2018	54.6%	45.5%
2019	76.0%	24.0%
2020	47.6%	52.4%
2021	39.3%	60.7%
2022	41.2%	58.8%

Table 4-3. Pond 5 (Reference) Absolute Percent Cover


Species richness on transects and for the overall basin has fluctuated between 2007 and 2022 with the highest richness observed on transects in 2018 and for the overall basin in 2019. Species richness on transects was 4, 7, 29, 41, 35, 23, 31, and 29 species in 2007, 2016, 2017, 2018, 2019, 2020, 2021, and 2022 respectively, whereas overall basin species richness was 26, 40, 73, 88, 94, 69, 70, and 76 species, respectively (see Table 4-4, and Appendix D Table D-1). The species richness is represented on the RACs as the length of the curve and number of species along the curve (see Figure 4-3 and Figure 4-4).

Species composition at Pond 5 varied between monitoring years. This variability of species composition is illustrated on the RACs as the species codes shift along the curve and losses and gains occur from year to year (see Figure 4-3). Despite overall composition variability, the dominant species in the vernal pool were pale spikerush (*Eleocharis macrostachya*) and salt grass (*Distichlis spicata*) in the majority of monitoring years. Both species are in the top five for all of the RACs. Baltic rush (*Juncus balticus*), cutleaf geranium (*Geranium dissectum*), smooth cat's-ear (*Hypochaeris glabra*), and bugle hedge nettle (*Stachys ajugoides*) were dominant species in 2021 and 2022 (Figure 4-4). A complete comparison of species composition observed during the surveys at Pond 5 in 2007 and 2016-2022 can be found in Appendix E. Figure 4-6 shows a subset of this comparison for species observed with a 2% absolute cover or greater.


The evenness from each year is represented by the slope of the RACs. The evenness is fairly similar from year to year with richness uniformly distributed along the entire curve with a slightly higher concentration or plateau of species toward the tail end. This plateau illustrates that there are a high number of species with low abundance. "Structurally complex systems, such as a fen [or vernal pool] system," as explained in Verberk, 2011, "are species rich and have a more even community abundance pattern, possibly owing to a fine partitioning of available niches." When comparing year to year, a more even distribution of the top species occurs in 2017, 2018, 2021, and 2022 at Pond 5 (see Figure 4-5, and Appendix F). Whereas, 2016, 2019, and 2020 have less even slopes and higher abundance of the dominant species at the top of the curves.

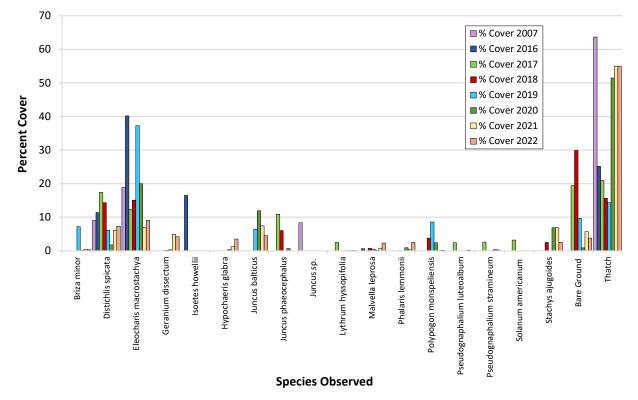

Figure 4-3. Rank Abundance Curves at Pond 5 (Reference) in 2016-2018. Note that the y-axis is in log-10 scale.

Figure 4-4. Rank Abundance Curves at Pond 5 (Reference) in 2019-2022. Note that the y-axis is in log-10 scale.

Figure 4-5. Rank Abundance Curves at Pond 5 (Reference) in 2016-2022. Note that both the x-axis and y-axis are in log-10 scale.

Native and non-native species richness on Pond 5 transects varied through time, with the highest overall richness recorded in 2018. Richness in 2022 was most similar to 2021 (see Table 4-4). The relative percent cover of native species varied through time, with the highest native cover observed in 2016 at 100.0% and the lowest value observed in 2019 at 73.6%. Values for relative percent cover in 2022 were very similar to values in 2019 (see Table 4-5).

Year	Native	Non-Native	Unidentified
2007	2	1	1
2016	7	0	0
2017	15	11	3
2018	25	16	0
2019	21	14	0
2020	12	11	0
2021	16	15	0
2022	14	14	1

Table 4-4. Pond 5 (Reference) N	ative and Non-Native Species Richness
---------------------------------	---------------------------------------

Year	Native	Non-Native	Unidentified
2007	76.9%	0.3%	22.9%
2016	100.0%	0.0%	0.0%
2017	86.6%	12.9%	0.6%
2018	83.3%	16.7%	0.0%
2019	73.6%	26.4%	0.0%
2020	91.3%	8.7%	0.0%
2021	75.0%	25.0%	0.0%
2022	73.9%	25.9%	0.3%

Wetland species richness on Pond 5 transects increased through time until 2018, then decreased in years 2019-2022. The non-wetland species richness was more variable, with the highest value recorded in 2018 (see Table 4-6). The relative percent cover of wetland species in 2022 was the lowest recorded, while non-wetland species cover was the highest recorded of any previous year. Wetland cover in 2022 was similar to 2021 and non-wetland cover was similar to 2017 (see Table 4-7).

Year		Wetland		Non-We	Not Listed	
Tear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2007	1	1	0	1	0	1
2016	3	3	0	1	0	0
2017	5	8	5	5	0	6
2018	5	11	7	8	1	9
2019	5	9	4	5	1	11
2020	4	7	3	3	1	5
2021	4	6	3	7	1	10
2022	4	6	2	7	1	9

Table 4-6. Pond 5 (Reference) Wetland and Non-Wetland Species Richness

Table 4-7. Pond 5 (Reference) Relative Percent Cover of Wetland and Non-Wetland Species

Year		Wetland		Non-We	Not Listed	
fear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2007	52.1%	24.8%	0.0%	0.3%	0.0%	22.9%
2016	75.9%	23.3%	0.0%	0.8%	0.0%	0.0%
2017	26.3%	55.3%	9.6%	8.0%	0.0%	0.8%
2018	33.7%	50.5%	10.2%	3.3%	0.3%	2.0%
2019	51.9%	31.0%	10.3%	3.4%	0.1%	3.3%
2020	56.5%	38.1%	2.0%	1.2%	0.1%	2.0%
2021	35.3%	36.5%	3.1%	4.2%	1.7%	19.1%
2022	28.7%	39.4%	1.6%	8.0%	1.4%	20.9%

4.1.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. As a reference vernal pool, Pond 5 is used for comparison to remediated vernal pools.

4.1.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 5 is a reference vernal pool and not required to meet performance standards. The vernal pool provides a control for comparison to the remediated vernal pools.

4.1.2 Wildlife Monitoring

Wildlife data were collected at Pond 5 in 1994-1996, 2007, 2010, and 2016-2020 (Jones and Stokes, 1996; Shaw, 2008, 2011; Burleson, 2017, 2018, 2019, 2020, and 2021). Fairy shrimp were present in 1995 and 2019. California tiger salamander larvae were observed in 1995, 2010, 2016, 2017, and 2019. The vernal pool did not hold sufficient depth for surveys to be completed in 2022. Therefore, DQO 5 and the applicable wildlife usage performance standard cannot be assessed. Table 4-8 shows historical wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)		
1994	Not detected	Not detected		
1995	Abundant	Very low – moderate		
1996	Not detected	Not detected		
2007	Not detected	Not detected		
2010	Few - Common	Not detected		
2016	Common - Abundant (101, 75, 100)	Not detected		
2017	Common (12, 18, 16)	Not detected		
2018	Not detected	Not detected		
2019	Common - Abundant (0, 165, 46)	Low (3)		
2020	Not detected	Not detected		

Table 4-8. Pond 5 (Reference) Historical Wildlife Monitoring Res	ults
--	------

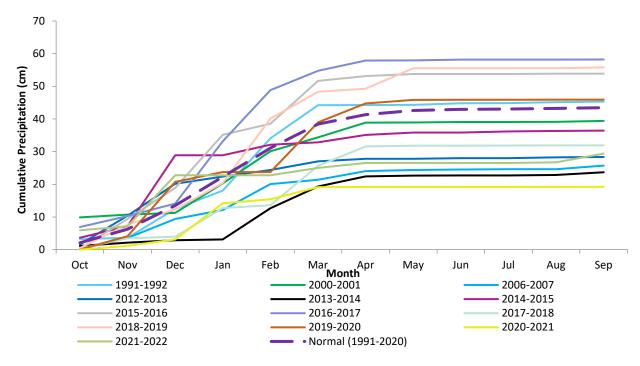
4.1.3 Conclusion

Pond 5 is used for comparison to remediated vernal pools (see Table 4-9).

Table 4-9. Success at Pond 5 (Reference) Based on Performance Standards and Applicable DataQuality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Suitable for Comparison
Wildlife Usage	N/A*	N/A*

*Not applicable; wildlife surveys were not conducted due to insufficient depth


4.2 Pond 101 East (East) – Reference

Pond 101 East (East) was monitored for fourteen years as a reference vernal pool. Table 4-10 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which hydrology monitoring was conducted at Pond

101 East (East) (see Figure 4-7). Above-normal water-years were 2015-2016, 2016-2017, and 2018-2019. All other monitoring, including this year, 2021-2022, was conducted either in a normal or below-normal water-year, drought year, or consecutive drought year.

Table 4-10. Pond 101 East (East) (Reference) Summary of Historical Surveys for Hydrology,
Vegetation, and Wildlife

	Water-Year													
Survey	1991- 1992	2000- 2001	2006- 2007	2009- 2010	2012- 2013	2013- 2014	2014- 2015	2015- 2016	2016- 2017	2017- 2018	2018- 2019	2019- 2020	2020- 2021	2021- 2022
Hydrology		•	•		٠	٠	٠	•	•	٠	٠	٠	•	•
Vegetation								•	•	٠	٠	٠	•	•
Wildlife	•	•	•	•				•	•	•	•	•		

Figure 4-7. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 101 East (East) (Reference) Compared to the 30-Year Normal (mean 1991-2020) (NPS, 2022; NCEI NOAA, 2022)

4.2.1 Vegetation Monitoring

Vegetation data were collected at Pond 101 East (East) in 2016-2022 (Burleson, 2017, 2018, 2019, 2020, 2021, and 2022). Data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2022 were compared stratum-to-stratum in Table 4-11 as well as visually in Figure 4-8.

Table 4-11. Pond 101 East (East) (Reference) Vegetative Strata Percentage within the Vernal PoolBasin Boundary

Stratum	Percentage					
Stratum	2016	2022				
1	0.4%	N/A				
2	48%	N/A				
3	44%	33%				
4	8%	10%				
5	N/A	55%				
9	N/A	2%				

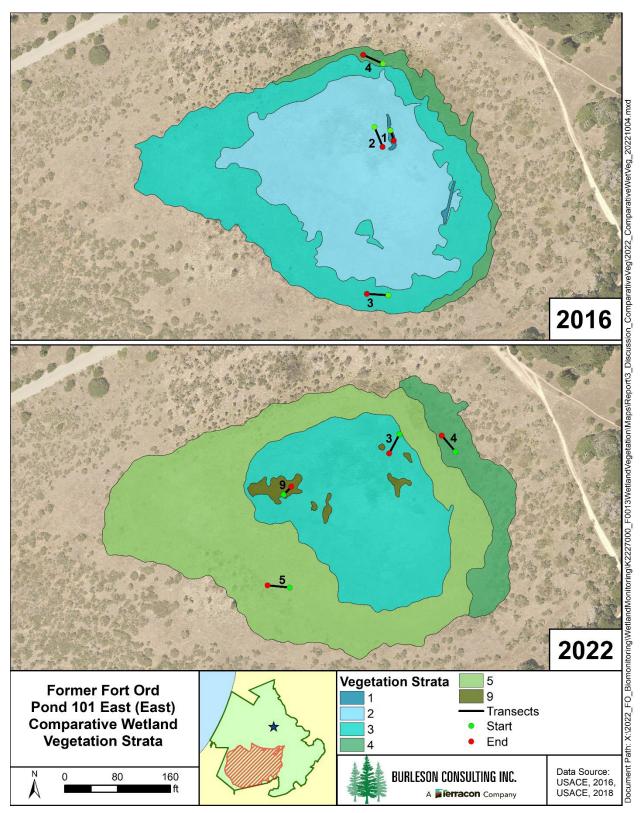


Figure 4-8. Pond 101 East (East) (Reference) Vegetation Strata and Transects for 2016 and 2022

The absolute percent vegetative cover observed at Pond 101 East (East) in 2022 increased 17% from the lowest recorded value in 2021 and was most similar to 2016 (see Table 4-12). Vegetative cover in previous years ranged from 38.5% in 2021 to 84.6% in 2017, whereas thatch/bare ground ranged from 16.6% in 2017 to 61.6% in 2021. In 2022, vegetative cover was 55.5% and thatch/bare ground was 44.5%.

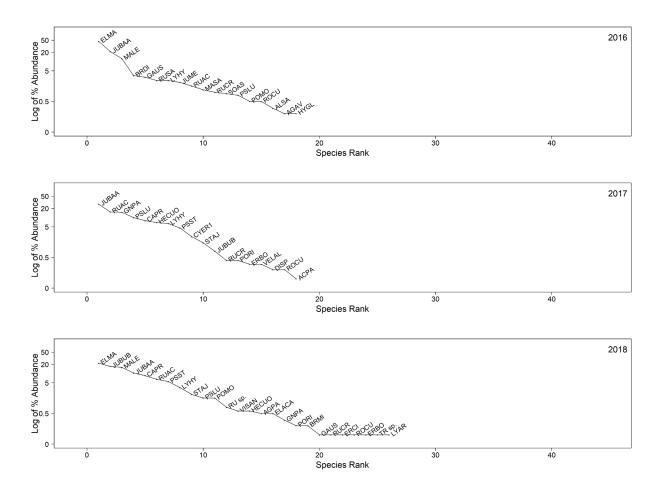
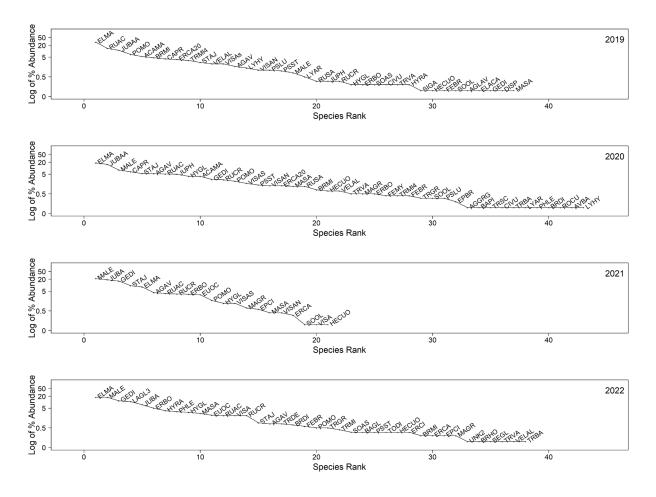

Year	Vegetative Cover	Thatch/Bare Ground
2016	60.7%	41.0%
2017	84.6%	16.6%
2018	68.7%	32.6%
2019	72.6%	28.6%
2020	63.4%	36.6%
2021	38.5%	61.6%
2022	55.5%	44.5%

Table 4-12. Pond 101 East (East) (Reference) Absolute Percent Cover


Species richness on transects increased between 2016 and 2020, decreased in 2021, then increased again in 2022. For the overall basin, the species richness fluctuated between 2016 and 2022 with the highest richness observed in 2018. Species richness on transects was 18, 18, 32, 37, 43, 21, and 38 species in 2016, 2017, 2018, 2019, 2020, 2021, and 2022, respectively, whereas overall basin species richness was 37, 59, 89, 84, 86, 68, and 72 species, respectively (see Table 4-13 and Appendix D Table D-2). The species richness is represented on the RACs as the length of the curve and number of species along the curve (see Figure 4-9 and Figure 4-10).

Species composition and dominant species at Pond 101 East (East) varied between monitoring years. This variability of species composition is illustrated on the RACs as the species codes shift along the curve and losses and gains occur from year to year (see Figure 4-9 and Figure 4-10). The dominant species shift is shown through the changes in the species at the top of the curve. Pale spikerush (*Eleocharis macrostachya*) and Baltic rush (*Juncus balticus*) were the dominant species in 2016 and 2020; Baltic rush, sheep sorrel (*Rumex acetosella*), and purple cudweed (*Gnaphalium palustre*) were the dominant species in 2017; pale spikerush, common toadrush (*Juncus bufonius* var. *bufonius*) and alkali mallow (*Malvella leprosa*) were dominant in 2018, pale spikerush, sheep sorrel, and Baltic rush were dominant in 2019; and alkali mallow, Baltic rush, and cut-leaved geranium (*Geranium dissectum*) were dominant in 2021. The dominant species in 2022 were similar to the previous year, except pale spikerush, rather than Baltic rush was most dominant. A complete comparison of species composition observed during the surveys at Pond 101 East (East) from 2016-2022 can be found in Appendix E. Figure 4-12 shows a subset of this comparison for species observed with a 2% cover or greater.

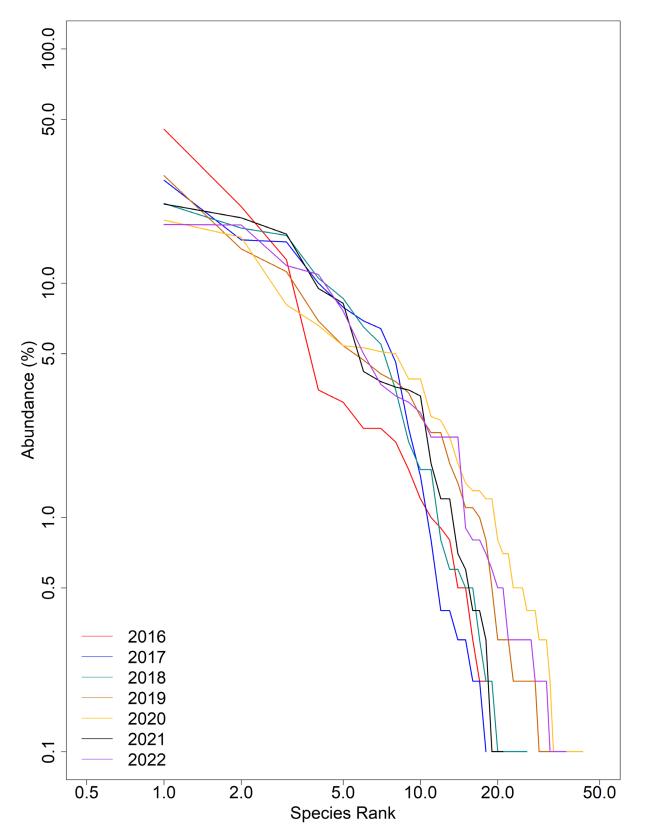

The evenness from each year is represented by the slope of the RACs. The evenness is fairly similar from year to year with richness uniformly distributed along the entire curve and a slightly higher concentration or plateau of species toward the tail end. This plateau illustrates that there are a high number of species with low abundance. "Structurally complex systems, such as a fen [or vernal pool] system," as explained in Verberk, 2011, "are species rich and have a more even community abundance pattern, possibly owing to a fine partitioning of available niches." When comparing year to year, a more even distribution of the top species occurs in 2018, 2020, 2021, and 2022 at Pond 101 East (East) (see Figure 4-11, and Appendix F). Whereas 2016, 2017, and 2019 have a less even slope and higher abundance of the dominant species at the top of the curve.

Figure 4-9. Rank Abundance Curves at Pond 101 East (East) (Reference) in 2016-2018. Note that the y-axis is in log-10 scale.

Figure 4-10. Rank Abundance Curves at Pond 101 East (East) (Reference) in 2019-2022. Note that the y-axis is in log-10 scale.

Figure 4-11. Rank Abundance Curves at Pond 101 East (East) (Reference) in 2016-2022. Note that the x-axis and the y-axis are in log-10 scale.

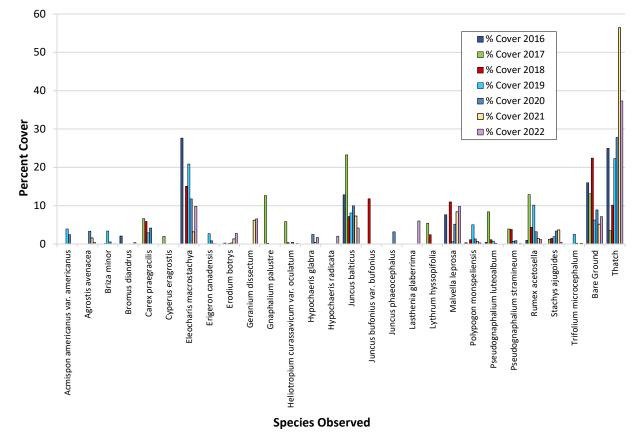


Figure 4-12. Percent Cover of Dominant Species at Pond 101 East (East) (Reference)

Native species richness on Pond 101 East (East) varied through time, with the highest native richness recorded in 2020 and the lowest recorded in 2016 (see Table 4-13). Likewise, non-native species richness varied, with the highest richness recorded in 2019 and 2020, and the lowest value recorded in 2017 (see Table 4-14).

Year	Native	Non-Native	Unidentified
2016	9	9	0
2017	13	5	0
2018	18	11	3
2019	18	19	0
2020	24	19	0
2021	10	11	0
2022	21	16	1

Table 4-13. Pond 101 East	(Fast) (Reference) Native and Non-Native S	necies Richness
		j Native and Non-Native S	pecies menness

Year	Native	Non-Native	Unidentified
2016	88.9%	11.1%	0.0%
2017	67.7%	32.3%	0.0%
2018	84.4%	14.7%	0.9%
2019	64.7%	35.3%	0.0%
2020	72.2%	27.8%	0.0%
2021	64.1%	35.9%	0.0%
2022	66.4%	33.5%	0.1%

Wetland species richness on Pond 101 East (East) transects increased between 2016 and 2020, decreased to the lowest recorded value in 2021, then increased in 2022 to the range of previous years (see Table 4-15). Non-wetland species on transects generally increased from 2016 to 2019, then remained similar from 2020-2022. The relative percent cover of wetland species was variable between surveys with a decrease from 2019 to 2021, then a slight increase in 2022 (see Table 4-16). The relative percent cover of non-wetland species was variable between surveys until 2021, when the percentage cover increased to its highest recorded value, then remained the same in 2022. The non-wetland species cover values have ranged from 15.1% in 2016 to 31.2% in 2021 and 2022.

Table 4-15. Pond 101 East (East) (Reference) Wetland and Non-Wetland Species Richness

Year	Wetland			Non-Wetland		Not Listed
Tear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2016	3	6	1	3	0	5
2017	3	8	3	2	0	2
2018	5	9	5	4	2	7
2019	4	8	7	7	3	8
2020	5	8	7	6	3	14
2021	2	4	1	4	4	6
2022	4	6	8	7	1	12

Table 4-16. Pond 101 East (East) (Reference) Relative Percent Cover of Wetland and Non-WetlandSpecies

Year	Wetland			Non-Wetland		Not Listed
real	OBL	FACW	FAC	FACU	UPL	Not Listed
2016	48.4%	27.3%	1.0%	15.1%	0.0%	8.2%
2017	8.1%	64.0%	5.3%	15.6%	0.0%	7.0%
2018	28.2%	40.2%	6.0%	22.6%	1.1%	1.8%
2019	32.9%	24.0%	12.5%	19.4%	3.4%	7.7%
2020	24.2%	31.1%	6.5%	15.5%	3.3%	19.5%
2021	17.7%	24.7%	3.6%	29.3%	1.9%	22.8%
2022	29.7%	13.8%	4.2%	29.1%	2.1%	21.1%

4.2.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. As a reference vernal pool, Pond 101 East (East) is used for comparison to remediated vernal pools.

4.2.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 101 East (East) is a reference vernal pool and not required to meet performance standards. The vernal pool provides a control for comparison to the remediated vernal pools.

4.2.2 Wildlife Monitoring

Wildlife data were collected at Pond 101 East (East) in 1992, 2001, 2007, 2010, and 2016-2020 (Jones and Stokes, 1992; Harding ESE, 2002; Shaw, 2008; Shaw, 2011; Burleson, 2017, 2018, 2019, 2020, and 2021). California tiger salamander larvae were observed in 1992, 2010, and 2016-2019. Fairy shrimp were present in 2001, 2019, and 2020. The vernal pool did not hold sufficient depth for surveys to be completed in 2022. Therefore, DQO 5 and the applicable wildlife usage performance standard cannot be assessed. Table 4-17 shows historical wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1992	Present*	Not detected*
2001	Not detected*	Moderate (100, 12)
2007	Not detected	Not detected
2010	Common*	Not detected*
2016	Common – Abundant (>101, 101, 67)	Not detected
2017	Common (36, 70, 5)	Not detected
2018	Few (2)	Not detected
2019	Common – Abundant (38, 212, 225)	Moderate (32)
2020	Not detected	Moderate (15)

Table 4-17. Pond 101 East (East) (Reference) I	Historical Wildlife Monitoring Results
--	--

*Data do not differentiate between 101 East (East), 101 East (West), and 101 West. They are identified collectively as Pond 101.

4.2.3 Conclusion

Pond 101 East (East) is used for comparison to remediated vernal pools (see Table 4-18).

Table 4-18. Success at Pond 101 East (East) (Reference) Based on Performance Standards andApplicable Data Quality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Suitable for Comparison
Wildlife Usage	N/A*	N/A*

*Not applicable; wildlife surveys were not conducted due to insufficient depth


4.3 Pond 997 – Reference

Pond 997 was monitored for six years as a reference vernal pool, although approximately 13% of vegetation within the Pond 997 watershed was masticated in 2017. Table 4-19 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows

precipitation for years in which hydrology monitoring was conducted at Pond 997 (see Figure 4-13). The 2016-2017 and 2018-2019 water-years were above-normal; whereas the 2019-2020 water-year was similar to the cumulative normal. All other monitoring, including this year, 2021-2022, was conducted either in a below-normal water-year, drought year, or consecutive drought year

Table 4-19. Pond 997 (Reference) Summary of Historical Surveys for Hydrology, Vegetation, andWildlife

Survoy	Water-Year					
Survey	2016-2017	2017-2018	2018-2019	2019-2020	2020-2021	2021-2022
Hydrology	•	•	•	•	•	•
Vegetation	•	•	•	•	•	•
Wildlife	•		•			

Figure 4-13. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 997 (Reference) Compared to the 30-Year Normal (mean 1991-2020) (NPS, 2022; NCEI NOAA, 2022)

4.3.1 Vegetation Monitoring

Vegetation data were collected at Pond 997 from 2017-2022 (Burleson, 2018, 2019, 2020, 2021, and 2022). Data were collected using the methodology described in the Methods section of this report. Data from 2017 and 2022 were compared stratum-to-stratum in Table 4-20 as well as visually in Figure 4-14.

Pond 997 also supports a CCG population located in stratum 2. The population was mapped and a visual estimate of percent cover was recorded in 2022 to compare to past years (see Figure 4-19 in Section 4.3.1.1).

Table 4-20. Pond 997 (Reference) Vegetative Strata Percentage within the Vernal Pool BasinBoundary

Stratum	Percentage		
Stratum	2017	2022	
1	3%	5%	
2 (CCG)	2%	6%	
3	89%	89%	
4	2%	N/A	
Upland	4%	N/A	

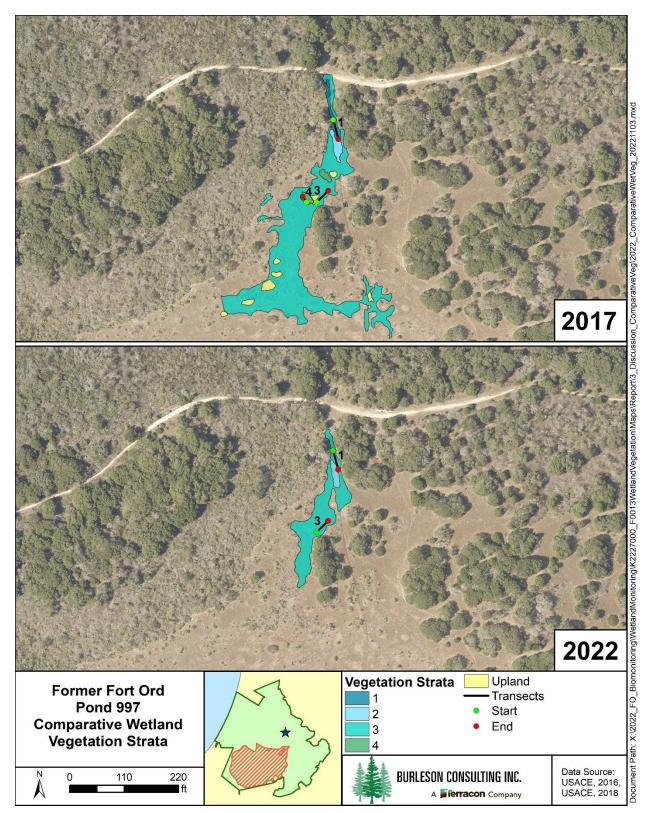


Figure 4-14. Pond 997 (Reference) Vegetation Strata and Transects for 2017 and 2022

The absolute percent vegetative cover observed in 2022 was comparable to previous years and most similar to 2018 (see Table 4-21). Vegetative cover ranged from 44.7% in 2018 to 73.3% in 2019, whereas thatch/bare ground ranged from 28.6% in 2019 to 55.4% in 2018.

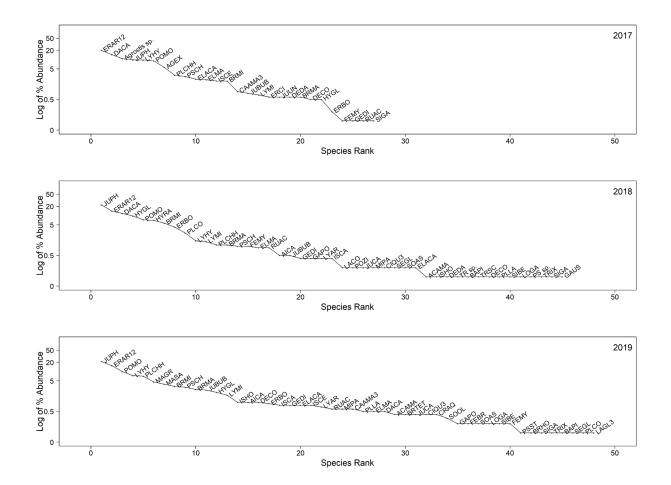
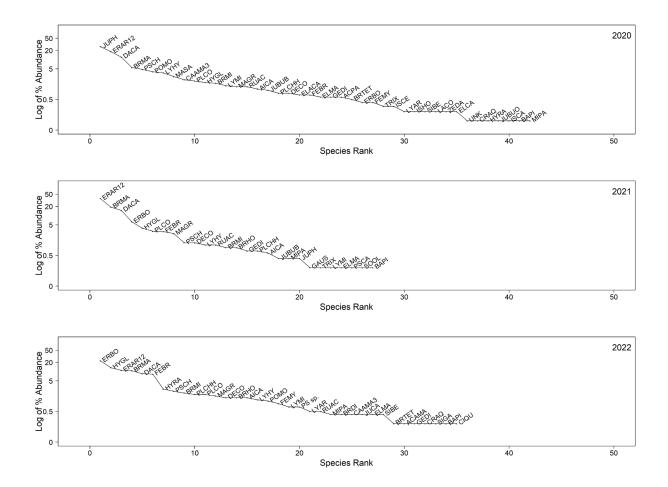

Year	Vegetative Cover	Thatch/Bare Ground
2017	57.3%	43.7%
2018	44.7%	55.4%
2019	73.3%	28.6%
2020	70.2%	29.8%
2021	45.1%	55.0%
2022	46.9%	53.1%

Table 4-21. Pond 997 (Reference) Absolute Percent Cover


Species richness on transects increased between 2017 and 2019, decreased in 2020 and 2021, and then increased again in 2022. Species richness in the overall basin was within the range of previous years, with an increase by 8 species from 2021. Species richness on transects was 27, 45, 48, 42, 27, and 35 species in 2017, 2018, 2019, 2020, 2021, and 2022, respectively, whereas overall basin species richness was 65, 87, 82, 82, 59, and 76 species, respectively (see Table 4-22 and Appendix D Table D-3). The species richness is represented on the RACs as the length of the curve and number of species along the curve (see Figure 4-15 and Figure 4-16).

Species composition at Pond 997 varied between monitoring years. This variability of species composition is illustrated on the RACs as the species codes shift along the curve and losses and gains occur from year to year (see Figure 4-15 and Figure 4-16). Despite overall composition variability, the dominant species in the vernal pool were fairly consistent. Coyote thistle (*Eryngium armatum*) and brown-headed rush (*Juncus phaeocephalus*) were the dominant species from 2018-2020, while coyote thistle and California oatgrass (*Danthonia californica*), were dominant in 2017 and 2021. Rattlesnake grass (*Briza maxima*) was an additional dominant species in 2021. Long-beaked filaree (*Erodium botrys*) and smooth cat's-ear (*Hypochaeris glabra*) became more dominant than coyote thistle in 2022, marking a shift towards non-native annual species composition. A complete comparison of species composition observed during the surveys at Pond 997 in 2017-2022 can be found in Appendix E. Figure 4-18 shows a subset of the observed species with a 2% cover or greater.

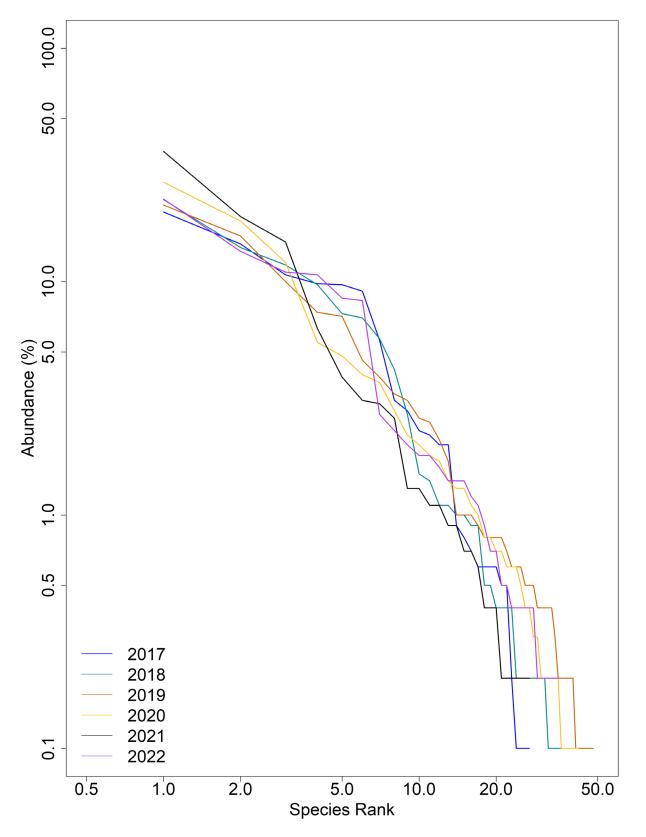

The evenness from each year is represented by the slope of the RACs. The evenness is fairly similar from year to year with richness distributed along the entire curve. "Structurally complex systems, such as a fen [or vernal pool] system," as explained in Verberk, 2011, "are species rich and have a more even community abundance pattern, possibly owing to a fine partitioning of available niches." When comparing year to year, a more even distribution of the top species occurs in 2017, 2019, 2020, and 2022 at Pond 997 (see Figure 4-17, and Appendix F). A less even distribution of the dominant species however, as shown by a steeper slope occurs in 2018 and 2021.

Figure 4-15. Rank Abundance Curves at Pond 997 (Reference) in 2017-2019. Note that the y-axis is in log-10 scale.

Figure 4-16. Rank Abundance Curves at Pond 997 (Reference) from 2020-2022. Note that the y-axis is in log-10 scale.

Figure 4-17. Rank Abundance Curves at Pond 997 (Reference) in 2017-2022. Note that the x-axis and y-axis are in log-10 scale.

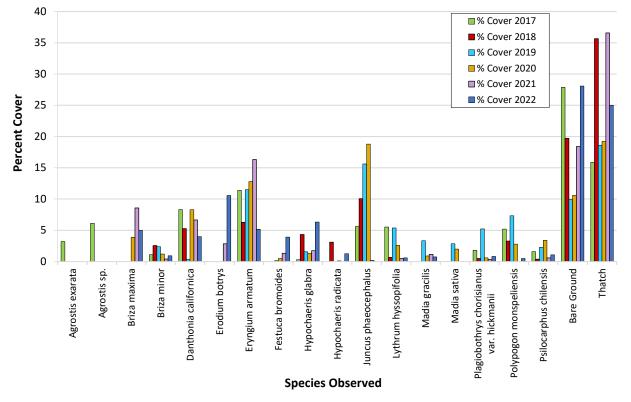


Figure 4-18. Percent Cover of Dominant Species at Pond 997 (Reference)

Native and non-native species richness on Pond 997 transects varied through time, with the highest native richness recorded in 2019 and 2020 and the highest non-native richness also occurring in 2019. The lowest recorded native and non-native richness values occurred in 2017 and 2021. Native species richness in 2022 was similar to 2017 and 2021, whereas non-native species richness was similar to 2018 (see Table 4-22). Native relative percent cover has fluctuated from year to year. In 2022, native cover dipped to the lowest percentage ever recorded, and conversely non-native cover was dramatically higher than any previous year (see Table 4-23).

Year	Native	Non-Native	Unidentified
2017	15	11	1
2018	24	19	2
2019	27	21	0
2020	27	14	1
2021	15	12	0
2022	16	18	1

Year	Native	Non-Native	Unidentified
2017	66.3%	23.0%	10.7%
2018	56.3%	43.5%	0.2%
2019	68.5%	31.5%	0.0%
2020	76.3%	23.6%	0.1%
2021	59.1%	40.9%	0.0%
2022	29.7%	69.6%	0.7%

Wetland species richness on Pond 997 transects increased from 2017 to 2020, decreased in 2021, then increased in 2022 (see Table 4-24). Non-wetland species richness varied through time, with the highest richness recorded in 2019 and the lowest recorded in 2017. Non-wetland richness in 2022 was most similar to 2018. The relative percent cover of wetland species fluctuated between 2017 and 2022 with the lowest recorded value of wetland cover observed in 2022. Non-wetland cover also varied through time, but then increased in 2022 to the highest recorded value (see Table 4-25).

Voor	Wetland		Non-Wetland		Not Listed	
Year	OBL	FACW	FAC	FACU	UPL	Not Listed
2017	5	10	2	3	0	7
2018	8	10	5	8	0	14
2019	9	9	6	8	1	15
2020	9	10	5	5	0	13
2021	3	5	4	4	1	10
2022	4	7	4	7	0	13

able 4-24. Pond 997 (Reference) Wetland and Non-Wetland Species Richness
--

Table 4-25. Pond 997 (Reference)) Relative Percent Cover o	of Wetland and Non-Wetland	Species

Voor	Wetland		Non-Wetland		Not Listed	
Year	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2017	19.3%	50.7%	16.5%	0.5%	0.0%	13.0%
2018	4.6%	47.5%	20.7%	14.2%	0.0%	13.0%
2019	18.7%	55.4%	4.6%	3.8%	0.3%	17.1%
2020	6.7%	59.0%	16.1%	3.2%	0.0%	15.0%
2021	2.0%	38.4%	19.0%	8.9%	0.2%	31.4%
2022	3.6%	16.0%	12.8%	29.8%	0.0%	37.8%

4.3.1.1 Contra Costa Goldfields

Populations and cover estimates of CCG have been collected from 2017-2022, whereas in previous years only its presence was noted (Burleson, 2018, 2019, 2020, 2021, 2022, and 2023). The area of CCG at Pond 997 has varied slightly from 2017 to 2022 (see Table 4-26 and Figure 4-19). The lowest total area recorded was 0.005 acres in 2021, and the highest was 0.02 acres in 2017, 2020, and 2022. The density

also fluctuated from 10% cover in 2017, 2020 and 2021, to as much as 35% in 2019. In 2022, cover was 20%. The CCG population was in a similar location in all survey years. Minor changes in population size can be attributed to natural fluctuation as no remediation has occurred at Pond 997 apart from mastication of a small portion of its watershed in 2017.

Year	Area (acres)	Density (% cover)
2017	0.02	10%
2018	0.01	25%
2019	0.01	35%
2020	0.02	10%
2021	0.005	10%
2022	0.02	20%

Table 4-26. Pond 997 (Reference) Contra Costa Goldfields Estimated Cover

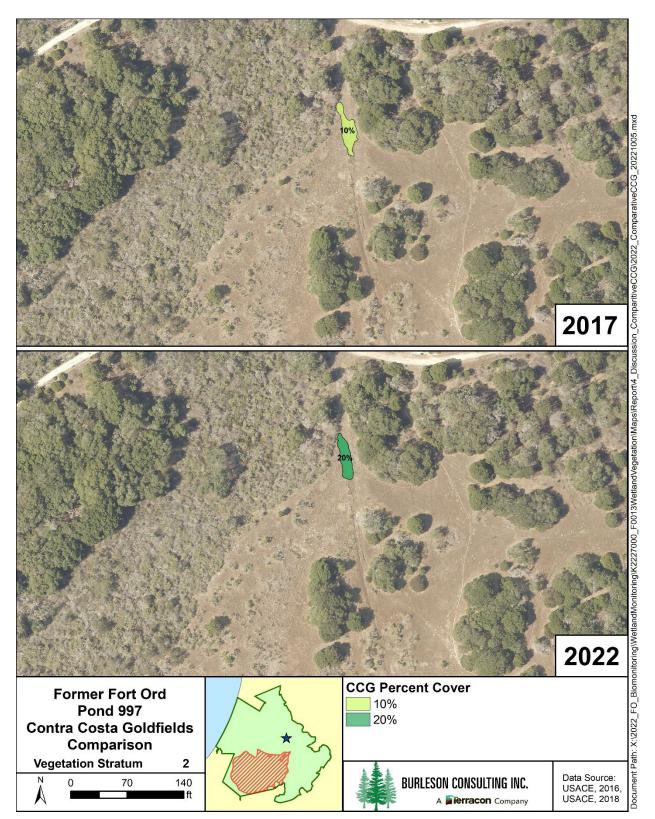


Figure 4-19. Contra Costa Goldfields Populations at Pond 997 (Reference) in 2017 and 2022

4.3.1.2 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. As a reference vernal pool, Pond 997 was used for comparison to remediated vernal pools.

4.3.1.3 Performance Standard: Plant Cover and Species Diversity

Pond 997 is a reference vernal pool and not required to meet performance standards. The vernal pool provides a control for comparison to the remediated vernal pools.

4.3.2 Wildlife Monitoring

Wildlife data were collected at Pond 997 in 2017 and 2019 (Burleson, 2018, 2020). California tiger salamander and fairy shrimp were not detected. The vernal pool did not hold sufficient depth for surveys to be completed in 2018, 2020, 2021, or 2022. Therefore, DQO 5 and the applicable wildlife usage performance standard cannot be assessed. shows historical wildlife monitoring results.

Table 4-27. Pond 997 (Reference) Historical Wildlife Mo	nitoring Results
---	------------------

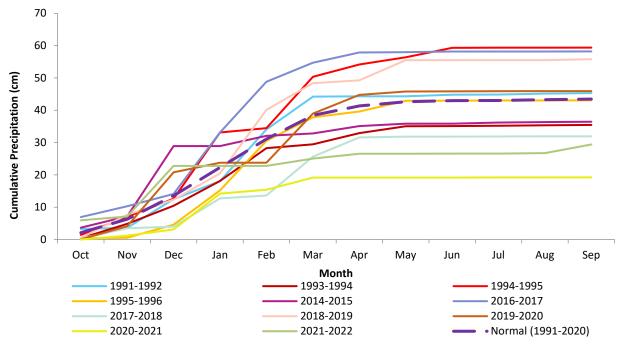
Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
2017	Not detected	Not detected
2019	Not detected	Not detected

4.3.3 Conclusion

Pond 997 is used for comparison to remediated vernal pools (see Table 4-28).

Table 4-28. Success at Pond 997 (Reference) Based on Performance Standards and Applicable DataQuality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Suitable for Comparison
Wildlife Usage	N/A*	N/A*


*Not applicable; wildlife surveys were not conducted due to insufficient depth

4.4 Pond 16 – Year 4

Pond 16 was monitored in 2022 as a year 4 post-subsurface munitions remediation vernal pool. Pond 16 was monitored for baseline conditions in 1992, 1994-1996, 2009, and 2015. Vegetation within Pond 16 and immediately around it was masticated in the summer of 2016 in preparation for a prescribed burn in Unit 31. Less than 50 percent of the Pond 16 watershed was masticated, and limited vegetation mastication occurred within the inundation area. Pond 16 had intrusive anomaly investigations in 2018. Table 4-29 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which hydrology monitoring was conducted at Pond 16 (see Figure 4-20). The 1994-1995, 2016-2017, and 2018-2019 water-years were above normal. Water-year 2019-2020, as well as 1991-1992 and 1995-1996, were similar to the cumulative normal water-year. Below-normal and drought water years occurred in 1993-1994, 2014-2015, 2020-2021, and 2021-2022.

	Water-Year											
Survey	1991-	1993-	1994-	1995-	2008-	2014-	2016-	2017-	2018-	2019-	2020-	2021-
	1992	1994	1995	1996	2009	2015	2017	2018	2019	2020	2021	2022
Hydrology	•	•	•	•		•	•	•	•	•	•	•
Vegetation		•	•	•		•	•		•	•	•	•
Wildlife	•	•	•	•	•	•			•	•		

Table 4-29. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical Surveysfor Hydrology, Vegetation, and Wildlife

Figure 4-20. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1991-2020) (NPS, 2022; NCEI NOAA, 2022)

4.4.1 Vegetation Monitoring

Vegetation data were collected at Pond 16 in 2015, 2017, and 2019-2022 (Burleson, 2016, 2018, 2020, 2021, 2022, and 2023). Data from 1994, 1995, and 1996 only represent dominant species and are not included in the following analyses because the data were collected using a different methodology than was used in later years (Jones and Stokes, 1996). In 2015, 2017, and 2019-2022, data were collected using the methodology described in the Methods section of this report. Data from 2015 and 2022 were compared stratum-to-stratum in Table 4-30 as well as visually in Figure 4-21.

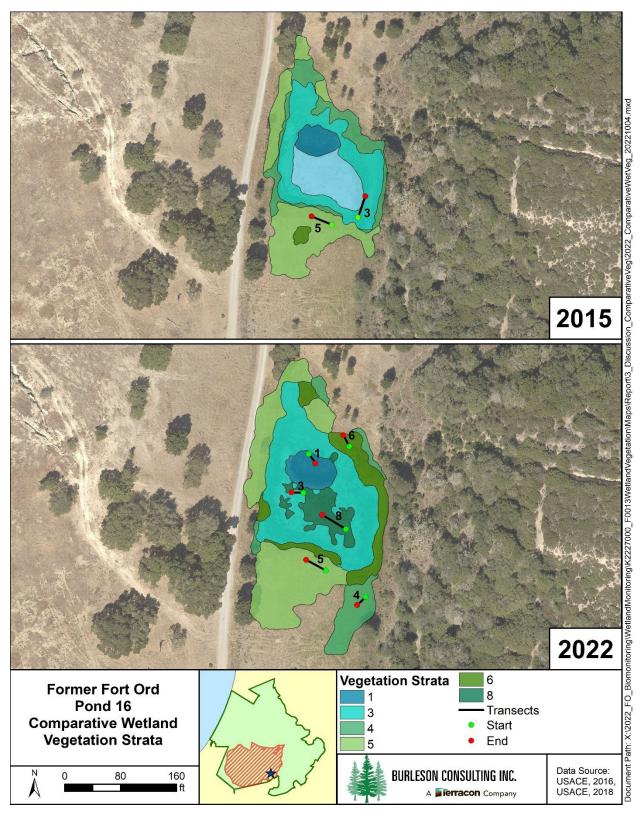


Figure 4-21. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2015 and 2022

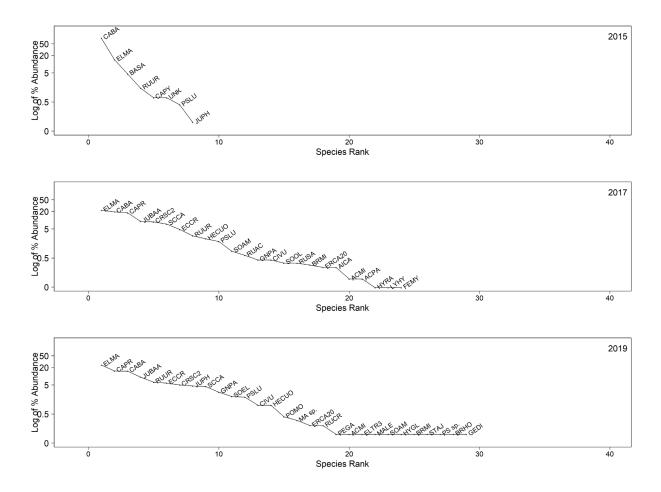
Stratum	Perce	ntage
Stratum	2015	2022
1	8%	5%
2	24%	N/A
3	44%	34%
4	24%	10%
5	N/A	32%
6	N/A	12%
8	N/A	7%

Table 4-30. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentagewithin the Vernal Pool Basin Boundary

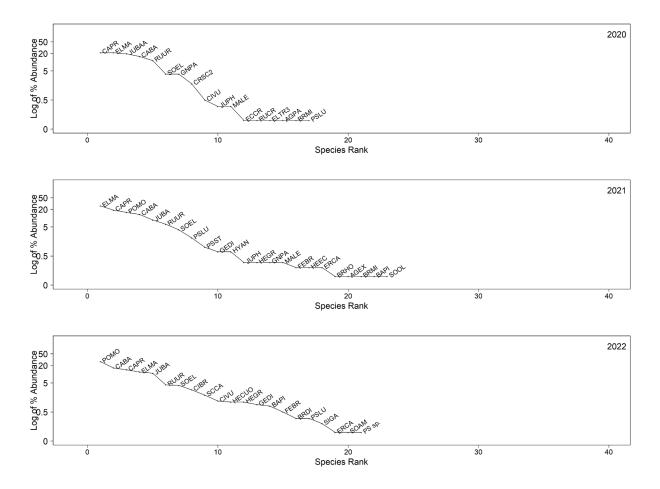
Absolute percent vegetative cover for Pond 16 was less than baseline in 2022, whereas thatch/bare ground was higher than baseline (see Table 4-31). When compared to reference vernal pools the absolute percent vegetative cover and thatch/bare ground cover were within the range of values and most similar to Pond 997 (see Table 4-32).

Year	Vegetative Cover	Thatch/Bare Ground
2015*	59.1%	38.8%
2017	77.8%	21.8%
2019	70.6%	29.5%
2020	72.1%	27.8%
2021	56.5%	43.6%
2022	46.4%	53.6%

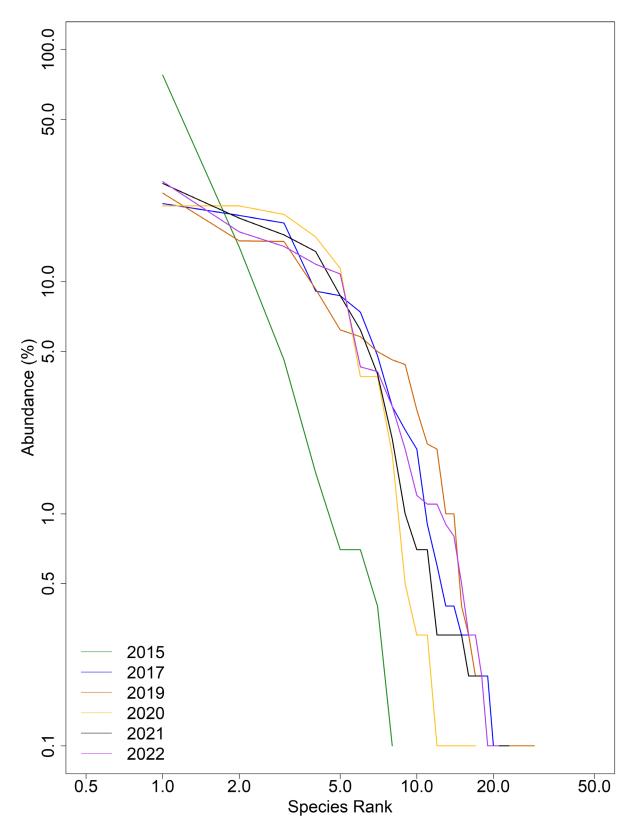
*baseline year


Table 4-32. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal PoolAbsolute Percent Cover in 2022

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	41.2%	58.8%
101 East (East)	55.5%	44.5%
997	46.9%	53.1%
16	46.4%	53.6%


Species richness in 2022 was greater than the baseline year of monitoring. Species richness on transects was 8, 24, 29, 17, 23, and 21 species in 2015, 2017, 2019, 2020, 2021, and 2022 respectively, whereas overall basin species richness was 49, 86, 83, 81, 82, and 87, respectively (see Table 4-33 and Appendix D Table D-4). Pond 16 species richness was less than the values observed on transects at the reference vernal pools, whereas overall basin species richness was greater than ranges observed for reference (see Table 4-34 and Appendix D Tables D-11 and D-22). The species richness is represented on the RACs as the length of the curve and number of species along the curve (see Figure 4-22 and Figure 4-23).

Species composition and the dominant species at Pond 16 remained similar between the monitoring years. This species composition is illustrated on the RACs as the species codes shift along the curve and losses and gains occur from year to year (see and Figure 4-22 and Figure 4-23). The most dominant species in the 2015 baseline year was whiteroot (*Carex barbarae*), and was an important species every other year. Pale spike rush (*Eleocharis macrostachya*) was among the top four dominant species every year from 2015-2022, and was the most dominant species in 2017, 2019, 2020 and 2021. In 2020 pale spike rush was codominant with clustered field sedge (*Carex praegracilis*), which was another important species from 2017-2022. In 2021, non-native rabbitfoot grass (*Polypogon monspeliensis*) was the third most dominant species, and by 2022 it became the most dominant species, marking a shift from previous years. A complete comparison of species composition observed at Pond 16 in 2015, 2017, and 2019-2022 can be found in Appendix E. Figure 4-25 shows a subset of this comparison for species observed with a 2% cover or greater.


The evenness from each year is represented by the slope of the RACs. The evenness between the 2015 baseline year and 2022 is dissimilar. In 2015, there is a less even slope and higher abundance of the dominant species at the top of the curve, whereas the 2022 RAC shows a more even distribution of the top species, with richness distributed along the entire curve (see Figure 4-24, and Appendix F). When comparing Pond 16 in 2022 to reference vernal pools, it is most similar to Ponds 5 and 997, which both have a slightly sloping beginning of the curve and similar shape to the entire curve. However, Pond 16 and Pond 5 have a higher concentration or plateau of species toward the end of the tail. In contrast, the tail end of Pond 997 drops off earlier.

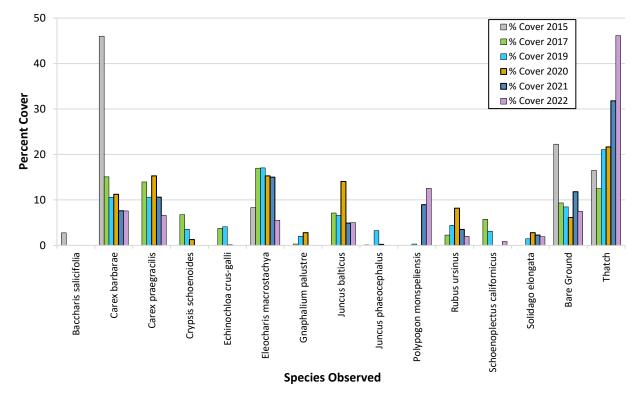

Figure 4-22. Rank Abundance Curves at Pond 16 (Year 4 Post-Subsurface Munitions Remediation) in 2015, 2017, and 2019. Note that the y-axis is in log-10 scale.

Figure 4-23. Rank Abundance Curves at Pond 16 (Year 4 Post-Subsurface Munitions Remediation) from 2020-2022. Note that the y-axis is in log-10 scale.

Figure 4-24. Rank Abundance Curves at Pond 16 (Year 4 Post-Subsurface Munitions Remediation) in 2015, 2017, and 2019-2022. Note that the x-axis and y-axis are in log-10 scale.

Figure 4-25. Percent Cover of Dominant Species at Pond 16 (Year 4 Post-Subsurface Munitions Remediation)

Native and non-native species richness on Pond 16 transects were greater in 2022 than the baseline year of monitoring (see Table 4-33). Pond 16 native and non-native species richness in 2022 were less than the range observed at the reference vernal pools (see Table 4-34). The relative percent cover of native species was less than baseline, while the relative percent cover of non-native species was greater (see Table 4-35). Pond 16 native and non-native relative percent cover were within the ranges observed at reference vernal pools (see Table 4-36).

Table 4-33. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Native and Non-Native
Species Richness

Year	Native	Non-Native	Unidentified
2015*	5	2	1
2017	13	11	0
2019**	17	10	2
2020	11	6	0
2021	14	9	0
2022	13	7	1

*baseline year

**Values in this table changed from past reports, PEGA was incorrectly coded in 2019 as Unidentified instead of Native. The edits have been reflected in the 2022 report and deliverable.

Vernal Pool	Native	Non-Native	Unidentified
5	14	14	1
101 East (East)	21	16	1
997	16	18	1
16	13	7	1

Table 4-34. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2022

Table 4-35. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
2015*	98.2%	1.1%	0.7%
2017	82.9%	17.1%	0.0%
2019**	85.2%	14.5%	0.3%
2020	97.3%	2.7%	0.0%
2021	80.1%	19.9%	0.0%
2022	69.5%	30.4%	0.1%

*baseline year

**Values in this table changed from past reports, PEGA was incorrectly coded in 2019 as Unidentified instead of Native. The edits have been reflected in the 2022 report and deliverable.

Table 4-36. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal PoolRelative Percent Cover of Native and Non-Native Plants in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	73.9%	25.9%	0.3%
101 East (East)	66.4%	33.5%	0.1%
997	29.7%	69.6%	0.7%
16	69.5%	30.4%	0.1%

Wetland and non-wetland species richness on Pond 16 transects were greater in 2022 than in baseline (see Table 4-37). Conversely, wetland and non-wetland species richness were less than reference vernal pool values (see Table 4-38). The relative percent cover of wetland species was lower than the baseline year whereas non-wetland species cover was greater (see Table 4-39). Relative percent cover of wetland species was greater than the range of values observed at the reference pools, while non-wetland species were within the range of values observed at the reference vernal pools (see Table 4-40).

Year		Wetland		Non-W	Not Listed	
rear	OBL	FACW	FAC	FACU	UPL	Not Listed
2015*	1	3	1	1	0	2
2017	4	5	3	9	1	2
2019**	4	6	6	9	1	4
2020	2	5	5	4	1	0
2021	2	7	4	5	1	4
2022	2	4	1	5	0	9

Table 4-37. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

*baseline year

**Values in this table changed from past reports, PEGA was incorrectly coded in 2019 as Not Listed instead of Native. The edits have been reflected in the 2022 report and deliverable.

Table 4-38. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2022

Vernal Pool		Wetland		Non-W	Non-Wetland Not Liste		
vernai Poor	OBL	FACW	FAC	FACU	UPL	Not Listed	
5	4	6	2	7	1	9	
101 East (East)	4	6	8	7	1	12	
997	4	7	4	7	0	13	
16	2	4	1	5	0	9	

Table 4-39. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year		Wetland	/etland		/etland	Not Listed
rear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2015*	14.1%	5.2%	77.9%	1.4%	0.0%	1.4%
2017	37.9%	29.4%	24.5%	5.5%	0.4%	2.4%
2019**	33.6%	34.1%	21.2%	9.8%	0.0%	1.4%
2020	23.0%	45.0%	16.0%	16.0%	0.1%	0.0%
2021	27.1%	46.1%	14.7%	10.7%	0.1%	1.2%
2022	13.7%	52.3%	16.4%	9.8%	0.0%	7.8%

*baseline year

**Values in this table changed from past reports, PEGA was incorrectly coded in 2019 as Not Listed instead of Native. The edits have been reflected in the 2022 report and deliverable.

Vernal Pool		Wetland		Non-Wetland		Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	28.7%	39.4%	1.6%	8.0%	1.4%	20.9%	
101 East (East)	29.7%	13.8%	4.2%	29.1%	2.1%	21.1%	
997	3.6%	16.0%	12.8%	29.8%	0.0%	37.8%	
16	13.7%	52.3%	16.4%	9.8%	0.0%	7.8%	

Table 4-40. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2022

4.4.1.1 Vernal Pool Bent Grass

Vernal pool bent grass was identified at Pond 16 for the first time in 2022 (see Figure 3-6 in Section 3.4.1.1). This species is listed as a 1B.1 seriously threatened plant in California (CNPS, 2022). Vernal pool bent grass was first identified and described as a new species in 2011 and only occurs at vernal pools in Monterey County (Peterson *et al.*, 2011). Vernal pool bent grass has been documented at Ponds 3 North, 3 South, 42, 44, 61, 73, 997, 101 East (East), and Machine Gun Flats on former Fort Ord. The Pond 16 documentation of vernal pool bent grass further expanded the current known range to the south.

4.4.1.2 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. This year was the second of two consecutive drought years. Below-normal water-years can result in upland and non-native herbs and grasses exploiting a greater portion of a vernal pool and distributing more evenly (Bauder, 2000).

Vegetative cover in Pond 16 was dominated by native and wetland plant species during year 4 postsubsurface munitions remediation monitoring in 2022. Pond 16 wetland vegetation results were generally within range of either baseline and/or reference vernal pools with a few exceptions. Native, non-native, wetland, and non-wetland species richness were greater than baseline but less than reference. Additionally, wetland cover was less than baseline but greater than the range of reference pools. None of the exceptions are concerning and are likely related to a below-normal water-year rather than remediation and will be observed closely in the future.

4.4.1.3 Performance Standard: Plant Cover and Species Diversity

Pond 16, a post-subsurface munitions remediation vernal pool, is on track to meet the performance standard for year 4. The species composition, richness, and native and wetland species relative abundances were within range of the reference vernal pool conditions or differed in a favorable trajectory for native and wetland species. This vernal pool will be monitored for year 5 post-subsurface munitions remediation as specified in the Wetland Plan (Burleson, 2006).

4.4.2 Wildlife Monitoring

Wildlife data were collected at Pond 16 in 1992, 1994-1996, 2009, 2015, 2019, and 2020 (USACE 1992, Jones & Stokes 1996; Shaw, 2010; Burleson, 2016, 2020, and 2021). California tiger salamander larvae were observed in 2009, 2015, and 2019. Fairy shrimp were present at Pond 16 in every monitoring year except 2015. The vernal pool did not hold sufficient depth for surveys to be completed in 2021 or 2022. Therefore, DQO 5 and the applicable wildlife usage performance standard cannot be assessed. Table 4-41 shows historical wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1992	Not detected	Present
1994	Not detected	Very Low - High
1995	Not detected	Low - High
1996	Not detected	Present
2009	Common	Moderate - High (32, 105)
2015+	Few – Common (13, 1)	Not detected
2019	Few – Common (5, 87, 46)	Present*
2020	Not detected	High (267)

Table 4-41. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Historical Wildlife MonitoringResults

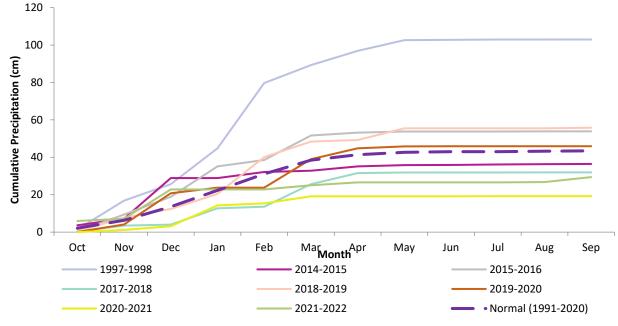
*Fairy shrimp detected during CTS survey, no fairy shrimp survey was conducted in March due to the presence of CTS eggs. †baseline year

4.4.3 Conclusion

Pond 16, a post-subsurface munitions remediation vernal pool, was in year 4 of monitoring in 2022. The vernal pool is on track to meet the plant cover and species diversity performance standard (see Table 4-42). Pond 16 will continue to be monitored in the future.

Table 4-42. Success at Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Based on Performance Standards and Applicable Data Quality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	N/A*	N/A*

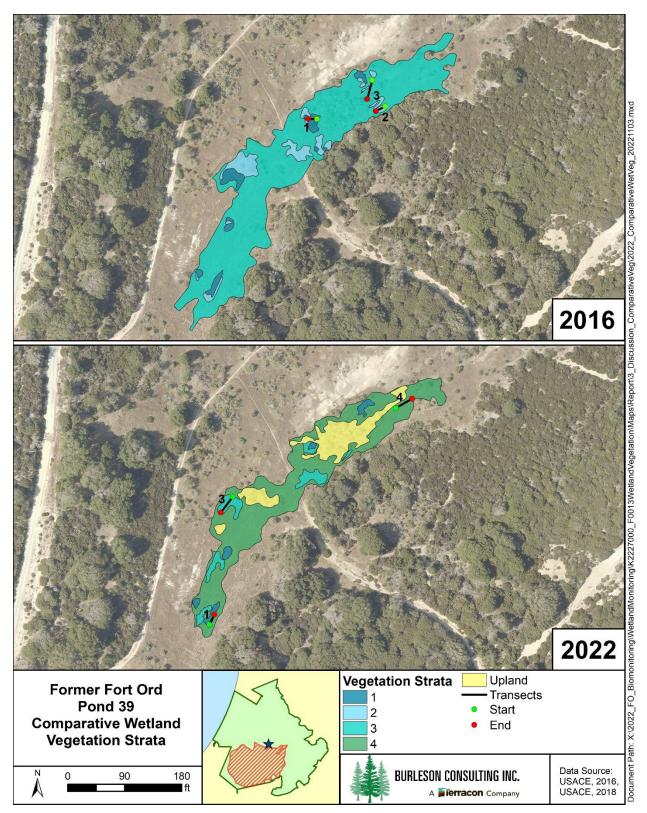

*Not applicable; wildlife surveys were not conducted due to insufficient depth

4.5 Pond 39 – Year 4

Pond 39 was monitored in 2022 as a year 4 post-subsurface munitions remediation vernal pool. Pond 39 was monitored for baseline conditions in 1998, 2015, and 2016. Vegetation in Pond 39 and within its watershed was burned in October 2017 as part of the prescribed burn of BLM Area B Subunit B. Pond 39 had intrusive anomaly investigations in 2018. Table 4-43 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which hydrology monitoring was conducted at Pond 39 (see Figure 4-26). The 1997-1998, 2015-2016, and 2018-2019 water-years were above normal, whereas the 2014-2015, 2017-2018, 2020-2021, and 2021-2022 water-years were below normal. Water-year 2019-2020 was similar to the cumulative normal water-year.

	Water-Year							
Survey	1997-	2014-	2015-	2017-	2018-	2019-	2020-	2021-
	1998	2015	2016	2018	2019	2020	2021	2022
Hydrology	•	•	•	•	•	•	•	•
Vegetation	•		•	•	•	•	•	•
Wildlife	•		•	•	•	٠		

Table 4-43. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical Surveys
for Hydrology, Vegetation, and Wildlife


Figure 4-26. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1991-2020) (NPS, 2022; NCEI NOAA, 2022)

4.5.1 Vegetation Monitoring

Vegetation data were collected at Pond 39 in 1998, 2016, and 2018-2022 (HLA, 1998; Burleson, 2017, 2019, 2020, 2021, and 2022). In 1998, data were collected along one transect with a length of 239 feet. Quadrats were placed at 10-foot intervals, alternating from right to left along the transect. Since 1998 data were collected differently than in other years, strata were combined across the vernal pool to allow for comparison. In 2016 and 2018-2022, data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2022 were compared stratum-to-stratum in Table 4-44 as well as visually in Figure 4-27.

Table 4-44. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentagewithin the Vernal Pool Basin Boundary

Stratum	Percentage			
Stratum	2016	2022		
1	5%	3%		
2	8%	N/A		
3	87%	9%		
4	N/A	67%		
Upland	N/A	21%		

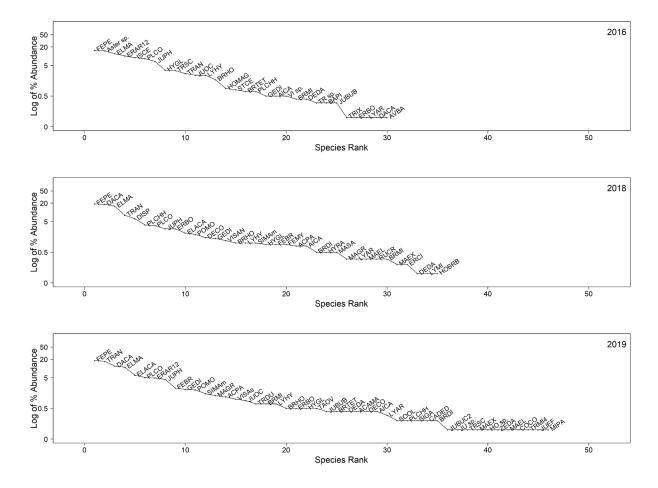
Figure 4-27. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2016 and 2022

Absolute percent vegetative cover in 2022 for Pond 39 was within the range of values from baseline years (see Table 4-45). Vegetative cover ranged in baseline years from 48.7% in 1998 to 61.9% in 2016, whereas thatch/bare ground ranged from 37.4% in 2016 to 51.8% in 1998. The absolute percent vegetative cover of Pond 39 in 2022 was greater than values observed at the reference vernal pools (see Table 4-46).

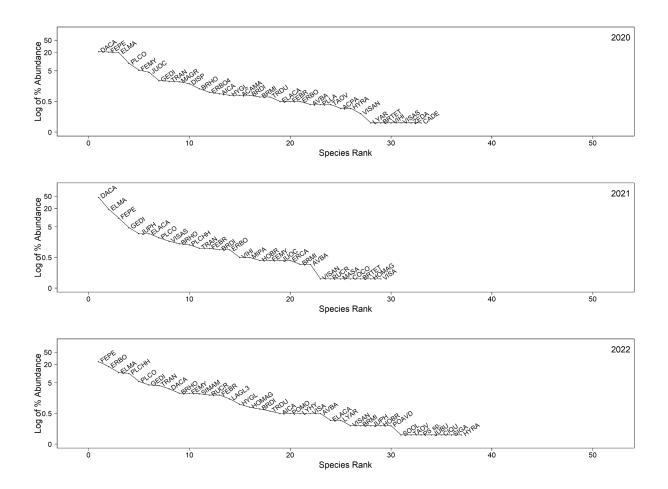
Year	Vegetative Cover	Thatch/Bare Ground
1998*	48.7%	51.8%
2016*	61.9%	37.4%
2018	59.1%	41.3%
2019	75.2%	25.3%
2020	73.4%	26.6%
2021	64.3%	35.8%
2022	58.7%	41.3%

*baseline year

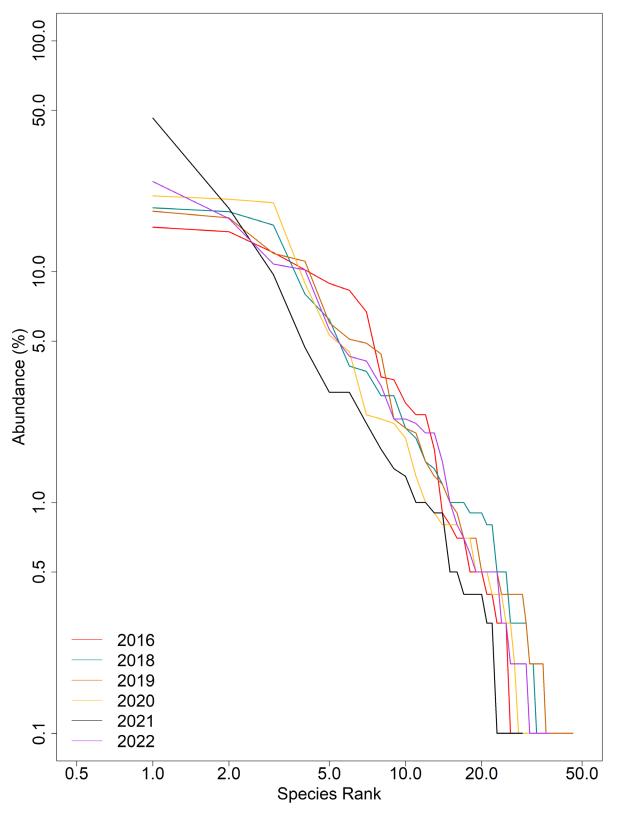
Table 4-46. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2022


Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	41.2%	58.8%
101 East (East)	55.5%	44.5%
997	46.9%	53.1%
39	58.7%	41.3%

Species richness in 2022 was greater than the values observed on transects and in the overall basin in baseline years. Species richness on transects was 22, 30, 35, 46, 32, 29, and 37 species in 1998, 2016, 2018, 2019, 2020, 2021, and 2022, respectively, whereas overall basin species richness was 61, 90, 98, 85, 73, and 76 species in 2016, 2018, 2019, 2020, 2021, and 2022, respectively (see Table 4-47 and Appendix D Table D-5). The 1998 survey was limited to species on the transect and overall basin species richness was not recorded. Pond 39 species richness on transects and for the overall basin were within the ranges of values at reference vernal pools (see Table 4-48 and Appendix D Tables D-11 and D-22). The species richness is represented on the RACs as the length of the curve and number of species along the curve (see Figure 4-28 and Figure 4-29).


Species composition at Pond 39 varied between monitoring years. This variability of species composition is illustrated on the RACs as the species codes shift along the curve and losses and gains occur from year to year (see Figure 4-28 and Figure 4-29). Despite overall composition variability, the dominant species in the vernal pool were fairly consistent. Two of the top four dominant species in all monitoring years were pale spikerush (*Eleocharis macrostachya*) and Italian rye grass (*Festuca perennis*). Cut-leaved plantain (*Plantago coronopus*) was dominant in 1998 and remained an important species in all other monitoring years. California oat grass (*Danthonia californica*) was dominant from 2018-2021, although in 2019 narrow-leaved clover (*Trifolium angustifolium*) was slightly more dominant. In 2022, long-beaked filaree (*Erodium botrys*) emerged as the second-most dominant species next to Italian rye grass, with Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*) as an important sub-dominant.

A complete comparison of species composition observed at Pond 39 in 1998, 2016, and 2018-2022 can be found in Appendix E. Figure 4-31 shows a subset of this comparison for species observed with a 2% cover or greater.


The evenness from each year for Pond 39 is represented by the slope of the RACs. The evenness is fairly similar from year to year with richness distributed along the entire curve. "Structurally complex systems, such as a fen [or vernal pool] system," as explained in Verberk, 2011, "are species rich and have a more even community abundance pattern, possibly owing to a fine partitioning of available niches." A more even distribution of the top species occurs in the 2016 baseline year, whereas the RAC for 2022 has a less even slope and higher abundance of the dominant species at the top of the curve. When comparing Pond 39 in 2022 to reference vernal pools, it is most similar to Ponds 5 and 997, which both have a slightly sloping beginning of the curve and similar shape to the entire RAC. However, Pond 39 and Pond 5 have a higher concentration or plateau of species toward the end of the tail, whereas the tail end of Pond 997 drops off earlier, indicating fewer species with low abundance.

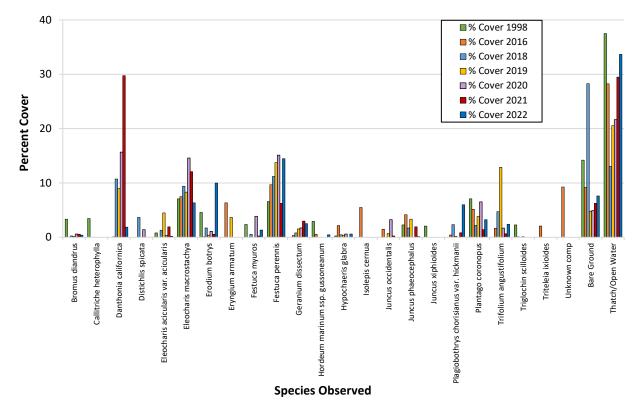

Figure 4-28. Rank Abundance Curves at Pond 39 (Year 4 Post-Subsurface Munitions Remediation) in 2016, 2018, and 2019. Note that the y-axis is in log-10 scale.

Figure 4-29. Rank Abundance Curves at Pond 39 (Year 4 Post-Subsurface Munitions Remediation) from 2020-2022. Note that the y-axis is in log-10 scale.

Figure 4-30. Rank Abundance Curves at Pond 39 (Year 4 Post-Subsurface Munitions Remediation) in 2016-2022. Note that the x-axis and the y-axis are in log-10 scale.

Figure 4-31. Percent Cover of Dominant Species at Pond 39 (Year 4 Post-Subsurface Munitions Remediation)

Native species richness on Pond 39 transects in 2022 was within the range of values observed in baseline years but less than the values at reference vernal pools. Non-native species richness was greater than baseline and reference richness (see Table 4-47 and see Table 4-48). The relative percent cover of native species in 2022 was less than the values observed in baseline and reference vernal pools, while non-native cover was greater than baseline and reference vernal pools (see Table 4-49 and Table 4-50).

Year	Native	Non-Native	Unidentified
1998*+	10	12	0
2016*	14	13	3
2018	16	19	0
2019	25	19	2
2020	12	20	0
2021	11	18	0
2022	11	25	1

 Table 4-47. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Native and Non-Native

 Species Richness

*baseline years

[†]Values in this table changed from past reports, FEMY was incorrectly coded in past reports as Unidentified instead of Non-Native. This is because the name changed from VUMY to FEMY between 1998 and 2016 and was entered in our database as *Festuca* sp. instead of FEMY. Edits have been reflected in the 2022 report and deliverable.

Vernal Pool	Native	Non-Native	Unidentified
5	14	14	1
101 East (East)	21	16	1
997	16	18	1
39	11	25	1

Table 4-48. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2022

Table 4-49. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover ofNative and Non-Native Plants

Year	Native	Non-Native	Unidentified
1998*	39.8%	60.2%	0.0%
2016*	47.1%	37.1%	15.7%
2018	54.3%	45.7%	0.0%
2019	46.8%	53.0%	0.2%
2020	52.0%	48.0%	0.0%
2021	74.3%	25.7%	0.0%
2022	28.9%	70.9%	0.1%

*baseline year

Table 4-50. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal PoolRelative Percent Cover of Native and Non-Native Plants in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	73.9%	25.9%	0.3%
101 East (East)	66.4%	33.5%	0.1%
997	29.7%	69.6%	0.7%
39	28.9%	70.9%	0.1%

Wetland and non-wetland species richness on Pond 39 transects were greater than baseline and the range of values observed at reference vernal pools in 2022 (see Table 4-51 and Table 4-52). The relative percent cover of wetland species was less than baseline years and non-wetland cover was greater than baseline (see Table 4-53). The relative percent cover of wetland and non-wetland species were within the range of values at the reference vernal pools in 2022 (Table 4-54).

Voor		Wetland		Non-W	Not Listed	
rear	Year OBL		FAC	FACU	UPL	NOT LISTED
1998*	7	2	6	3	0	4
2016*	5	5	7	3	0	10
2018	4	7	6	5	1	12
2019	6	9	6	4	2	19
2020	2	2	5	7	2	14
2021	4	3	6	4	3	9
2022	5	6	8	6	3	9

Table 4-51. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

*baseline year

Table 4-52. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2022

Vernal Pool	Wetland			Non-W	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	6	2	7	1	9
101 East (East)	4	6	8	7	1	12
997	4	7	4	7	0	13
39	5	6	8	6	3	9

Table 4-53. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year	Wetland			Non-W	Not Listed	
Tear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	32.8%	5.8%	38.9%	14.5%	0.0%	7.9%
2016*	24.2%	20.1%	28.9%	2.4%	0.0%	24.4%
2018	23.0%	12.4%	41.9%	6.1%	1.2%	15.3%
2019	18.2%	14.7%	36.4%	2.1%	1.3%	27.3%
2020	20.3%	6.4%	51.7%	10.3%	0.3%	11.1%
2021	23.2%	3.8%	58.8%	3.1%	1.9%	9.2%
2022	23.3%	3.3%	37.0%	22.7%	0.8%	12.9%

*baseline year

Vernal Pool		Wetland		Non-We	Not Listed	
vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	28.7%	39.4%	1.6%	8.0%	1.4%	20.9%
101 East (East)	29.7%	13.8%	4.2%	29.1%	2.1%	21.1%
997	3.6%	16.0%	12.8%	29.8%	0.0%	37.8%
39	23.3%	3.3%	37.0%	22.7%	0.8%	12.9%

Table 4-54. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2022

4.5.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations and possibly historical disturbance to this area. Some variability is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. This year was the second of two consecutive drought years. Below-normal water-years can result in upland and non-native herbs and grasses exploiting a greater portion of a vernal pool and distributing more evenly (Bauder, 2000).

Vegetative cover in Pond 39 was dominated by non-native and wetland plant species during year 4 postsubsurface munitions remediation monitoring in 2022. Non-native richness was much greater than the values observed in baseline years of monitoring and reference vernal pools. Additionally, the relative percent cover of non-native species far exceeded the cover of native species on Pond 39 and was greater than both baseline cover values and reference cover values. It is noteable however, that reference pond 997 had nearly the same non-native cover value as Pond 39, with a difference of less than 1%. Native cover in 2022, conversely, was less than baseline and reference values. Both wetland and non-wetland richness were greater in 2022 than baseline and the range of values at reference. The relatively high numbers of non-native richness and abundance was likely related to a consecutive belownormal water-year rather than remediation, but it should be observed closely in the future.

4.5.1.2 *Performance Standard: Plant Cover and Species Diversity*

Pond 39, a post-subsurface munitions remediation vernal pool, was not on track to meet the performance standard for year 4 in 2022. The species composition was dissimilar from baseline and/or reference vernal pool conditions. There was an increase in non-native species richness and the relative percent cover of non-native species far exceeded the percent cover of native species this year for both baseline and reference. The valley in Unit B where Pond 39 is located has historically been heavily disturbed which is likely why, in some years, non-native and non-wetland richness is high. A low water-year likely contributed to favorable conditions for non-native species at Pond 39. Fortunately, wetland species richness was greater than baseline and reference values, although non-wetland species richness was higher than both sets of values as well. Increases in both wetland and non-wetland species richness was a trend across many of the ponds monitored this year. This vernal pool will be monitored for year 5 post-subsurface munitions remediation as specified in the Wetland Plan (Burleson, 2006).

4.5.2 Wildlife Monitoring

Wildlife data were collected at Pond 39 in 1998, 2016, 2018, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2019, 2020, and 2021). California tiger salamander larvae were not detected in any survey year. Fairy shrimp were present in 1998 and 2018-2020. The vernal pool did not hold sufficient depth for surveys to

be completed in 2022. Therefore, DQO 5 and the applicable wildlife usage performance standard cannot be assessed. Table 4-55 shows historical wildlife monitoring results.

Table 4-55. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Historical Wildlife Monitoring					
Results					

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Moderate
2016*	Not detected	Not detected
2018	Not detected	Low (8)
2019	Not detected	Low – Moderate (71, 37, 7)
2020	Not detected	Low (5)

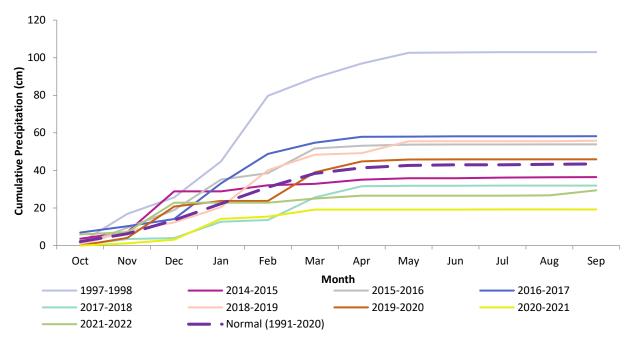
*baseline year

4.5.3 Conclusion

Pond 39, a post-subsurface munitions remediation vernal pool, was in year 4 of monitoring in 2022. The vernal pool was not on track to meet the plant cover and species diversity performance standard due to high non-native richness and relative percent cover, as well has high non-wetland richness (see Table 4-56). Pond 39 will continue to be monitored in the future.

Table 4-56. Success at Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Based on Performance Standards and Applicable Data Quality Objectives

Performance Standard	Applicable DQO	Success	
Plant Cover & Species Diversity	DQO 3	Not on track	
Wildlife Usage	N/A*	N/A*	

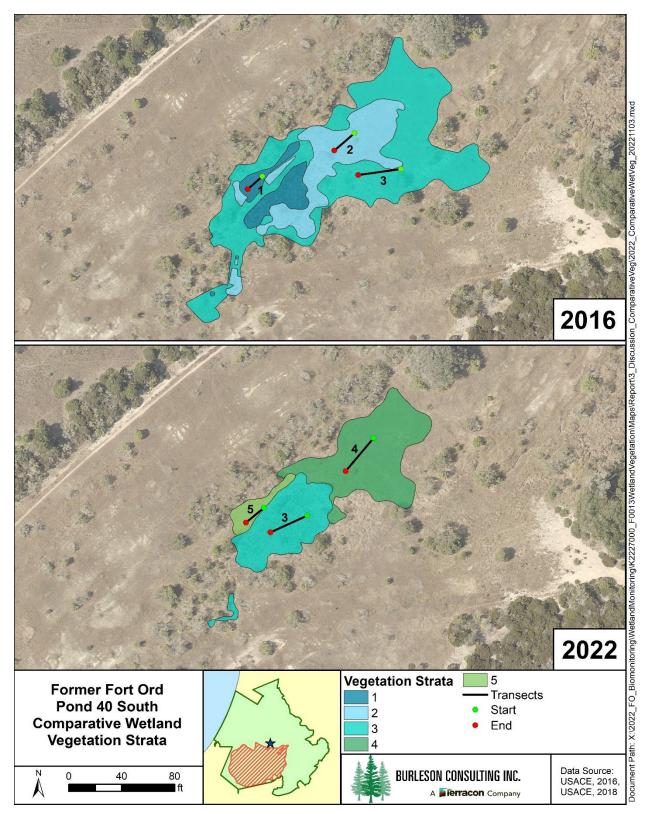

*Not applicable; wildlife surveys were not conducted due to insufficient depth

4.6 Pond 40 South – Year 4

Pond 40 South was monitored in 2022 as a year 4 post-subsurface munitions remediation vernal pool. Pond 40 South was monitored for baseline conditions in 1998 and 2015-2017. Vegetation in Pond 40 South and within its watershed was burned in October 2017 as part of the prescribed burn of BLM Area B Subunit B. Pond 40 South had intrusive anomaly investigations in 2018. Table 4-57 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which hydrology monitoring was conducted at Pond 40 South (see Figure 4-32). The 1997-1998, 2015-2016, 2016-2017, and 2018-2019 water-years were above normal, whereas 2014-2015, 2017-2018, 2020-2021, and 2021-2022 water-years were below normal. Water-year 2019-2020 was similar to the cumulative normal water-year.

Table 4-57. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Summary of HistoricalSurveys for Hydrology, Vegetation, and Wildlife

					Water-Year				
Survey	1997-	2014-	2015-	2016-	2017-	2018-	2019-	2020-	2021-
	1998	2015	2016	2017	2018	2019	2020	2021	2022
Hydrology	•	•	•	•	•	•	•	•	•
Vegetation	•		•		•	•	•	•	•
Wildlife	•		•			•	•		


Figure 4-32. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1991-2020) (NPS, 2022; NCEI NOAA, 2022)

4.6.1 Vegetation Monitoring

Vegetation data were collected at Pond 40 South in 1998, 2016, and 2018-2022 (HLA, 1998; Burleson, 2017, 2019, 2020, 2021, and 2022). In 1998, data were collected along one transect with a length of 135 feet. Quadrats were placed at 10-foot intervals, alternating from right to left along the transect. Because 1998 data were collected differently than in other years, strata were combined across the vernal pool to allow for comparison. In 2016 and 2018-2022 data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2022 were compared stratum-to-stratum in Table 4-58 as well as visually in Figure 4-33.

Table 4-58. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata
Percentage within the Vernal Pool Basin Boundary

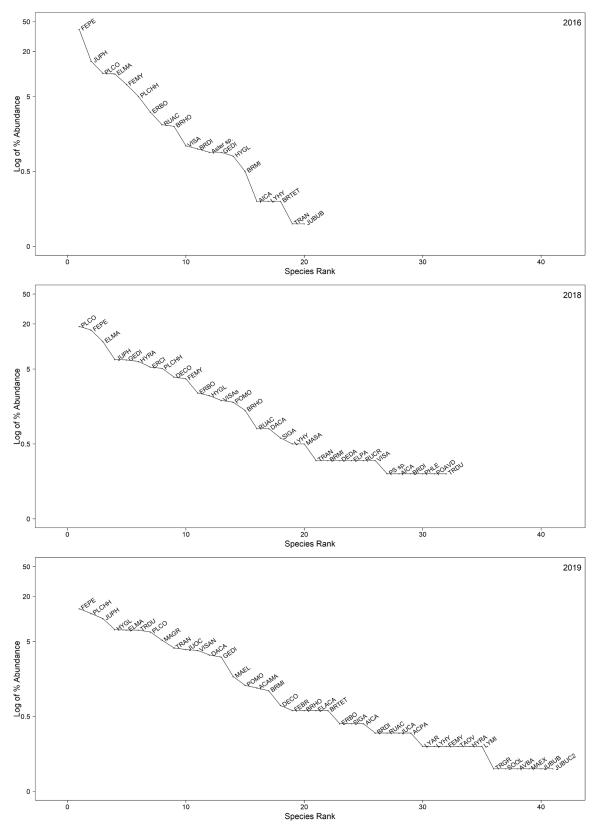
Stratum	Percentage			
Stratum	2016	2022		
1	9%	N/A		
2	26%	N/A		
3	65%	37%		
4	N/A	56%		
5	N/A	7%		

Figure 4-33. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2016 and 2022

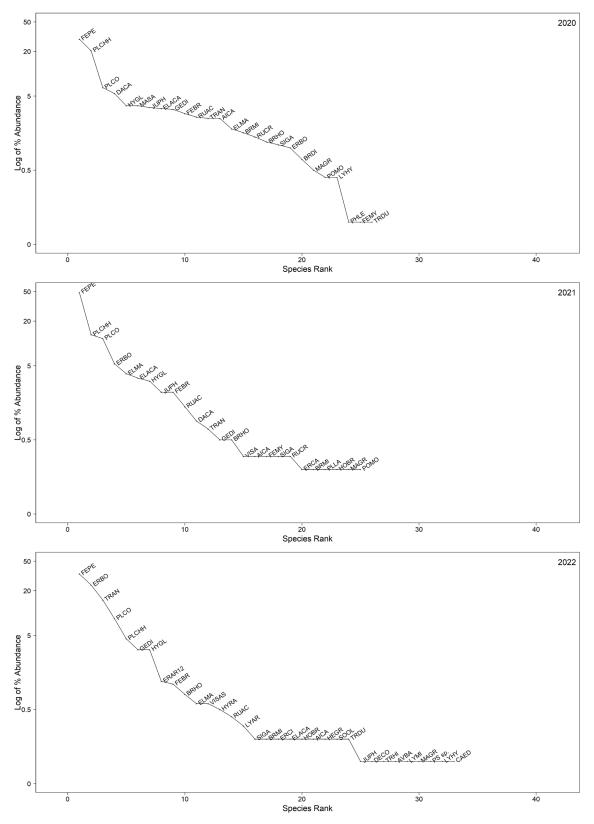
Absolute percent vegetative cover observed in 2022 was within the range of values observed in the baseline years of monitoring (see Table 4-59). Vegetative cover ranged in baseline years from 66.7% in 2016 to 72.7% in 1998, whereas thatch/bare ground ranged from 27.1% in 1998 to 33.9% in 2016. The 2022 Pond 40 South vegetative cover value was greater than reference vernal pools and bare ground was less than reference values (see Table 4-60).

Year	Vegetative Cover	Thatch/Bare Ground
1998*	72.7%	27.1%
2016*	66.7%	33.9%
2018	51.9%	50.3%
2019	78.6%	22.6%
2020	61.2%	38.8%
2021	48.9%	51.1%
2022	67.2%	32.8%

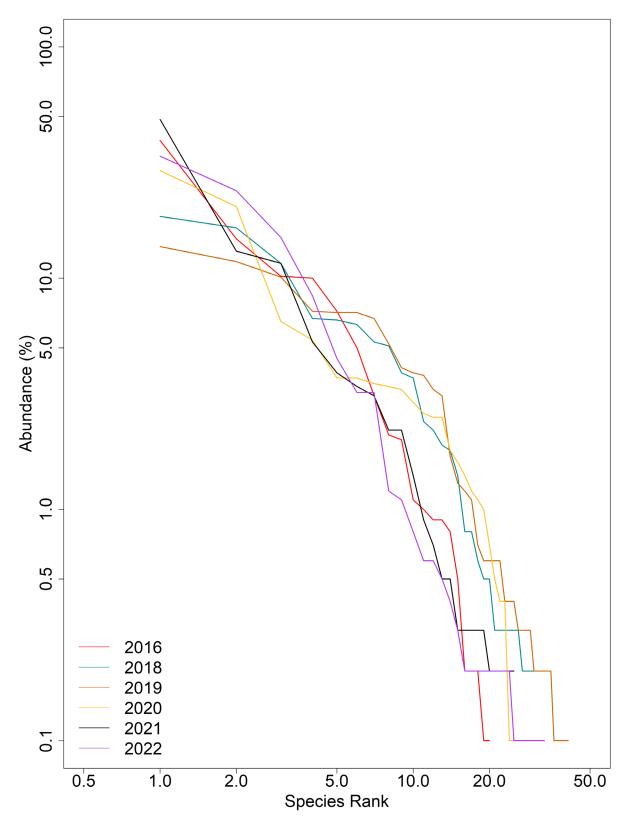
*baseline year

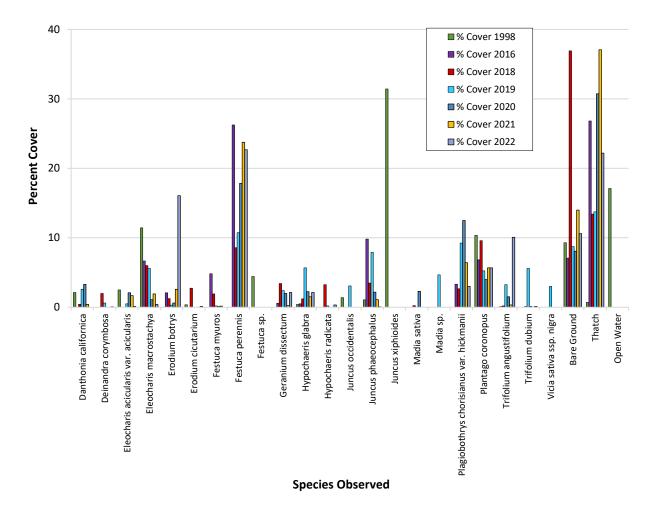

Table 4-60. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2022

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	41.2%	58.8%
101 East (East)	55.5%	44.5%
997	46.9%	53.1%
40 South	67.2%	32.8%


Overall basin species richness and species richness on transects in 2022 was greater than the baseline years of monitoring. Species richness on transects was 21, 20, 32, 41, 26, 25, and 33 species in 1998, 2016, 2018, 2019, 2020, 2021, and 2022, respectively, whereas overall basin species richness was 27, 55, 75, 66, 53, and 60 species in 2016, 2018, 2019, 2020, 2021, and 2022, respectively (see Table 4-61 and Appendix D Table D-6). The 1998 survey was limited to species on the transect and overall basin species richness was not recorded. Pond 40 South species richness was within the range observed on transects at the reference vernal pools but below the ranges observed for the entire basin (see Table 4-62 and Appendix D Tables D-11 and D-22). The species richness is represented on the RACs as the length of the curve and number of species along the curve (see Figure 4-34 and Figure 4-35).

Species composition and dominant species at Pond 40 South varied between monitoring years. The changes in species composition is illustrated on the RACs as the species codes shift along the curve and losses and gains occur from year to year (see Figure 4-34 and Figure 4-35). The dominant species included iris-leaved rush (*Juncus xiphioides*) in 1998; Italian rye grass (*Festuca perennis*) in 2016, 2021, and 2022; and cut-leaved plantain (*Plantago coronopus*) and Italian rye grass co-dominance in 2018. In 2019 and 2020, Italian rye grass and Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*) were codominant species. Pale spikerush (*Eleocharis macrostachya*) was present at moderate cover from 1998 to 2019, while cut-leaved plantain was prevalent in all seven years. In 2022, two non-native species became co-dominant with Italian rye grass, including long-beaked filaree (*Erodium botrys*) and narrow-leaved clover (*Trifolium angustifolium*). Figure 4-37 shows a subset of this comparison for species observed with a 2% cover or greater.


The evenness from each year is represented by the slope of the RACs. The evenness is fairly similar from year to year with richness distributed along the entire curve. "Structurally complex systems, such as a fen [or vernal pool] system," as explained in Verberk, 2011, "are species rich and have a more even community abundance pattern, possibly owing to a fine partitioning of available niches." A more even distribution of the top species occurs in 2022 at Pond 40 South compared to the 2016 baseline, which has a less even slope and higher abundance of the dominant species at the top of the curve (see Figure 4-36, and Appendix F). The slope of the tail end of the RAC at Pond 40 South in 2022 is most similar to Reference Pond 5, where both vernal pools show a high concentration of species towards the bottom of the curve.


Figure 4-34. Rank Abundance Curves at Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) in 2016, 2018, and 2019. Note that the y-axis is in log-10 scale.

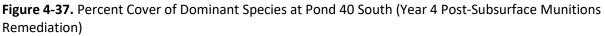


Figure 4-35. Rank Abundance Curves at Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) from 2020-2022. Note that the y-axis is in log-10 scale.

Figure 4-36. Rank Abundance Curves at Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) in 2016-2022. Note that the x-axis and the y-axis are in log-10 scale.

Native species richness on Pond 40 South transects was within the range of values observed in baseline years, while non-native species richness was greater than baseline (see Table 4-61). Pond 40 South native species richness in 2022 was less than reference pools, whereas non-native species richness was greater than reference (see Table 4-62). The relative percent cover of native species was the lowest value observed, compared to all previous monitoring years and less than the range of values observed in baseline years and reference. Conversely, non-native species cover was higher than all previous monitoring years, and greater than both baseline and reference (see Table 4-63 and Table 4-64).

Year	Native	Non-Native	Unidentified
1998*	12	6	3
2016*	5	14	1
2018	9	22	1
2019	17	23	1
2020	8	18	0
2021	8	17	0
2022	10	22	1

Table 4-61. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Native and Non-Native Species Richness

*baseline year

Table 4-62. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	14	14	1
101 East (East)	21	16	1
997	16	18	1
40 South	10	22	1

Table 4-63. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
1998*	75.7%	15.7%	8.5%
2016*	30.1%	69.0%	0.9%
2018	29.4%	70.5%	0.2%
2019	41.5%	52.6%	5.9%
2020	39.0%	61.0%	0.0%
2021	24.0%	76.0%	0.0%
2022	7.2%	92.7%	0.1%

*baseline year

Table 4-64. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) and Reference VernalPool Relative Percent Cover of Native and Non-Native Plants in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	73.9%	25.9%	0.3%
101 East (East)	66.4%	33.5%	0.1%
997	29.7%	69.6%	0.7%
40 South	7.2%	92.7%	0.1%

Wetland and non-wetland species richness on Pond 40 South transects in 2022 were greater than the range of values in baseline years (see Table 4-65). The wetland and non-wetland species richness at Pond 40 South were within the range observed at reference vernal pools (see Table 4-66). The relative percent cover of wetland species in 2022 was less than the range of values observed in baseline years, whereas the relative percent cover of non-wetland species was greater than baseline (see Table 4-67). The relative percent cover of wetland and non-wetland species in 2022 were within the range of values observed at reference vernal pool (see Table 4-67).

Table 4-65. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Wetland and	d Non-
Wetland Species Richness	

Year	Wetland			Non-W	Not Listed	
Tear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	4	4	3	1	0	9
2016*	3	2	3	5	1	6
2018	3	5	6	7	2	9
2019	4	6	5	8	2	16
2020	4	3	5	6	0	8
2021	3	3	5	7	1	6
2022	4	4	4	6	2	13

*baseline year

Table 4-66. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2022

Vernal Pool		Wetland		Non-W	etland	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED	
5	4	6	2	7	1	9	
101 East (East)	4	6	8	7	1	12	
997	4	7	4	7	0	13	
40 South	4	4	4	6	2	13	

Table 4-67. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year	Wetland			Non-W	Not Listed	
Tear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	62.6%	4.9%	18.6%	0.2%	0.0%	13.8%
2016*	15.3%	14.9%	50.1%	14.8%	1.1%	3.9%
2018	17.2%	9.3%	36.6%	14.9%	2.2%	19.7%
2019	19.7%	15.7%	24.9%	9.7%	3.9%	26.1%
2020	26.0%	4.1%	44.1%	7.5%	0.0%	18.3%
2021	20.4%	2.6%	61.5%	8.2%	0.3%	7.0%
2022	5.4%	1.6%	42.7%	26.0%	0.8%	23.6%

*baseline year

Vernal Pool		Wetland		Non-We	Not Listed		
Vernal POOI	OBL	FACW	FAC	FACU	UPL	Not Listed	
5	28.7%	39.4%	1.6%	8.0%	1.4%	20.9%	
101 East (East)	29.7%	13.8%	4.2%	29.1%	2.1%	21.1%	
997	3.6%	16.0%	12.8%	29.8%	0.0%	37.8%	
40 South	5.4%	1.6%	42.7%	26.0%	0.8%	23.6%	

Table 4-68. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) and Reference VernalPool Relative Percent Cover of Wetland and Non-Wetland Species in 2022

4.6.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations and the resulting inundation and hydroperiod. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. This year was the second of two consecutive drought years. Pond 40 South remained dry throughout the water year for the second year in a row. Below-normal water-years can result in upland and non-native herbs and grasses exploiting a greater portion of a vernal pool and distributing more evenly (Bauder, 2000).

Vegetative cover in Pond 40 South was dominated by non-native and wetland plant species during year 4 post-subsurface munitions remediation monitoring in 2022. Pond 40 South typically has high nonnative richness and cover, even in the baseline year of monitoring. However, Pond 40 South wetland vegetation results differed from baseline and reference vernal pools, in that the non-native species richness was greater than baseline and reference. Additionally, the relative percent cover of native species was dramatically less than the range of values observed in baseline years and reference, while non-native species cover was far greater than baseline and reference. Of particular concern was that non-native and non-wetland species, long-beaked fillaree and narrow leaved clover, along with Italian rye grass became the most dominant species. The relatively high numbers of non-native richness was a trend observed across many vernal pools this year, however it was particularly high at this vernal pool. Non-native cover and richness at Pond 40 South was likely exacerbated by a consecutive below-normal water-year rather than remediation, but it should be observed closely in the future.

4.6.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 40 South, a post-subsurface munitions remediation vernal pool, was not on track to meet the performance standard for year 4 in 2022. The species composition, native species richness, wetland species richness and relative abundances were similar to baseline and/or the reference vernal pools. However, non-native species richness and cover were greater than both baseline and the range reference while native cover was less than baseline and reference values. The valley in Unit B where Pond 40 South is located has historically been heavily disturbed which is likely why non-native richness and cover is high. Additionally, a low water-year likely contributed to favorable conditions for non-native species at Pond 40 South. This vernal pool will be monitored for year 5 post-subsurface munitions remediation as specified in the Wetland Plan (Burleson, 2006).

4.6.2 Wildlife Monitoring

Wildlife data were collected at Pond 40 South in 1998, 2016, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2020, and 2021). California tiger salamander larvae were not detected in any survey year. Fairy

shrimp were present in 2019 and 2020. The vernal pool did not hold sufficient depth for surveys to be completed in 2021 or 2022. Therefore, DQO 5 and the applicable wildlife usage performance standard cannot be assessed. Table 4-69 shows historical wildlife monitoring results.

Table 4-69. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Historical WildlifeMonitoring Results

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Not detected
2016*	Not detected	Not detected
2019	Not detected	Moderate (13, 12)
2020	Not detected	Low (1)

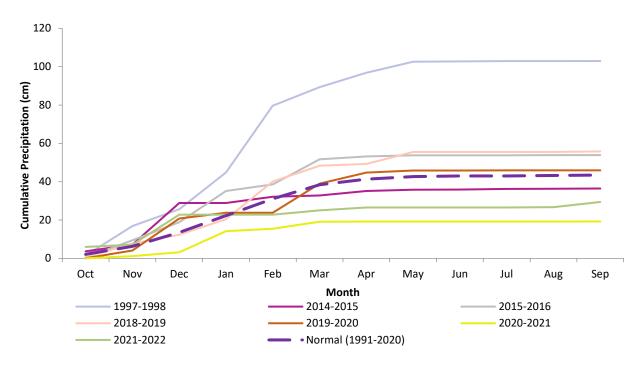
*baseline year

4.6.3 Conclusion

Pond 40 South, a post-subsurface munitions remediation vernal pool, was in year 4 of monitoring in 2022. The vernal pool was not on track to meet the plant cover and species diversity performance standard due to high non-native richness and cover and low native cover (see Table 4-70). Pond 40 South will continue to be monitored in the future.

Table 4-70. Success at Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Based on Performance Standards and Applicable Data Quality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Not on track
Wildlife Usage	N/A*	N/A*


*Not applicable; wildlife surveys were not conducted due to insufficient depth

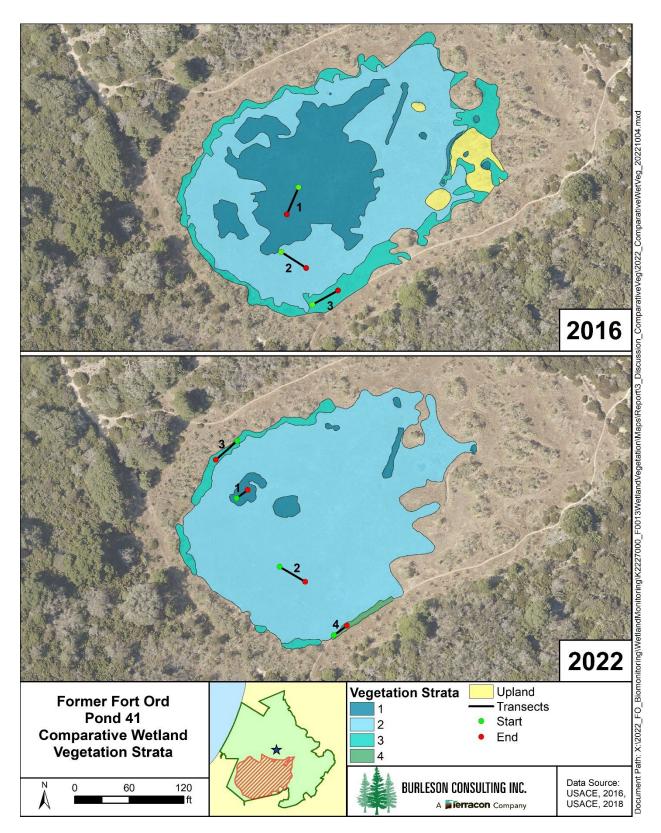
4.7 Pond 41 – Year 4

Pond 41 was monitored in 2022 as a year 4 post-subsurface munitions remediation vernal pool. Pond 41 was monitored for baseline conditions in 1998, 2015, and 2016 and cleared of subsurface anomalies in 2018. Table 4-71 summarizes surveys conducted. The cumulative precipitation graph shows precipitation for years in which hydrology monitoring was conducted at Pond 41 (see Figure 4-38). The normal or above-normal water-years were 1997-1998, 2015-2016, 2018-2019, and 2019-2020. Monitoring in 2014-2015, 2020-2021, and 2021-2022 was conducted in below-normal water-years.

Table 4-71. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical Surveys for Hydrology, Vegetation, and Wildlife

				Water-Year			
Survey	1997-	2014-	2015-	2018-	2019-	2020-	2021-
	1998	2015	2016	2019	2020	2021	2022
Hydrology	•	•	•	•	•	•	•
Vegetation			•	•	•	•	•
Wildlife	•		•	•	•		

Figure 4-38. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1991-2020) (NPS, 2022; NCEI NOAA, 2022)


4.7.1 Vegetation Monitoring

Vegetation data were collected at Pond 41 in 2016 and 2019-2022 (Burleson, 2017, 2020, 2021, and 2022). Data were collected using the methodology described in the Methods section of this report. Data from 2016 and 2022 were compared stratum-to-stratum in Table 4-72 as well as visually in Figure 4-39.

Stratum	Percentage			
	2016	2022		
1	29%	3%		
2	52%	91%		
3	27%	5%		
4	N/A	1%		
Upland	3%	N/A		

 Table 4-72. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage

 within the Vernal Pool Basin Boundary

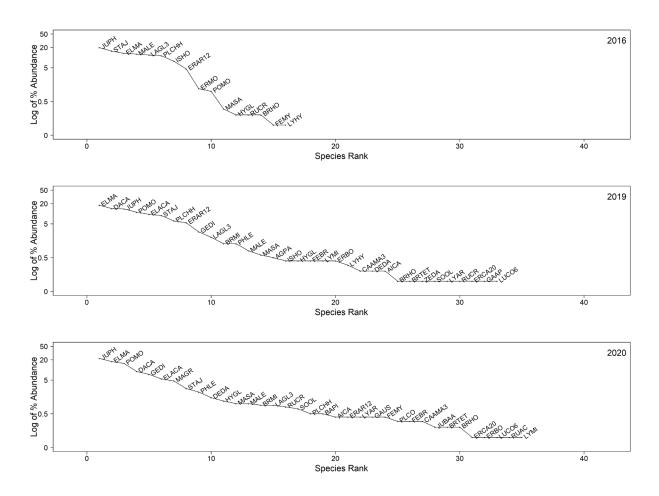
Figure 4-39. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2016 and 2022

The absolute percent vegetative cover observed in 2022 was less than baseline but was within the range of values observed at the reference vernal pools (see Table 4-73). Pond 41 was most similar to reference vernal pool 997 (see Table 4-74).

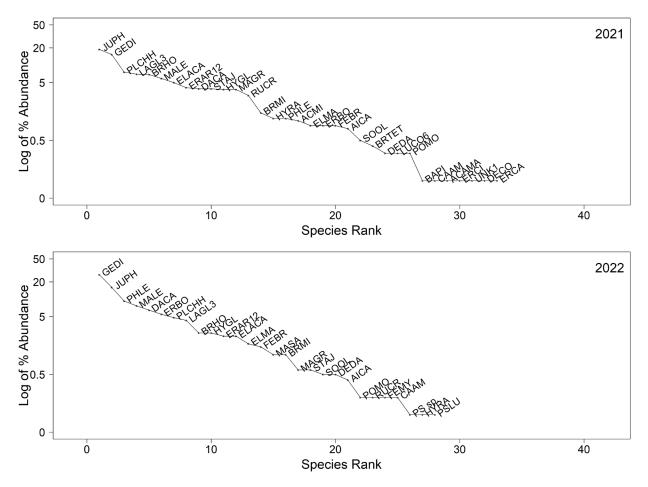
Year	Vegetative Cover	Thatch/Bare Ground
2016*	71.7%	28.3%
2019	69.7%	30.3%
2020	68.9%	31.2%
2021	44.1%	55.9%
2022	45.3%	54.7%

*baseline year

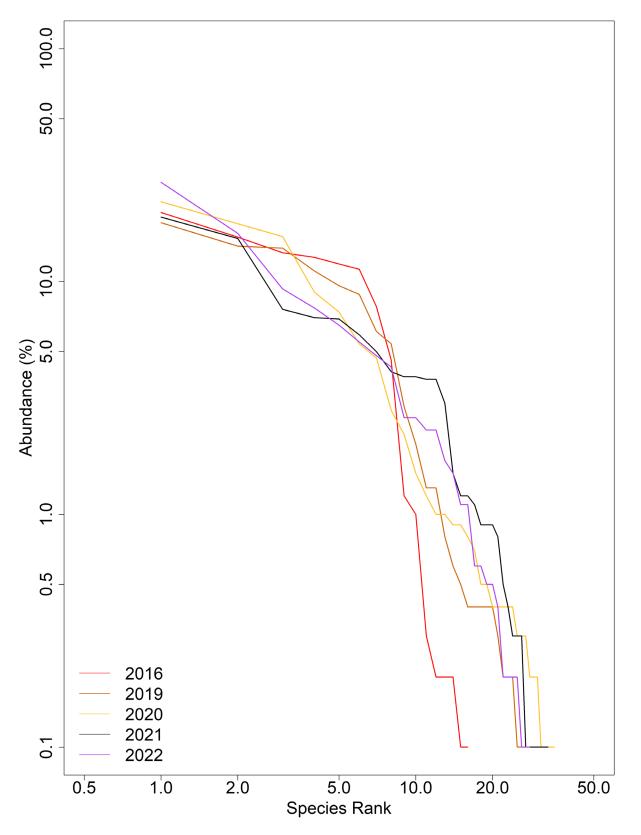
Table 4-74. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2022


Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	41.2%	58.8%
101 East (East)	55.5%	44.5%
997	46.9%	53.1%
41	45.3%	54.7%

Species richness in 2022 was greater than the baseline year of monitoring. Species richness on transects was 16, 33, 35, 32, and 28 species in 2016, 2019, 2020, 2021, and 2022, respectively. Basin species richness was 28, 75, 60, 63, and 58 species in 2016, 2019, 2020, 2021, and 2022, respectively (see Table 4-75 and Appendix D Table D-7). Pond 41 overall species richness and transect species richness were less than the range of values observed at the reference vernal pools (see Table 4-76 and Appendix D Tables D-11 and D-22). The species richness is represented on the RACs as the length of the curve and number of species along the curve (see Figure 4-40 and Figure 4-41).


Species composition at Pond 41 was similar for the first three monitoring years, then began to vary over the last two drought years. This variation in species composition is illustrated on the RACs as the species codes shift along the curve and losses and gains occur from year to year (see Figure 4-40 and Figure 4-41). From 2016-2021 the dominant species was either pale spikerush (*Eleocharis macrostachya*) or brown-headed rush (*Juncus phaeocephalus*). Other important species in 2016 were hedge nettle (*Stachys ajugoides*), alkali mallow (*Malvella leprosa*), smooth goldfields (*Lasthenia glaberrima*), and Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*). California oatgrass (*Danthonia californica*) and rabbitfoot grass (*Polygonum monspeliensis*) were prevalent in 2019 and 2020. By 2021, non-native cut-leaved geranium (*Geranium dissectum*) was the second-most dominant source of cover, and by 2022 it became the most dominant species. Brown-headed rush, Lemmon's canarygrass (*Phalaris lemmonii*), and alkali mallow were important subdominants in 2022. A complete comparison of species composition observed at Pond 41 in 2016 and 2019-2022 can be found in Appendix E. Figure 4-43 shows a subset of this comparison for species observed with a 2% cover or greater.

The evenness from each year for Pond 41 is represented by the slope of the RACs. The evenness is fairly similar from year to year with richness distributed along the entire curve. "Structurally complex systems, such as a fen [or vernal pool] system," as explained in Verberk, 2011, "are species rich and have a more


even community abundance pattern, possibly owing to a fine partitioning of available niches." When comparing to baseline, a more even distribution of the top species occurs in baseline than 2022 (see Figure 4-42, and Appendix F). This year, 2022 has a less even slope and higher abundance of the dominant species at the top of the curve when compared to both baseline and reference vernal pools. Pond 41 in 2022 is most similar to Reference Pond 5 in the overall slope of the RAC and high concentration of species towards the tail end.

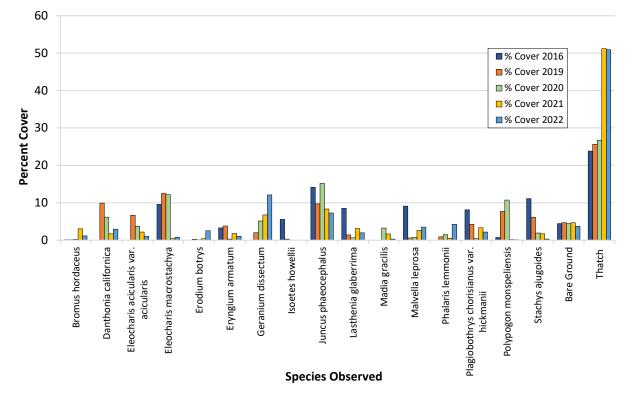

Figure 4-40. Rank Abundance Curves at Pond 41 (Year 4 Post-Subsurface Munitions Remediation) in 2016, 2019, and 2020. Note that the y-axis is in log-10 scale.

Figure 4-41. Rank Abundance Curves at Pond 41 (Year 4 Post-Subsurface Munitions Remediation) in 2021 and 2022. Note that the y-axis is in log-10 scale.

Figure 4-42. Rank Abundance Curves at Pond 41 (Year 4 Post-Subsurface Munitions Remediation) in 2016 and 2018-2022. Note that the x-axis and the y-axis are in log-10 scale

Figure 4-43. Percent Cover of Dominant Species at Pond 41 (Year 4 Post-Subsurface Munitions Remediation)

Native and non-native species richness on Pond 41 transects in 2022 were greater than baseline (see Table 4-75). Native species richness was within the range of the reference vernal pools and non-native species richness was less than the range of values observed at reference (see Table 4-76). The relative percent cover of native species decreased, and non-native species increased each year between 2016 and 2022 (see Table 4-77). The relative percent cover values of native and non-native species in Pond 41 were within the range of values observed in reference vernal pools and most similar to Pond 101 East (East) (see Table 4-78).

Table 4-75. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Native and Non-Native Species Richness

Year	Native	Non-Native	Unidentified
2016*	9	7	0
2019	21	12	0
2020	21	14	0
2021	19	12	1
2022	14	13	1

*baseline year

Vernal Pool	Native	Non-Native	Unidentified
5	14	14	1
101 East (East)	21	16	1
997	16	18	1
41	14	13	1

Table 4-76. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2022

Table 4-77. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
2016*	97.1%	2.9%	0.0%
2019	82.8%	17.2%	0.0%
2020	71.1%	28.9%	0.0%
2021	64.7%	35.2%	0.1%
2022	58.1%	41.8%	0.1%

*baseline year

Table 4-78. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal PoolRelative Percent Cover of Native and Non-Native Plants in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	73.9%	25.9%	0.3%
101 East (East)	66.4%	33.5%	0.1%
997	29.7%	69.6%	0.7%
41	58.1%	41.8%	0.1%

Wetland and non-wetland species richness on Pond 41 transects were greater in 2022 than baseline (see Table 4-79). Wetland and non-wetland species richness were within the range of values observed at the reference vernal pools (see Table 4-80). The relative percent cover of wetland species was less than baseline values, while non-wetland cover was greater than baseline (see Table 4-81). The wetland and non-wetland species relative percent cover values were within the ranges observed at the reference vernal pools (see Table 4-82).

Voor		Wetland			Non-Wetland		
Year	OBL	FACW	FAC	FACU	UPL	Not Listed	
2016*	6	3	1	3	0	3	
2019	7	7	5	6	2	6	
2020	5	8	6	7	1	8	
2021	5	5	4	7	1	10	
2022	5	7	3	6	1	6	

Table 4-79. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

*baseline year

Table 4-80. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2022

Vernal Pool		Wetland		Non-W	/etland	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL		
5	4	6	2	7	1	9	
101 East (East)	4	6	8	7	1	12	
997	4	7	4	7	0	13	
41	5	7	3	6	1	6	

Table 4-81. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

Year	Wetland			Non-W	/etland	Not Listed
rear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2016*	59.8%	25.4%	0.2%	12.9%	0.0%	1.7%
2019	45.1%	32.5%	15.7%	1.6%	0.5%	4.5%
2020	27.3%	42.3%	11.4%	2.4%	0.7%	15.8%
2021	24.3%	24.8%	8.7%	16.8%	0.5%	24.7%
2022	13.7%	28.8%	7.8%	16.5%	0.5%	32.6%

*baseline year

Table 4-82. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal PoolRelative Percent Cover of Wetland and Non-Wetland Species in 2022

Vernal Pool	Wetland			Non-We	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	28.7%	39.4%	1.6%	8.0%	1.4%	20.9%
101 East (East)	29.7%	13.8%	4.2%	29.1%	2.1%	21.1%
997	3.6%	16.0%	12.8%	29.8%	0.0%	37.8%
41	13.7%	28.8%	7.8%	16.5%	0.5%	32.6%

4.7.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. This year was the second of two consecutive drought years. Below-normal water-years can result in upland and non-native herbs and grasses exploiting a greater portion of a vernal pool and distributing more evenly (Bauder, 2000).

Vegetative cover in Pond 41 was dominated by native and wetland plant species during year 4 postsubsurface munitions remediation monitoring in 2022. Pond 41 wetland vegetation results were generally within range of reference vernal pools, except that non-native species richness was less than reference. When compared with baseline, both native and non-native species richness had increased, as well as wetland and non-wetland species richness. The increase in native and wetland richness is not concerning. Both support a healthy vernal pool ecosystem.

4.7.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 41, a post-subsurface munitions remediation vernal pool, was on track to meet the performance standard for year 4 in 2022. The species composition, as well as native and wetland species richness and relative abundances were similar to baseline and/or reference vernal pool conditions. Although non-native species richness increased from baseline, it was less than the range of values at reference. This vernal pool will be monitored for year 5 post-subsurface munitions remediation as specified in the Wetland Plan (Burleson, 2006).

4.7.2 Wildlife Monitoring

Wildlife data were collected at Pond 41 in 1998, 2016, 2019, and 2020 (HLA, 1998; Burleson, 2017, 2020, and 2021). California tiger salamander larvae were observed in 2016 and 2019. Fairy shrimp were detected in 1998, 2019, and 2020. The vernal pool did not hold sufficient depth for surveys to be completed in 2021 or 2022. Therefore, DQO 5 and the applicable wildlife usage performance standard cannot be assessed. Table 4-83 shows historical wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Low
2016*	Few (3)	Not detected
2019	Few – Common (2, 13, 9)	Low – High (122, 6)
2020	Not detected	Moderate (15)

Table 4-83. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Historical Wildlife Monitoring
Results

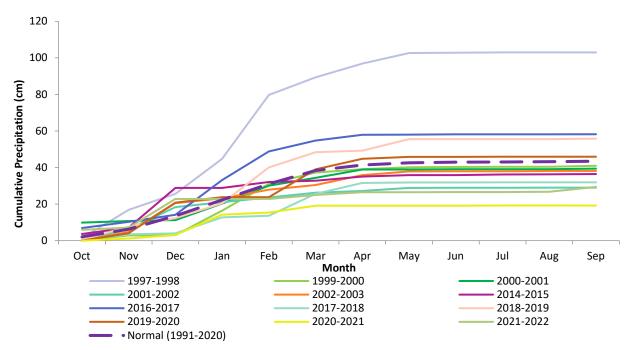
*baseline year

4.7.3 Conclusion

Pond 41, a post-subsurface munitions remediation vernal pool, was in year 4 of monitoring in 2022. The vernal pool was on track to meet the plant cover and species diversity performance standard (see Table 4-84). Pond 41 will continue to be monitored in the future.

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	N/A*	N/A*

Table 4-84. Success at Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Based on Performance Standards and Applicable Data Quality Objectives


*Not applicable; wildlife surveys were not conducted due to insufficient depth

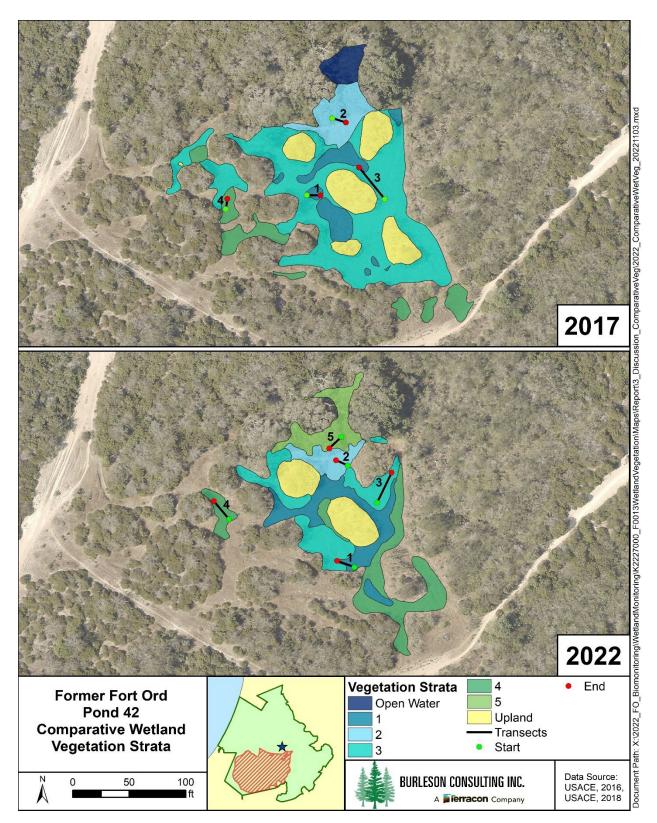
4.8 Pond 42 – Year 4

Pond 42 was monitored in 2022 as a year 4 post-subsurface munitions remediation vernal pool. Vegetation in Pond 42 and within its watershed was masticated in the summer of 2018 and burned in October 2017 as part of the prescribed burn of BLM Area B Subunit B. Pond 42 had intrusive anomaly investigations in 2018. Pond 42 was first monitored for baseline in 1998. Following MEC remediation activities, Pond 42 was monitored annually from 2000 to 2003. Additional baseline surveys occurred in 2015 and 2017. Table 4-85 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph indicates precipitation for the years that monitoring was conducted at Pond 42 (see Figure 4-44). The above-normal water-years were 1997-1998, 2016-2017, and 2018-2019. Water-years 1999-2000 and 2019-2020 were similar to the cumulative normal water-year. All other monitoring years, including this year, 2021-2022, were a below-normal water-year, drought year, or consecutive drought year.

Table 4-85. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical Surveys for Hydrology, Vegetation, and Wildlife

		Water-Year										
Survey	1997-	1999-	2000-	2001-	2002-	2014-	2016-	2017-	2018-	2019-	2020-	2021-
	1998	2000	2001	2002	2003	2015	2017	2018	2019	2020	2021	2022
Hydrology	•	•	•	•	•	•	•	•	•	•	•	•
Vegetation	•	•	•	•	•		•	•	•	•	•	•
Wildlife	•	•	٠	•	•			•	•	•		

Figure 4-44. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1991-2020) (NPS, 2022; NCEI NOAA, 2022)


4.8.1 Vegetation Monitoring

Vegetation data were collected at Pond 42 in 1998, 2000-2003, and 2017-2022 (HLA, 1998, 2001; Harding ESE, 2002; MACTEC, 2003, 2004; Burleson, 2018, 2019, 2020, 2021, and 2022). In 1998 and 2000-2003 data were collected along transects in lengths varying from 50 to 241 feet. In 2000, 0.25 m² quadrats were placed at intervals ranging from 10 to 20 feet, whereas in 1998, 2001, 2002, and 2003, quadrats were placed at 10-foot intervals. Quadrats were placed at the given intervals, alternating from right to left along the transect. In 1998 and 2000-2003, transects of varying lengths were in areas of representative transitional and emergent habitats. Due to differing methodologies, data for all strata in each respective year before 2017 were combined to compare to 2017 through 2021. From 2017-2022, data were collected using the methodology described in the Methods section of this report. Data from 2017 and 2022 were compared stratum-to-stratum in Table 4-86 as well as visually in Figure 4-45.

 Table 4-86. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage

 within the Vernal Pool Basin Boundary

Stratum	Percer	itage
Stratum	2017	2022
Open Water	4%	N/A
1	8%	18%
2	9%	7%
3	52%	22%
4	10%	25%
5	N/A	12%
Upland	17%	16%

Figure 4-45. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2017 and 2022

Absolute percent vegetative cover in 2022 was lower and thatch/bare ground cover was higher than the 1998 and 2017 baseline years of monitoring (see Table 4-87). Vegetative cover ranged in baseline years from 61.9% in 2017 to 69.6% in 1998, whereas thatch/bare ground ranged from 33.1% in 1998 to 38.7% in 2017. The absolute percent vegetative cover of Pond 42 in 2022 was within the range of values observed at the reference vernal pools and most similar to Pond 997 (see Table 4-88).

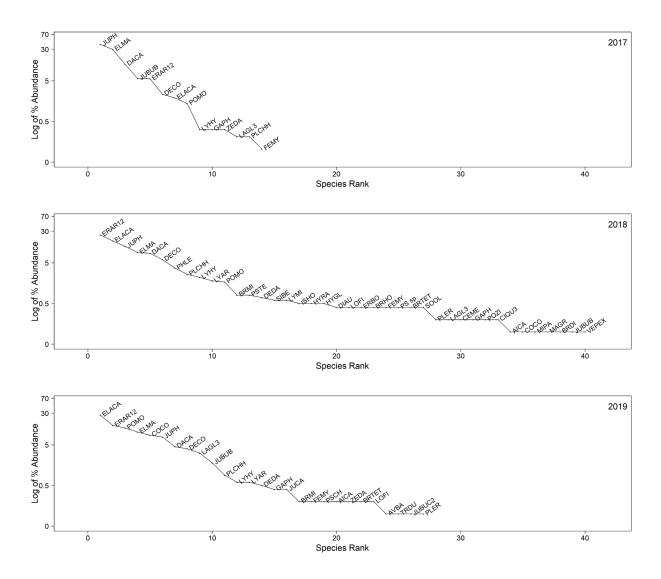
Year	Vegetative Cover	Thatch/Bare Ground
1998*	69.6%	33.1%
2000	101.5%	10.3%
2001	77.5%	24.5%
2002	83.5%	21.2%
2003**	88.2%	16.1%
2017*	61.9%	38.7%
2018	55.8%	44.3%
2019	70.2%	29.8%
2020+	65.7%	34.4%
2021	43.7%	56.6%
2022	45.9%	54.1%

Table 4-87. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Absolute Percent Cover

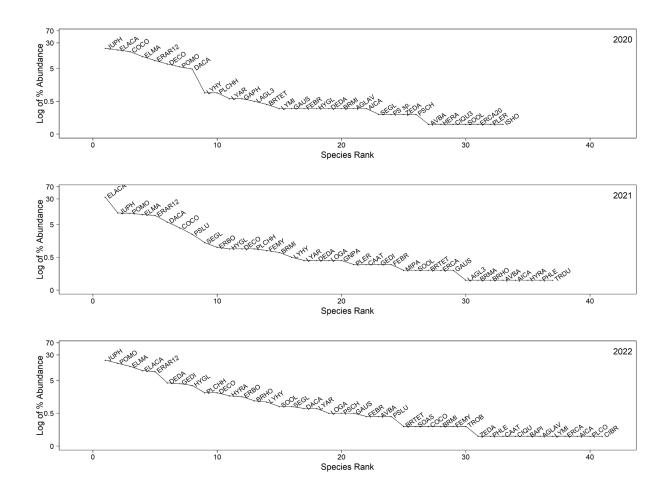
*baseline year

**Values in this table changed from past reports. Two species were omitted from data during transcription of 2003 values. The edits have been reflected in the 2022 report and deliverable. Vegetative cover increased by 3.6%

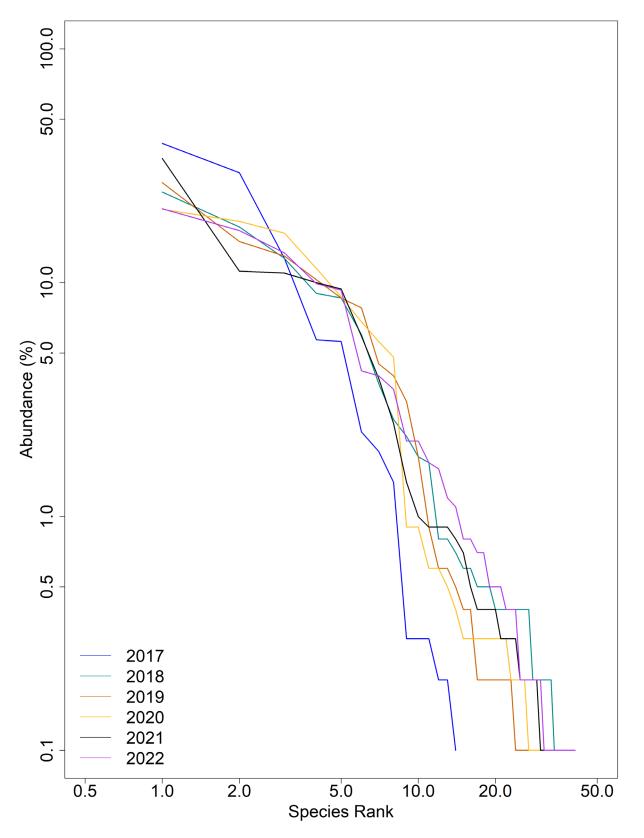
[†]Values in this table changed from past reports. Five species were not initially entered because they were new species found in 2020 and the formulas were not added to the new species rows. The edits have been reflected in the 2022 report and deliverable. Vegetative cover increased by 0.6%


Table 4-88. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2022

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	41.2%	58.8%
101 East (East)	55.5%	44.5%
997	46.9%	53.1%
42	45.9%	54.1%


Species richness in 2022 was greater than the range of values observed in the baseline years of monitoring. Species richness on transects was 20, 32, 28, 24, 34, 14, 40, 27, 33, 37, and 41 in 1998, 2000, 2001, 2002, 2003, 2017, 2018, 2019, 2020, 2021, and 2022, respectively. Overall basin species richness values were only recorded in 2017-2022 and were 78, 126, 77, 93, 82, and 85 species, respectively (see Table 4-89 and Appendix D Table D-8). Pond 42 species richness was greater than the range of values observed at the reference vernal pools for transects and the species richness for the entire basin (see Table 4-90 and Appendix D Tables D-11 and D-22). The species richness is represented on the RACs as the length of the curve and number of species along the curve (see Figure 4-46 and Figure 4-47). Species composition and dominant species at Pond 42 were variable across monitoring years. This variability of species composition is illustrated on the RACs as the species codes shift along the curve and losses and gains occur from year to year (see Figure 4-46 and Figure 4-47). Brown-headed rush

(Juncus phaeocephalus) and pale spikerush (Eleocharis macrostachya) were the two dominant species in 2017, whereas needle spikerush (Eleocharis acicularis var. acicularis) and coyote thistle (Eryngium armatum) were the dominant species in 2018 and 2019. Rabbitfoot grass (Polypogon monspeliensis) was another important species in 2019. In 2020, the dominant species were brown-headed rush, needle spike rush, and brass buttons (Cotula coronopifolia). Needle spike rush was the dominant species in 2021, with moderate cover from brown-headed rush, rabbitfoot grass, pale spikerush, and coyote thistle. Brown-headed rush and rabbitfoot grass were the primary dominant species of 2022 with moderate cover from needle spikerush, pale spikerush, and coyote thistle. A complete comparison of species composition observed during the surveys at Pond 42 in 1998, 2000-2003, and 2017-2022, can be found in Appendix E. Figure 4-49 shows a subset of this comparison for species observed with a 2% cover or greater.


The evenness from each year for Pond 42 is represented by the slope of the RACs. The evenness is fairly similar from year to year with richness distributed along the entire curve. "Structurally complex systems, such as a fen [or vernal pool] system," as explained in Verberk, 2011, "are species rich and have a more even community abundance pattern, possibly owing to a fine partitioning of available niches." A more even distribution of the top species occurs in 2022, which is similar to baseline and most like Reference Pond 101 East (East) (see Figure 4-48, and Appendix F).

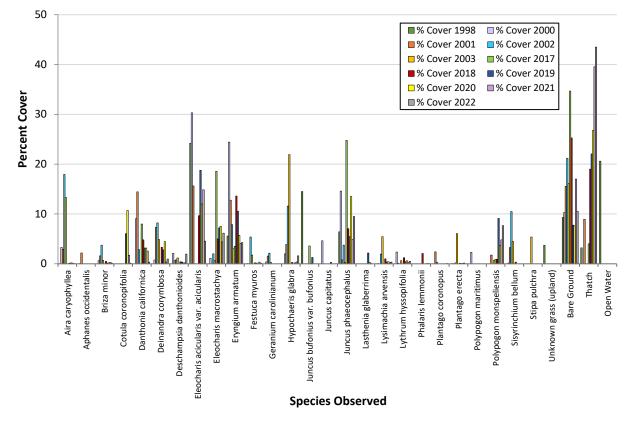

Figure 4-46. Rank Abundance Curves at Pond 42 (Year 4 Post-Subsurface Munitions Remediation) from 2017-2019. Note that the y-axis is in log-10 scale.

Figure 4-47. Rank Abundance Curves at Pond 42 (Year 4 Post-Subsurface Munitions Remediation) from 2020-2022. Note that the y-axis is in log-10 scale.

Figure 4-48. Rank Abundance Curves at Pond 42 (Year 4 Post-Subsurface Munitions Remediation) from 2017-2022. Note that the x-axis and the y-axis are in log-10 scale

Figure 4-49. Percent Cover of Dominant Species at Pond 42 (Year 4 Post-Subsurface Munitions Remediation)

Native and non-native species richness on Pond 42 transects was greater in 2022 than baseline, whereas native species richness was within the range of values observed at the reference vernal pools and non-native species richness was greater (see Table 4-89 and Table 4-90). The relative percent cover of native species was less than baseline years and the non-native cover was greater than baseline (see Table 4-91). Pond 42 native and non-native vegetation percent cover were within the range of values observed at reference vernal pools (see Table 4-92).

Year	Native	Non-Native	Unidentified
1998*	12	5	3
2000	20	11	1
2001	14	13	1
2002	16	8	0
2003**	20	13	1
2017*	10	4	0
2018	24	15	1
2019	16	11	0
2020+	20	12	1
2021	17	20	0
2022	20	21	0

Table 4-89. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Native and Non-Native Species Richness

*baseline year

**Values in this table changed from past reports. Two species were omitted from data during transcription of 2003 values. The edits have been reflected in the 2022 report and deliverable. The species richness increased by 1 for native and 1 for non-native.

⁺Values in this table changed from past reports. Five species were not initially entered because they were new species found in 2020 and the formulas were not added to the new species rows. The edits have been reflected in the 2022 report and deliverable. The species richness increased by 2 for native, 2 for non-native, and 1 for unidentified.

Table 4-90. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	14	14	1
101 East (East)	21	16	1
997	16	18	1
42	20	21	0

Year	Native	Non-Native	Unidentified
1998*	87.7%	4.4%	7.9%
2000	84.4%	15.6%	0.0%
2001	77.4%	22.4%	0.3%
2002	49.0%	51.0%	0.0%
2003**	41.8%	57.3%	0.9%
2017*	97.8%	2.2%	0.0%
2018	90.0%	9.7%	0.4%
2019	75.5%	24.5%	0.0%
2020†	74.5%	25.4%	0.2%
2021	74.9%	25.1%	0.0%
2022	64.8%	35.2%	0.0%

Table 4-91. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

*baseline year

**Values in this table changed from past reports. Two species were omitted from data during transcription of 2003 values. The edits have been reflected in the 2022 report and deliverable. The native cover increased by 1.4% and non-native cover decreased by 1.4%

[†]Values in this table changed from past reports. Five species were not initially entered because they were new species found in 2020 and the formulas were not added to the new species rows. The edits have been reflected in the 2022 report and deliverable. Native cover decreased by 0.3%, non-native cover increased by 0.2%, and unidentified cover increased by 0.2%

Table 4-92. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal PoolRelative Percent Cover of Native and Non-Native Plants in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	73.9%	25.9%	0.3%
101 East (East)	66.4%	33.5%	0.1%
997	29.7%	69.6%	0.7%
42	64.8%	35.2%	0.0%

Wetland and non-wetland species richness on Pond 42 transects were greater in 2022 than the baseline years of monitoring (see Table 4-93). Wetland species richness was greater than reference vernal pools, while non-wetland species richness was within the range of values observed at the reference vernal pools (see Table 4-94). The relative percent cover of wetland species was less than the range of values observed in previous baseline years, whereas non-wetland cover was greater than baseline (see Table 4-95). Relative percent cover of wetland species was greater than the range of values in reference vernal pools, while non-wetland species cover was less than the values observed at reference vernal pools (see Table 4-96).

Year		Wetland			Non-Wetland		
real	OBL	FACW	FAC	FACU	UPL	Not Listed	
1998*	6	4	4	1	0	5	
2000	5	5	4	6	0	11	
2001	3	5	4	6	0	10	
2002	3	4	4	2	1	10	
2003**	5	6	3	4	0	16	
2017*	5	4	1	2	0	2	
2018	9	10	3	7	1	10	
2019	6	7	3	5	0	6	
2020†	7	8	4	3	1	10	
2021	6	7	3	7	1	13	
2022	5	10	4	7	1	14	

Table 4-93. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland Species Richness

*baseline year

**Values in this table changed from past reports. Two species were omitted from data during transcription of 2003 values. The edits have been reflected in the 2022 report and deliverable. Not listed species increased by 2.

⁺Values in this table changed from past reports. Five species were not initially entered because they were new species found in 2020 and the formulas were not added to the new species rows. The edits have been reflected in the 2022 report and deliverable. FACW increased by 1, FACU increased by 1 and not-listed increased by 3.

Table 4-94. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2022

Vernal Pool	Wetland			Non-Wetland		Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	Not Listed
5	4	6	2	7	1	9
101 East (East)	4	6	8	7	1	12
997	4	7	4	7	0	13
42	5	10	4	7	1	14

Year	Wetland			Non-We	Not Listed	
rear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
1998*	42.2%	38.6%	8.7%	0.5%	0.0%	10.0%
2000	35.7%	40.9%	10.3%	8.4%	0.0%	4.7%
2001	20.7%	24.8%	24.0%	7.2%	0.0%	23.3%
2002	3.1%	27.4%	10.6%	27.9%	0.2%	30.7%
2003**	5.5%	11.7%	7.2%	18.7%	0.0%	56.9%
2017*	30.9%	53.0%	12.9%	0.4%	0.0%	2.7%
2018	33.0%	44.8%	11.2%	2.3%	0.4%	8.4%
2019	50.3%	38.5%	5.3%	1.3%	0.0%	4.6%
2020†	48.6%	36.0%	5.8%	0.9%	0.1%	8.7%
2021	49.5%	35.1%	7.0%	2.4%	0.2%	5.8%
2022	26.8%	52.3%	1.8%	5.2%	0.8%	13.1%

Table 4-95. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

*baseline year

**Values in this table changed from past reports. Two species were omitted from data during transcription of 2003 values. The edits have been reflected in the 2022 report and deliverable. All values except UPL changed slightly by less than 2%.

[†]Values in this table changed from past reports. Five species were not initially entered because they were new species found in 2020 and the formulas were not added to the new species rows. The edits have been reflected in the 2022 report and deliverable. OBL decreased by 0.5% and not-listed increased by 0.3%.

Table 4-96. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal PoolRelative Percent Cover of Wetland and Non-Wetland Species in 2022

Vernal Pool		Wetland	Wetland		Non-Wetland	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	Not Listed
5	28.7%	39.4%	1.6%	8.0%	1.4%	20.9%
101 East (East)	29.7%	13.8%	4.2%	29.1%	2.1%	21.1%
997	3.6%	16.0%	12.8%	29.8%	0.0%	37.8%
42	26.8%	52.3%	1.8%	5.2%	0.8%	13.1%

4.8.1.1 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. This year was the second of two consecutive drought years. Below-normal water-years can result in upland and non-native herbs and grasses exploiting a greater portion of a vernal pool and distributing more evenly (Bauder, 2000).

Vegetative cover in Pond 42 was dominated by native and wetland plant species during year 4 postsubsurface munitions remediation monitoring. However, more non-native species than native were observed on transects. Non-native and wetland species richness on Pond 42 transects were greater in 2022 than baseline and reference. Wetland species abundance was less than baseline but greater than the range of reference vernal pools, while non-wetland abundance was greater than baseline and less than reference pools. An increase in richness of wetland species is not concerning since wetland species generally support a healthy vernal pool ecosystem. The relatively high numbers of non-native richness was a trend observed across many vernal pools this year. This is likely related to a below-normal wateryear rather than remediation, but it should be observed closely in future monitoring years.

4.8.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 42, a post-subsurface munitions remediation vernal pool, was not on track to meet the performance standard for year 4 in 2022. The species composition, native and non-wetland richness, and native and non-native species relative abundances were similar to baseline and/or reference vernal pool conditions. However, non-native species richness was greater than the range of values observed in baseline years and the reference vernal pools. This vernal pool will be monitored for year 5 post-subsurface munitions remediation as specified in the Wetland Plan (Burleson, 2006).

4.8.2 Wildlife Monitoring

Wildlife data were collected at Pond 42 in 1998, 2000-2003, and 2018-2020 (HLA, 1998, 2001, 2002; MACTEC, 2003, 2004, Burleson, 2019, 2020, and 2021). California tiger salamander larvae were observed in 2000. Fairy shrimp were present in all years. The vernal pool did not hold sufficient depth for surveys to be completed in 2021 or 2022. Therefore, DQO 5 and the applicable wildlife usage performance standard cannot be assessed. Table 4-97 shows historical wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
1998*	Not detected	Low-Moderate
2000	Common (13)	High – Very High (318, 123)
2001	Not detected	Low (2)
2002	Not detected	High-Very High (250, 1000s)
2003	Not detected	High (low 100s)
2018	Not detected	Low
2019	Not detected	High (217)
2020	Not detected	High (125)

Table 4-97. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Historical Wildlife Monitoring
Results

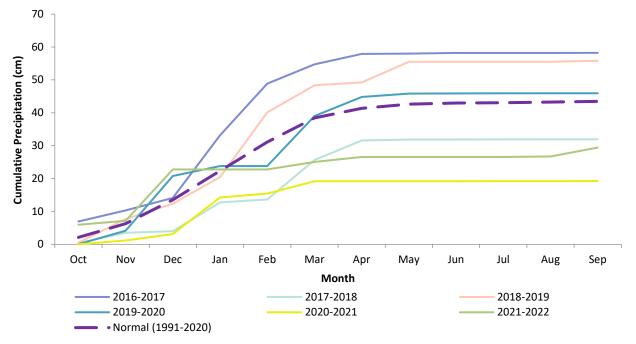
*baseline year

4.8.3 Conclusion

Pond 42, a post-subsurface munitions remediation vernal pool, was in year 4 of monitoring in 2022. The vernal pool was not on track to meet the plant cover and species diversity performance standard due to high non-native richness (see Table 4-98). Pond 42 will continue to be monitored in the future.

Table 4-98. Success at Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Based on Performance Standards and Applicable Data Quality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Not on track
Wildlife Usage	N/A*	N/A*


*Not applicable; wildlife surveys were not conducted due to insufficient depth

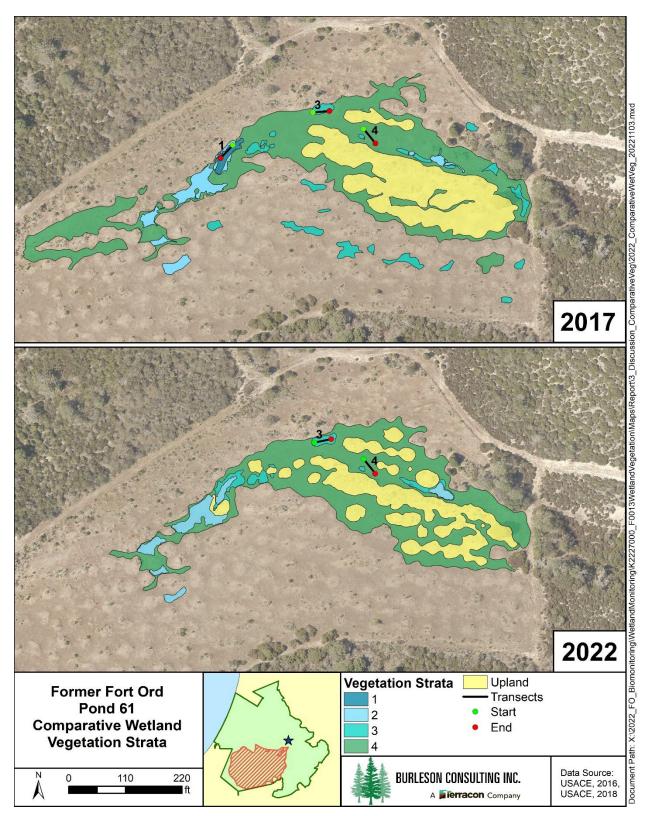
4.9 Pond 61 – Year 4

Pond 61 was monitored in 2022 as a year 4 post-subsurface munitions remediation vernal pool. Although limited subsurface remediation occurred at this vernal pool in 1999, the Army did not conduct monitoring prior to 2017 and it is assumed that 2017 represents baseline conditions. Less than 50 percent of the watershed of Pond 61 was masticated in the summer of 2017 to support MEC remediation in BLM Area B Subunits B-3 East and B2-A. Pond 61 had intrusive anomaly investigations in 2018. Table 4-99 summarizes the years that monitoring occurred and surveys were conducted. The cumulative precipitation graph shows precipitation for years in which hydrology monitoring was conducted at Pond 61 (see Figure 4-50). The 2016-2017 and 2018-2019 water-years were above normal, whereas the 2017-2018, 2020-2021, and 2021-2022 water-years were below normal. Water-year 2019-2020 was similar to the cumulative normal water-year.

Table 4-99. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Summary of Historical Surveys		
for Hydrology, Vegetation, and Wildlife		

Cumiou		Water-Year				
Survey	2016-2017	2017-2018	2018-2019	2019-2020	2020-2021	2021-2022
Hydrology	•	•	•	•	•	•
Vegetation	•	•	•	•	•	•
Wildlife	•		٠	•	•	

Figure 4-50. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Compared to the 30-Year Normal (mean 1991-2020) (NPS, 2022; NCEI NOAA, 2022)


4.9.1 Vegetation Monitoring

Vegetation data were collected at Pond 61 from 2017-2022 (Burleson, 2018, 2019, 2020, 2021, and 2022). Baseline vegetation data were collected at Pond 61 in 2017. Data were collected using the methodology described in the Methods section of this report. Data from 2017 and 2022 were compared stratum-to-stratum in Table 4-100 as well as visually in Figure 4-51.

Pond 61 also supports a CCG population, which is represented by stratum 2. The population was mapped and a visual estimate of percent cover was recorded in 2022 to compare to 2017-2021 (see Figure 3-12 in Section 3.9.1.1).

Table 4-100. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Vegetative Strata Percentage within the Vernal Pool Basin Boundary

Stratum	Percentage		
	2017	2022	
1	1%	N/A	
2 (CCG)	5%	6%	
3	7%	4%	
4	54%	57%	
Upland	33%	33%	

Figure 4-51. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Strata and Transects for 2017 and 2022

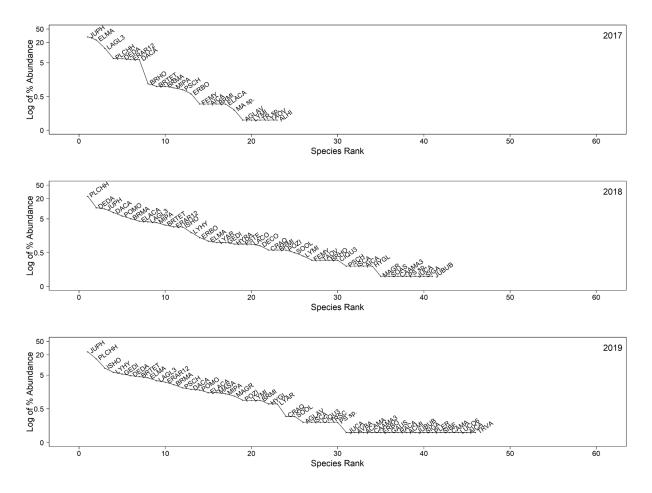
The absolute percent vegetative cover observed in 2022 was less than baseline (see Table 4-101). Pond 61 vegetative cover was greater than the range of values observed at the reference vernal pools and was most similar to Pond 101 East (East) (see Table 4-102).

Year	Vegetative Cover	Thatch/Bare Ground
2017*	69.4%	32.1%
2018	60.6%	40.8%
2019**	64.9%	35.7%
2020	66.1%	34.0%
2021	42.7%	57.6%
2022	64.8%	35.3%

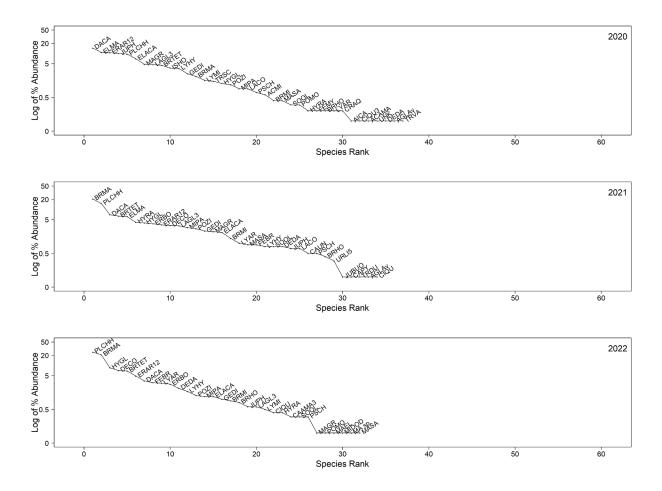
Table 4-101. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Absolute Percent Cover

*baseline year

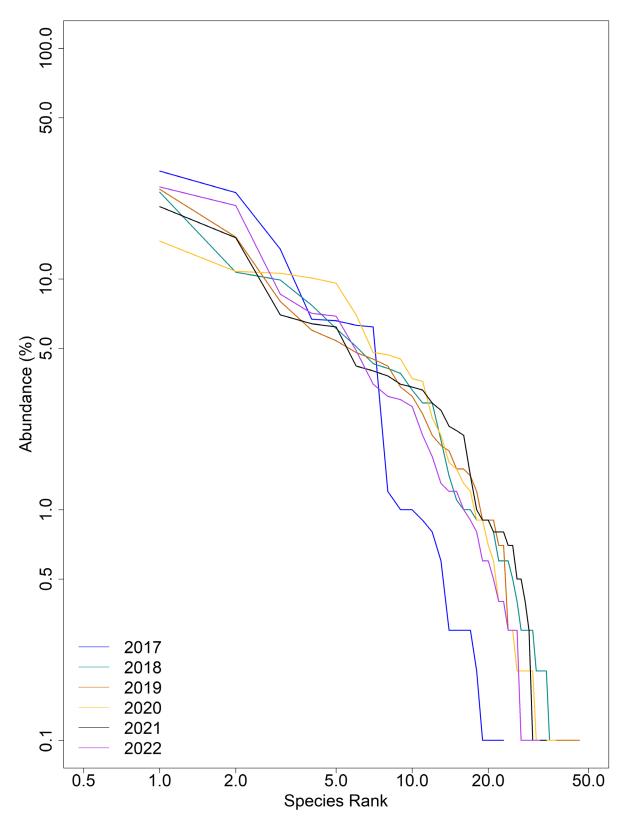
**Values in this table changed from past reports. In 2019, *Madia sp.* was split into two species after identification was confirmed later in the season; however. *Madia sp.* was not removed from the data after the identification occurred. The edits have been reflected in the 2022 report and deliverable. Vegetative cover decreased by 1.7%


Table 4-102. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Absolute Percent Cover in 2022

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	41.2%	58.8%
101 East (East)	55.5%	44.5%
997	46.9%	53.1%
61	64.8%	35.3%


Species richness on transects in 2022 was greater than the baseline year; however, the overall basin species richness was less than baseline. Species richness on transects was 23, 41, 46, 36, 34, and 32 species in 2017, 2018, 2019, 2020, 2021, and 2022, respectively, whereas overall basin species richness was 100, 100, 119, 98, 97, and 94 species, respectively (see Table 4-103 and Appendix D Table D-9). Pond 61 species richness on transects was greater than reference (see Table 4-104 and Appendix D Tables D-11 and D-22). The species richness is represented on the RACs as the length of the curve and number of species along the curve (see Figure 4-52 and Figure 4-53).

Species composition at Pond 61 varied between monitoring years. This variability of species composition is illustrated on the RACs as the species codes shift along the curve and losses and gains occur from year to year (see Figure 4-52 and Figure 4-53). The dominant species in 2017 and 2018 were brown-headed rush (*Juncus phaeocephalus*) and pale spikerush (*Eleocharis macrostachya*), and Hickman's popcornflower (*Plagiobothrys chorisianus* var. *hickmanii*), respectively. In 2019, the dominant species was again brown-headed rush. By 2020 the dominant species began to shift from the first three monitoring years. California oatgrass (*Danthonia californica*) became the dominant species in 2020, with moderate cover from pale spikerush, coyote thistle (*Eryngium armatum*), and brown-headed rush. Nonnative rattlesnake grass (*Briza maxima*) was the dominant species in 2021. Rattlesnake grass remained a dominant species in 2022, along with the largest recorded cover of Hickman's popcornflower. A complete comparison of species composition observed during the surveys at Pond 61 from 2017-2022 can be found in Appendix E. Figure 4-55 shows a subset of this comparison for species observed with a 2% cover or greater.


The evenness from each year for Pond 61 is represented by the slope of the RACs. The evenness is fairly similar from year to year with richness distributed along the entire curve. "Structurally complex systems, such as a fen [or vernal pool] system," as explained in Verberk, 2011, "are species rich and have a more even community abundance pattern, possibly owing to a fine partitioning of available niches." A more even distribution of the top species occurs in 2022, which is similar to baseline and most like Reference Pond 101 East (East) (see Figure 4-54, and Appendix F).

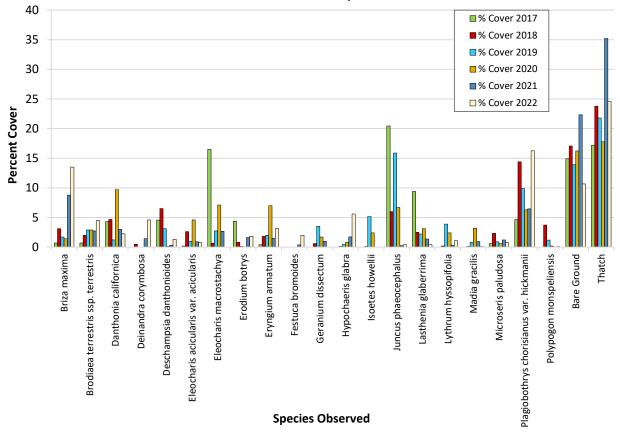

Figure 4-52. Rank Abundance Curves at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) from 2017-2019. Note that the y-axis is in log-10 scale.

Figure 4-53. Rank Abundance Curves at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) from 2020-2022. Note that the y-axis is in log-10 scale.

Figure 4-54. Rank Abundance Curves at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) from 2017-2022. Note that the x-axis and the y-axis are in log-10 scale.

Percent Cover of Dominant Species at Pond 61

Figure 4-55. Percent Cover of Dominant Species at Pond 61 (Year 4 Post-Subsurface Munitions Remediation)

Native and non-native species richness on Pond 61 transects was greater in 2022 than baseline (see Table 4-103). Native species richness was within the range of values observed at reference vernal pools, whereas non-native species richness was less than reference values (see Table 4-104). The relative percent cover of native species was less, and non-native species cover was greater than the baseline values (see Table 4-105). Pond 61 native and non-native relative percent cover were within the range of values observed at the reference vernal pools (Table 4-106).

	34	ecies Richness	
Year	Native	Non-Native	Unidentified
2017*	15	6	2
2018	24	16	1
2019**	32	13	1
2020	24	12	0
2021	21	13	0
2022	19	12	1

Table 4-103. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Native and Non-Native Species Richness

*baseline year

**Values in this table changed from past reports. In 2019, *Madia sp.* was split into two species after identification was confirmed later in the season, however *Madia sp.* was not removed from the data after the identification occurred. The edits have been reflected in the 2022 report and deliverable. Unidentified species decreased by 1.

Table 4-104. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Native and Non-Native Species Richness in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	14	14	1
101 East (East)	21	16	1
997	16	18	1
61	19	12	1

Table 4-105. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Native and Non-Native Plants

Year	Native	Non-Native	Unidentified
2017*	90.3%	9.4%	0.3%
2018	80.1%	19.8%	0.1%
2019**	81.1%	18.8%	0.2%
2020	88.7%	11.3%	0.0%
2021	59.5%	40.5%	0.0%
2022	56.4%	43.5%	0.1%

*baseline year

**Values in this table changed from past reports. In 2019, *Madia sp.* was split into two species after identification was confirmed later in the season, however *Madia sp.* was not removed from the data after the identification occurred. The edits have been reflected in the 2022 report and deliverable. Native species cover increased by 2.1%, non-native cover increased by 0.5%, unidentified cover decreased by 0.2%.

Table 4-106. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	73.9%	25.9%	0.3%
101 East (East)	66.4%	33.5%	0.1%
997	29.7%	69.6%	0.7%
61	56.4%	43.5%	0.1%

Wetland species richness on Pond 61 transects was greater in 2022 than the baseline year and within the range of values at reference vernal pools, whereas non-wetland species richness was less than both (see Table 4-107 and Table 4-108). The relative percent cover of wetland species, however, was dramatically lower than in the baseline year while non-wetland cover was only slightly less (see Table 4-109). Wetland relative percent cover was within the range of values observed at reference vernal pools, while non-wetland relative percent cover was less than reference pool values (see Table 4-110).

Table 4-107. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Wetland and Non-Wetland
Species Richness

Year	Wetland			Non-Wetland		Not Listed
rear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2017*	4	6	2	5	0	6
2018	10	10	3	7	1	10
2019**	11	11	6	4	1	13
2020	9	9	4	5	1	8
2021	6	9	3	3	1	12
2022	5	8	3	3	1	12

*baseline year

**Values in this table changed from past reports. In 2019, *Madia sp.* was split into two species after identification was completed later in the season, however *Madia sp.* was not removed from the data after the identification occurred. The edits have been reflected in the 2022 report and deliverable. Not listed species decreased by 1.

Table 4-108. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Wetland and Non-Wetland Species Richness in 2022

Vernal Pool		Wetland		Non-W	Not Listed	
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	6	2	7	1	9
101 East (East)	4	6	8	7	1	12
997	4	7	4	7	0	13
61	5	8	3	3	1	12

Table 4-109. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Relative Percent Cover of Wetland and Non-Wetland Species

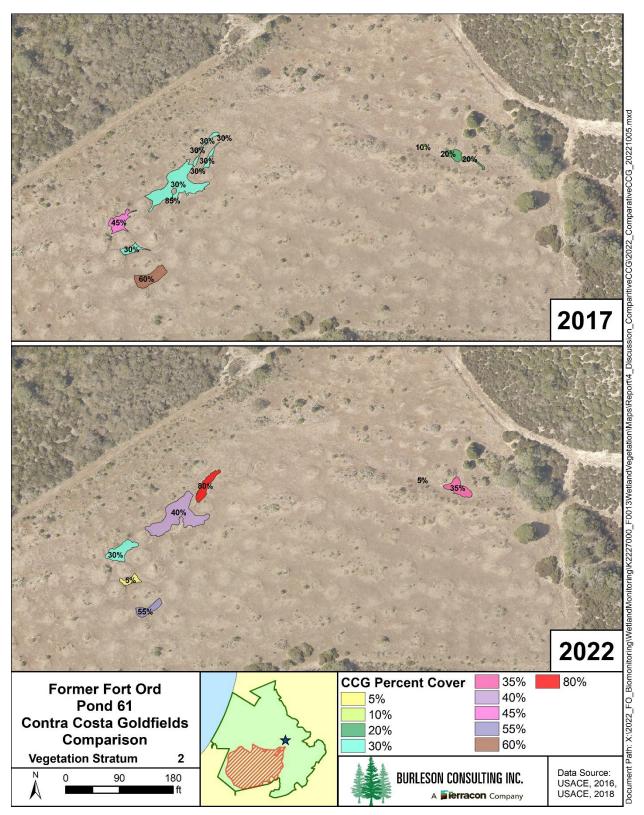
Year		Wetland			Non-Wetland	
rear	OBL	FACW	FAC	FACU	UPL	Not Listed
2017*	44.3%	37.6%	6.5%	8.2%	0.0%	3.3%
2018	40.6%	31.7%	9.3%	3.2%	0.5%	14.9%
2019**	40.1%	37.8%	3.7%	0.3%	0.3%	17.8%
2020	42.2%	24.4%	15.3%	1.2%	0.3%	16.6%
2021	30.2%	7.0%	9.5%	8.3%	0.8%	44.1%
2022	29.9%	9.1%	7.3%	4.0%	0.3%	49.4%

*baseline year

**Values in this table changed from past reports. In 2019, *Madia sp.* was split into two species after identification was completed later in the season, however *Madia sp.* was not removed from the data after the identification occurred. The edits have been reflected in the 2022 report and deliverable. All values changed slightly by less than 2.1%.

Vernal Pool		Wetland		Non-Wetland		Not Listed
Vernal POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	28.7%	39.4%	1.6%	8.0%	1.4%	20.9%
101 East (East)	29.7%	13.8%	4.2%	29.1%	2.1%	21.1%
997	3.6%	16.0%	12.8%	29.8%	0.0%	37.8%
61	29.9%	9.1%	7.3%	4.0%	0.3%	49.4%

Table 4-110. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) and Reference Vernal Pool Relative Percent Cover of Wetland and Non-Wetland Species in 2022


4.9.1.1 Contra Costa Goldfields

The area of CCG at Pond 61 has fluctuated from year to year but by 2022, the total CCG area was the same as baseline at 0.14 acres (Burleson, 2018, 2019, 2020, 2021, 2022, and 2023) (see Table 4-111 and Figure 4-56). The density also varied, from 10-65% in baseline to the highest overall density, 35-80%, in 2022. In 1999, 2000, 2002, and 2017-2021 the CCG population was in similar locations as 2022 and within the range of 0.09-0.15 acre (HLA, 2000, 2001; MACTEC, 2003; Burleson, 2018, 2019, 2020, 2021, 2022, and 2023). Results suggest that mastication activities in 2017 and post-subsurface munitions remediation in 2019 did not affect the population. Minor changes in population size can be attributed to natural fluctuation.

Table 4-111. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Contra Costa Goldfields Estimated Cover

Year	Area (acres)	Density (% cover)
2017*	0.14	10-65%
2018	0.12	5-65%
2019	0.11	5-85%
2020	0.15	15-65%
2021	0.13	5-70%
2022	0.14	35-80%

*baseline year

Figure 4-56. Contra Costa Goldfields Populations at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) in 2017 and 2022

4.9.1.2 Data Quality Objective 3

Observable changes in hydrophytic vegetation between surveys were largely associated with precipitation fluctuations. This is expected given the dynamic nature of vernal pools and the close relationship between the hydroperiod and wetland vegetation composition. This year was the second of two consecutive drought years. Below-normal water-years can result in upland and non-native herbs and grasses exploiting a greater portion of a vernal pool and distributing more evenly (Bauder, 2000).

Vegetative cover in Pond 61 was dominated by native and wetland plant species during year 4 postsubsurface munitions remediation monitoring in 2022. Pond 61 wetland vegetation results were generally within the range of baseline and/or reference vernal pools with a few favorable exceptions. Non-wetland richness and relative percent cover were less than baseline and reference values. Additionally, non-native richness was less than reference values, although greater than baseline. The relative low values for non-wetland richness and abundance are not concerning. These results generally support a healthy vernal pool ecosystem.

4.9.1.3 Performance Standard: Plant Cover and Species Diversity

Pond 61, a post-subsurface munitions remediation vernal pool, was on track to meet the performance standard for year 4. The species composition, and native and wetland species richness were similar to baseline and/or reference vernal pool conditions. This vernal pool will be monitored for year 5 post-subsurface munitions remediation as specified in the Wetland Plan (Burleson, 2006).

4.9.2 Wildlife Monitoring

Wildlife data were collected at Pond 61 in 2017, 2019, 2020, and 2021 (Burleson, 2018, 2020, and 2021). California tiger salamander larvae were not observed in any year. Fairy shrimp were present in 2019 and 2020. The vernal pool did not hold sufficient depth for surveys to be completed in 2022. Therefore, DQO 5 and the applicable wildlife usage performance standard cannot be assessed. Table 4-112 shows historical wildlife monitoring results.

Sampling Year	CTS Larvae Abundance (# Individuals)	Fairy Shrimp Abundance (# Individuals)
2017*	Not detected	Not detected
2019	Not detected	High (162)
2020	Not detected	High (172)
2021	Not detected	Not detected

Table 4-112. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Historical Wildlife
Monitoring Results

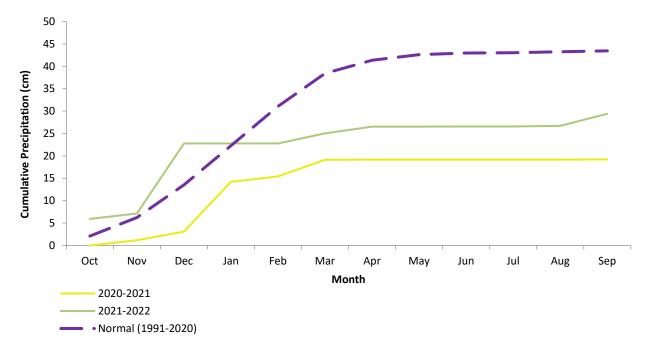
*baseline year

4.9.3 Conclusion

Pond 61, a post-subsurface munitions remediation vernal pool, was in year 4 of monitoring in 2022. The vernal pool was on track to meet the plant cover and species diversity performance standard (see Table 4-113). Pond 61 will continue to be monitored in the future.

Table 4-113. Success at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Based onPerformance Standards and Applicable Data Quality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	On track
Wildlife Usage	N/A*	N/A*


*Not applicable; wildlife surveys were not conducted due to insufficient depth

4.10 Pond 75 - Baseline

Pond 75 was surveyed for an additional year of baseline data in 2022. Table 4-114 summarizes the years that monitoring occurred and surveys conducted. The cumulative precipitation graph shows below-normal precipitation for the 2020-2021 and 2021-2022 water-years compared to the 30-year normal (see Figure 4-57).

Table 4-114. Pond 75 (Baseline) Summary of Historic Surveys for Hydrology, Vegetation, andWildlife

Sumou	Water-Year		
Survey	2020-2021	2021-2022	
Hydrology	•	•	
Vegetation	•	•	
Wildlife			

Figure 4-57. Cumulative Monthly Precipitation for Years that Hydrology Monitoring Occurred at Pond 75 (Baseline) Compared to the 30-Year Normal (mean 1991-2020) (NPS, 2021; NCEI NOAA, 2022)

4.10.1 Vegetation Monitoring

Baseline vegetation data were collected at Pond 75 in 2021 and 2022 (Burleson 2022). Data were collected using the methodology described in the Methods section of the report. Data from 2021 and 2022 were compared stratum-to-stratum in Table 4-115 as well as visually in Figure 4-58.

Table 4-115. Pond 75 (Baseline) Vegetative Strata Percentage within the Vernal Pool BasinBoundary

Stratum	Percentage			
Stratum	2021	2022		
1	25%	16%		
2	65%	67%		
3	7%	5%		
4	4%	12%		

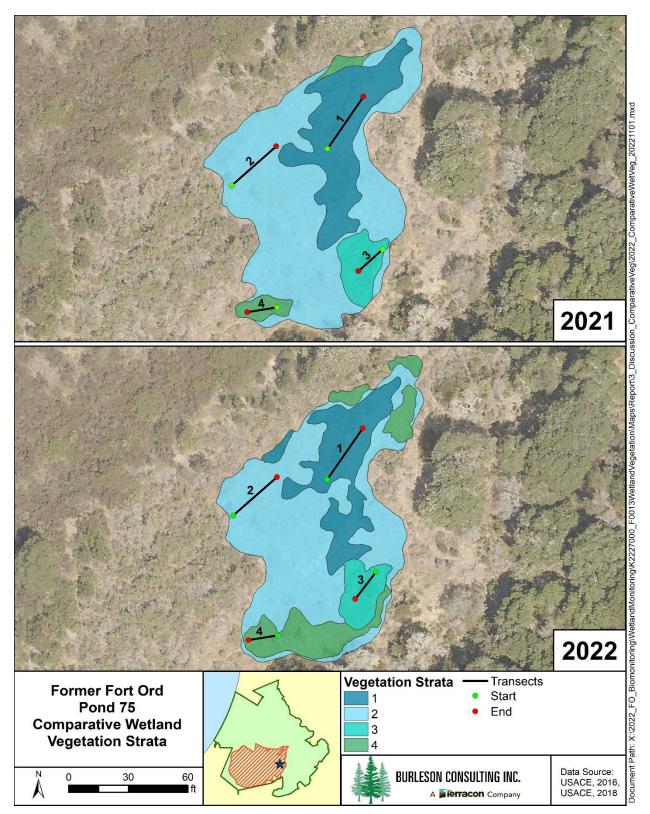


Figure 4-58. Pond 75 (Baseline) Vegetation Strata and Transects for 2021 and 2022

The absolute percent vegetative cover was 48.7% and 47.9% in 2021 and 2022, respectively (see Table 4-116). Pond 75 vegetative cover was within the range of values observed at the reference vernal pools and was similar to reference vernal pool 997, which had 46.9% vegetative cover (see Table 4-117).

Year	Vegetative Cover	Thatch/Bare Ground
2021*	48.7%	51.4%
2022*	47.9%	52.1%

Table 4-116. Pond 75 (Baseline) Absolute Percent Cover

*baseline year

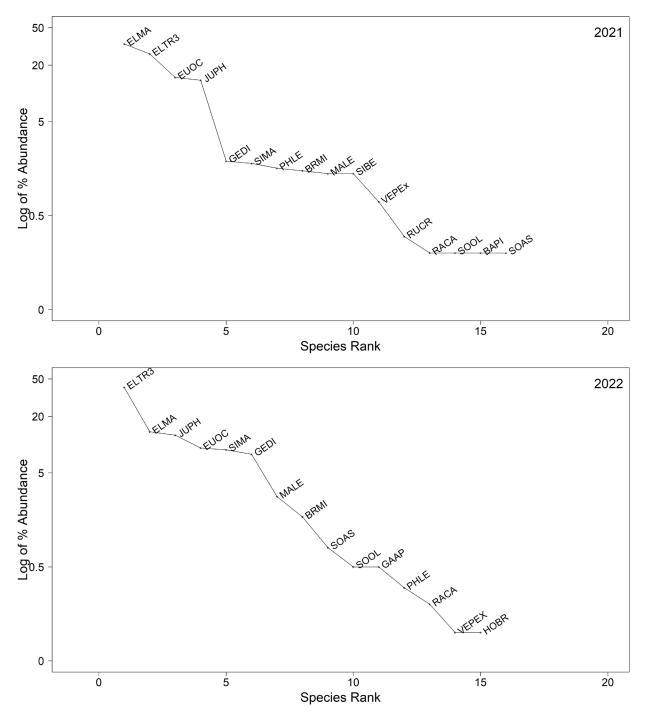
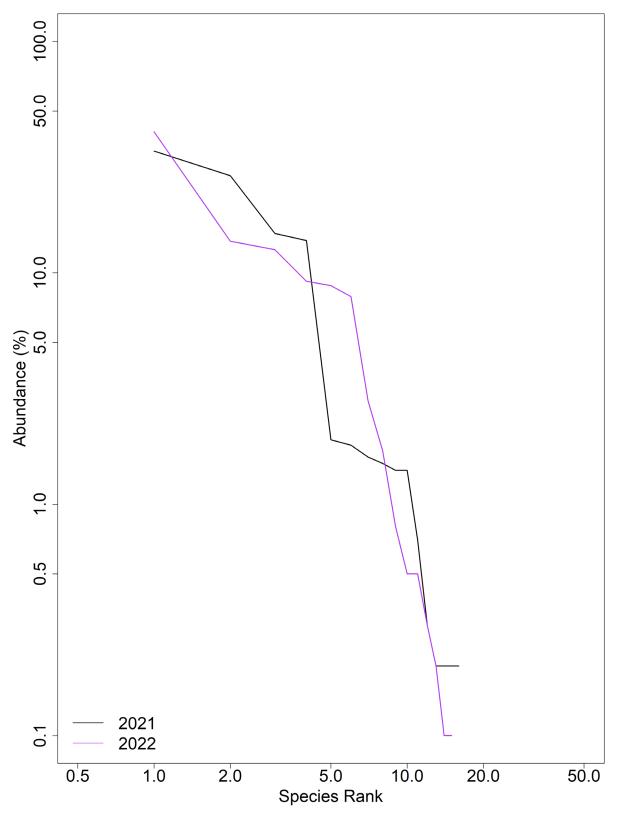

Vernal Pool	Vegetative Cover	Thatch/Bare Ground
5	41.2%	58.8%
101 East (East)	55.5%	44.5%
997	46.9%	53.1%
75	47.9%	52.1%

Table 4-117. Pond 75 (Baseline) and Reference Vernal Pool Absolute Percent Cover in 2022


Species richness on transects was 16 and 15 species in 2021 and 2022, respectively, whereas overall basin species richness was 35 and 43 species in 2021 and 2022, respectively (see Table 4-118 and Appendix D Table D-10). Pond 75 species richness was less than the values observed at the reference vernal pools (see Table 4-119 and Appendix D Tables D-11 and D-22). The species richness is represented on the RACs as the length of the curve and number of species along the curve (see Figure 4-59).

Species composition at Pond 75 was similar between the two monitoring years. This species composition is illustrated on the RACs as the species codes shift along the curve and losses and gains occur from year to year (see Figure 4-59). Beardless wild rye (*Elymus triticoides*) and pale spikerush (*Eleocharis macrostachya*) were the most dominant species both years, although beardless wild rye was more dominant in 2022 than 2021. Brown-headed rush (*Juncus phaeocephalus*), and western goldenrod (*Euthamia occidentalis*) were also important species in both years. Milk thistle (*Silybum marianum*) and cut-leaved geranium (*Geranium dissectum*) were more prominent species in 2022, each comprising approximately 3% more cover than in the previous year of baseline monitoring. A complete comparison of species composition observed at Pond 75 can be found in Appendix E. Figure 4-61 shows a subset of this comparison for species observed with a 2% cover or greater.

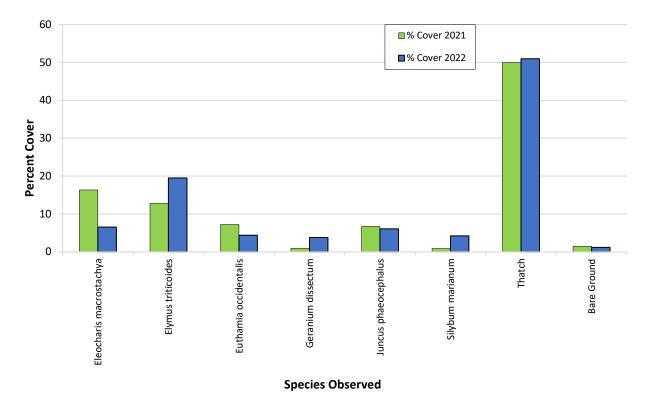

The evenness from both years is represented by the slope of the RACs. The evenness is fairly similar from between 2021 and 2022 with richness distributed along the entire curve. "Structurally complex systems, such as a fen [or vernal pool] system," as explained in Verberk, 2011, "are species rich and have a more even community abundance pattern, possibly owing to a fine partitioning of available niches." When comparing 2021 to 2022, a more even distribution of the top species occurs in 2021 at Pond 75 (see Figure 4-60 and Appendix F). Whereas, 2022 has a less even slope and higher abundance of the dominant species at the top of the curve.

Figure 4-59. Rank Abundance Curves at Pond 75 (Baseline) in 2021 and 2022. Note that the y-axis is in log-10 scale.

Figure 4-60. Rank Abundance Curves at Pond 75 (Baseline) in 2021 and 2022. Note that the y-axis is in log-10 scale.

Pond 75 native species richness remained the same between monitoring years, while non-native richness decreased by one (see Table 4-118). The native and non-native richness, however, were less than the range of values observed at reference vernal pools (see Table 4-119). The relative percent cover of native species in 2022 was less than the previous baseline year, while the cover of non-native species was higher (see Table 4-120). Pond 75 had higher native species cover than the reference vernal pools however, and lower non-native cover (see Table 4-121).

Table 4-118. Pond 75 (Baseline) Native and Non Native Species Richnes	SS
---	----

Year	Native	Non-Native	Unidentified
2021*	10	6	0
2022*	10	5	0

*baseline year

Table 4-119. Pond 75 (Baseline) and Reference Vernal Pool Native and Non-Native Species Richness in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	14	14	1
101 East (East)	21	16	1
997	16	18	1
75	10	5	0

Year	Native	Non-native	#N/A
2021*	93.9%	6.1%	0.0%
2022*	80.3%	19.7%	0.0%

Table 4-120. Pond 75 (Baseline) Relative Percent Cover of Native and Non-Native Species

*baseline year

Table 4-121. Pond 75 (Baseline) and Reference Vernal Pool Relative Percent Cover of Native and Non-Native Plants in 2022

Vernal Pool	Native	Non-Native	Unidentified
5	73.9%	25.9%	0.3%
101 East (East)	66.4%	33.5%	0.1%
997	29.7%	69.6%	0.7%
75	80.3%	19.7%	0.0%

Wetland and non-wetland species richness was similar between monitoring years, although the number of wetland species decreased by one, while the number of non-wetland species increased by one (see Table 4-122). Pond 75 followed the same trend as the reference vernal pools with more wetland than non-wetland species, although wetland and non-wetland species richness were both less than the range of values observed at the reference vernal pools in 2022 (see Table 4-123). The relative percent cover of wetland species at Pond 75 was less than the previous monitoring year, while non-wetland species cover was greater (see Table 4-124). When compared to the range of reference pools, the relative percent cover of wetland species was greater and the non-native cover was less than reference. (see Table 4-125).

Table 4-122. Pond 75 (Baseline) Wetland and Non-Wetland Species Richness

Year		Wetland		Non-Wetland		Not Listed
rear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2021*	1	5	4	2	1	3
2022*	1	5	3	3	1	2

*baseline year

Table 4-123. Pond 75 (Baseline) and Reference Vernal Pool Wetland and Non-Wetland SpeciesRichness in 2022

Vernal Pool		Wetland		Non-Wetland		Not Listed
VernarPOOr	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	4	6	2	7	1	9
101 East (East)	4	6	8	7	1	12
997	4	7	4	7	0	13
75	1	5	3	3	1	2

Year		Wetland		Non-W	etland	Not Listed
rear	OBL	FACW	FAC	FACU	UPL	NOT LISTED
2021*	33.6%	32.3%	28.3%	1.6%	0.2%	4.0%
2022*	13.7%	22.4%	42.7%	4.1%	0.5%	16.7%

Table 4-124. Pond 75 (Baseline) Relative Percent Cover of Wetland Species

*baseline year

Table 4-125. Pond 75 (Baseline) and Reference Vernal Pool Relative Percent Cover of Wetland andNon-Wetland Species in 2022

Vernal Pool		Wetland		Non-W	etland	Not Listed
vernai POOI	OBL	FACW	FAC	FACU	UPL	NOT LISTED
5	28.7%	39.4%	1.6%	8.0%	1.4%	20.9%
101 East (East)	29.7%	13.8%	4.2%	29.1%	2.1%	21.1%
997	3.6%	16.0%	12.8%	29.8%	0.0%	37.8%
75	13.7%	22.4%	42.7%	4.1%	0.5%	16.7%

4.10.1.1 Data Quality Objective 3

Pond 75 was dominated by native and wetland plant species during baseline monitoring in 2022. Pond 75 baseline data will be compared to future surveys.

4.10.1.2 Performance Standard: Plant Cover and Species Diversity

Pond 75 was a baseline vernal pool in 2022 and was not required to meet the performance standard. Pond 75 will be monitored after remediation and will be compared to these baseline data in future years as described in the PBO (USFWS, 2017).

4.10.2 Wildlife Monitoring

Baseline wildlife data were not collected at Pond 75 because the vernal pool did not hold sufficient depth for surveys to be completed in 2022.

4.10.3 Conclusion

Pond 75 was not compared to DQOs in 2022 because the vernal pool was in baseline condition. The plant cover and species diversity data were suitable for comparison to future monitoring events (see Table 4-126).

Table 4-126. Success at Pond 75 (Baseline) Based on Performance Standards and Applicable DataQuality Objectives

Performance Standard	Applicable DQO	Success
Plant Cover & Species Diversity	DQO 3	Suitable for Baseline
Wildlife Usage	N/A*	N/A*

*Not applicable; wildlife surveys were not conducted due to insufficient depth

5 CONCLUSION

Although rainfall during the 2021-2022 water-year was greater than last year, it still remained well below-normal with a total cumulative precipitation approximately 67% of normal rainfall. This consecutive drought year had measurable impacts to the vernal pools' wetland vegetation and wildlife usage. While two vernal pools held enough water to trigger wildlife surveys in 2020-2021, none held adequate water depths for these surveys to occur during the 2021-2022 water-year, and four of the ten vernal pools surveyed never held water for any period of time (Chenega, 2023).

As mentioned in previous reports, variability is expected in vernal pools that have dynamic conditions in response to the amount of precipitation and the resulting hydroperiod (Bauder, 2000, 2005; Mulhouse et al., 2005; Witham et al., 1998). Drought conditions impacted the wetland vegetation across all vernal pools, especially the relative percent cover of wetland and native species.

It is notable that every vernal pool monitored in 2022, both reference and remediated, had results for cover and/or richness that were beyond the range of previous years data (see Table 5-1). Table 5-1 illustrates these values with arrows representing a data value that was less than or greater than any previous year' data. Six out of nine vernal pools had the lowest native and highest non-native relative percent cover of any previous year. Additionally, two of the nine vernal pools had the highest non-native richness of any previous year. There were also extreme wetland cover values compared to previous monitoring results. Seven out of nine vernal pools had the lowest wetland relative percent cover of any previous year, and five out of nine had the highest non-wetland cover. In addition, there was a general increase to both non-wetland and wetland species richness. The following are a list of the extremes for each vernal pool monitored in 2022*:

- Pond 5 (reference) had the lowest recorded relative percent cover of wetland species, and the highest non-wetland cover of any year.
- Pond 101 East (East) (reference) had the highest relative percent cover of non-wetland species in 2021 and 2022, at 31.2% for both years.
- Pond 997 (reference) had the lowest native and wetland relative percent cover and highest nonnative and non-wetland relative percent cover of any previous year.
- Pond 16 had the lowest recorded relative percent native cover and conversely the highest nonnative relative percent cover. Pond 16 also had the lowest recorded wetland relative percent cover of any previous monitoring year.
- Pond 39 had the highest non-native richness (14 more non-native species than native), and the lowest native cover and highest non-native cover. In addition, Pond 39 had the lowest wetland relative percent cover and highest non-wetland relative percent cover of any year.
- Pond 40 South had the lowest relative percent cover of native and wetland species, and conversely the highest cover of non-native and non-wetland species of any previous year.

- Pond 41 had the lowest native and wetland relative percent cover and highest non-native cover of any previous year.
- Pond 42 had the highest non-native richness of any previous year.
- Pond 61 had the lowest native and wetland relative percent cover and highest non-native cover of any previous year.

*Pond 75 was not included since there were only two years' worth of data, and therefore could not be compared between multiple years.

Vernal Pools	Nat	ive	Non-N	lative	Wet	land	Non-Wetland		
vernal Pools	Richness	Relative % Cover	Richness	Relative % Cover	Richness	Relative % Cover	Richness	Relative % Cover	
5									
101 East (East)									
997						Ļ			
16		-				➡			
39		-				Ļ			
40 South						Ļ			
41									
42									
61		Ļ				Ļ			

Table 5-1. Vegetation Result Extremes in 2022 in Comparison to All Previous Years

The most significant trend was that seven of the nine vernal pools had the lowest wetland cover in 2022 compared to any previous monitoring year. In addition, five of the nine vernal pools, including all three reference vernal pools monitored had the highest non-wetland cover compared to any previous year. This observation is consistent with the literature; most [vernal pool] species will germinate and persist without inundation, but it is likely that inundation plays a large role in keeping upland competitors out of the pools (Bliss and Zedler, 1998). In addition, 2022 saw a significant shift within wetland cover values from previous years (see Table 5-2). Table 5-2 illustrates these values with arrows representing a data value that was less than or greater than any previous year' data. The gradient of blue to yellow in the table signifies wettest (OBL) to driest (UPL) and the gradient of the red arrows gives more (darker) significance to the wettest extreme values and less (lighter) significance to the least wetland obligate (FACU) results. Four of the vernal pools surveyed this year had the lowest cover values for OBL and FACW plants of any previous year. Conversely, four of the vernal pools also had the highest FACU cover of any previous year, and Pond 42 had the highest UPL cover ever recorded. These

results show a trend towards drier plant communities across the basin. The following are a list of the extremes of wetland categories for each vernal pool monitored in 2022*:

- Pond 5 (reference) had the highest FACU cover in both 2022 and 2017 at 8%.
- Pond 101 East (East) (reference) had the lowest FACW cover of any previous year.
- Pond 997 (reference) had the lowest FACW cover and the highest FACU cover of any previous year.
- Pond 16 had the highest FACW cover, coupled with the lowest OBL cover of any previous year.
- Pond 39 had the lowest FACW cover and the highest FACU cover of any previous year.
- Pond 40 South had the lowest OBL and FACW cover, as well as the highest FACU cover of any previous year.
- Pond 41 had the lowest OBL cover of any previous year.
- Pond 42 had the lowest FAC cover and highest UPL cover of any previous year.
- Pond 61 had the lowest OBL cover of any previous years

*Pond 75 was not included since there were only two years' worth of data, and therefore could not be compared between multiple years.

Table 5-2. Wetland and Non-Wetland Relative Percent Cover Extremes in 2022 Compared to AllPrevious Years, by Wetland Type

Vernal Pools		Wetland		Non-W	/etland
vernal Pools	OBL	FACW	FAC	FACU	UPL
5					
101 East (East)		-			
997		-			
16	-	$\mathbf{\hat{t}}$			
39					
40 South	+	-			
41	-				
42			$\overline{\mathbf{h}}$		
61					

This is the second year in a row that Rank Abundance Curves (RACs) have been utilized to understand distribution of the species, relative abundance, species evenness, and species richness. Rank abundance curves were created for all vernal pools this year. Comparison plots were also produced for each vernal pool with all monitoring years from 2015-2022 (see Appendix F). Notable differences from year to year are species richness, the change in species composition through gains and losses of differing species, and the distribution and relative abundance of species as they shift in position along the curves. For many vernal pools the dominant species are similar from year to year but for others they change every year.

Remarkably, the evenness is relatively low and fairly similar across years. This may be in part because of high species richness at the vernal pools and our sampling methodology. This is supported by a study of subalpine meadow communities with the same sampling scale as data collected at Ford Ord vernal pools. The researchers found a consistent negative correlation between S (species richness) and J (evenness) in these communities along the successional gradient at the sampling scale of 0.5 m x 0.5 m quadrats along transect lines (Hui Zhang, 2012). In addition to low evenness, richness was uniformly distributed along the entire curve with a slightly higher concentration or plateau of species toward the tail end. This plateau represents the species that are likely contributing around 1% and only found once along the transect.

When compared to reference and baseline, there were three out of seven remediated vernal pools that were not on track to meet the performance standard for wetland vegetation due to high non-native richness, low native cover, high non-native cover, high non-wetland richness and/or out of range for wetland cover (see Table 5-3). Despite dry conditions, all vernal pools supported a majority of wetland species and relative percent cover was dominated by wetland species.

The 2021-2022 water-year did not provide favorable conditions for CTS or fairy shrimp. None of the vernal pools held sufficient depth in March to trigger wildlife surveys.

Ponds 16, 39, 40 South, 41, 42, 61, and 75 will continue to be monitored for wetland vegetation and wildlife usage.

Vernal Pool	Monitoring Status	Wetland Vegetation	Wildlife
		DQO 3 (richness and cover)	DQO 5 (wildlife presence)
16	Year 4 Post-Subsurface Munitions Remediation	On track	N/A
39	Year 4 Post-Subsurface Munitions Remediation	Not on track	N/A
40 South	Year 4 Post-Subsurface Munitions Remediation	Not on track	N/A
41	Year 4 Post-Subsurface Munitions Remediation	On track	N/A
42	Year 4 Post-Subsurface Munitions Remediation	Not on track	N/A
61	Year 4 Post-Subsurface Munitions Remediation	On track	N/A
75	Baseline	Suitable for Baseline	N/A

Table 5-3. 2022 Remediated Vernal Pools and Performance Standards Status

6 REFERENCES

- Baldwin BG, Goldman DH, Keil DJ, Patterson R, Rosatti TJ, Wilken DH (eds.). 2012. The Jepson Manual -Vascular Plants of California. 2nd ed. University of California Press, Berkeley, CA. pp. 1600.
- Barbour, M.G., J.H. Burk, and W.D. Pitts. 1980. Terrestrial Plant Ecology. Benjamin/Cummings Publishing. Menlo Park, California.
- Bauder ET. 2000. "Inundation effects on small-scale plant distributions in San Diego, California vernal pools." Aquatic Ecology 34. Kluwer Academic Publishers. pp. 43-61.
- Bauder ET. 2005. "The effects of an unpredictable precipitation regime on vernal pool hydrology." Freshwater Biology 50. Blackwell Publishing Ltd. pp. 2129-2135.
- Burleson Consulting, Inc. 2006. Wetland Monitoring and Restoration Plan for Munitions and Contaminated Soil Remediation. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc., Denise Duffy & Associates, Inc., and EcoSystems West Consulting Group. 2016.
 2015 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc. and Denise Duffy & Associates, Inc. 2017. 2016 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc. 2018. 2017 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc. 2019. 2018 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc. 2020. 2019 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc. 2021. 2020 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Burleson Consulting, Inc. 2022. 2021 Annual Wetland Vegetation and Wildlife Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Chenega. 2023. 2022 Annual Wetland Hydrology and Water Quality Monitoring Report. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Esri. 2022. ESRI. ArcGIS Desktop Version 10.8.1. Redlands, CA: Environmental Systems Research Institute.

- Harding ESE. 2002. 2001 Annual Monitoring Report Biological Baseline Studies and Follow-up Monitoring Former Fort Ord, Monterey, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- Harding Lawson and Associates (HLA). 1997. 1997 Annual Habitat Monitoring Report Former Fort Ord, Monterey, California. Prepared for U. S. Department of the Army, Seaside, CA.
- Harding Lawson and Associates (HLA). 1998. 1998 Annual Monitoring Report Biological Baseline Studies and Follow-Up Monitoring at Unexploded Ordnance Sites on Former Fort Ord, Presidio of Monterey Annex, Monterey, California. Prepared for U.S. Department of the Army, Sacramento, CA.
- Harding Lawson and Associates (HLA). 1999. 1999 Annual Habitat Monitoring Report Former Fort Ord, Monterey County, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- Harding Lawson and Associates (HLA). 2001. 2000 Annual Monitoring Report Biological Baseline Studies and Follow-up Monitoring Former Fort Ord, Monterey County, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- Jones and Stokes Associates Inc. 1996. 1996 Annual Wetland Monitoring Report for UXO Removal at Former Fort Ord. Prepared for Army Corps of Engineers, Sacramento, CA.
- KEMRON Environmental Services. 2020. BLM Area B Track 2 Ponds Geophysical Anomaly Investigation Technical Information Paper Former Fort Ord, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- Lichvar, RW, DL Banks, WN Kirchner, and NC Melvin. 2016. The National Wetland Plant List: 2016 Wetland Ratings. Phytoneuron 2016-30: 1-17. Available at <u>http://wetland-plants.usace.army.mil/</u>
- MACTEC. 2003. 2002 Annual Monitoring Report Biological Baseline Studies and Follow-up Monitoring Former Fort Ord, Monterey, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- MACTEC. 2004. 2003 Annual Monitoring Report Biological Baseline Studies and Follow-up Monitoring Former Fort Ord, Monterey, California. Prepared for U. S. Department of the Army, Sacramento, CA.
- Matthews MA and M Mitchell. 2015. The Plants of Monterey County, an Illustrated Field Key. 2nd ed. California Native Plant Society Press, Sacramento, CA. pp. 446.
- Mulhouse JM, D De Steven, RF Lide, RR Sharitz. 2005. "Effects of Dominant Species on Vegetation Change in Carolina Bay Wetlands following a Multi-Year Drought." The Journal of the Torrey Botanical Society, Vol. 132, No. 3. Torrey Botanical Society. pp. 411-420.
- National Centers for Environmental Information of the National Oceanic and Atmospheric Administration (NCEI NOAA). 2022. 30-Year Normal Precipitation Data for the Monterey Weather Forecast Office. [Internet]. Accessed on January 6, 2022. Available at: <u>https://www.ncei.noaa.gov/access/services/data/v1?dataset=normals-monthly-1991-</u> 2020&startDate=0001-01-01&endDate=9996-12-31&stations=USW00023259&format=pdf

- Naval Postgraduate School Department of Meteorology (NPSDM). 2022. Monthly Precipitation Summaries for the Monterey Region. [Internet]. Accessed October 15, 2021. Available at: <u>http://met.nps.edu/~ldm/renard_wx/</u>
- Shaw Environmental, Inc. (Shaw). 2008. 2007 Annual Biological Monitoring Report, Former Fort Ord, California. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Shaw Environmental, Inc. (Shaw). 2010. 2009 Annual Biological Monitoring Report, Former Fort Ord, California. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- Shaw Environmental, Inc. (Shaw). 2011. 2010 Annual Biological Monitoring Report, Former Fort Ord, California. Prepared for the Department of the Army, U.S. Army Corps of Engineers, Sacramento, CA.
- United States Army Corps of Engineers (USACE), Sacramento District. 1992. Flora and Fauna Baseline Study of Fort Ord, California. Prepared for Army Corps of Engineers, Sacramento, CA.
- United States Army Corps of Engineers (USACE), Sacramento District. 1997. Installation-Wide Multi-Species Habitat Management Plan for Former Fort Ord, California. April. Sacramento, CA.
- United States Army Corps of Engineers (USACE). 2016a. aquatic_habitat_area.shp. [Data set]. Unpublished.
- U.S. Fish and Wildlife Service (USFWS) and California Department of Fish and Game. 1996. Interim Survey Guidelines to Permittees for Recovery Permits Under Section 10(a)(1)(A) of the Endangered Species Act for the Listed Vernal Pool Branchiopods.
- U.S. Fish and Wildlife Service (wit) and California Department of Fish and Game. 2003. Interim Guidance on Site Assessment for Determining the Presence or a Negative Finding of the California Tiger Salamander.
- United States Fish and Wildlife Service (USFWS). 2017. Reinitiation of Programmatic Biological Opinion for Cleanup and Property Transfer Actions Conducted at the Former Fort Ord, Monterey County, CA. Report No. 8-8-09-F-74.
- Verberk, W. 2011. Explaining General Patterns in Species Abundance and Distributions. Nature Education Knowledge 3(10):38 [Internet]. Accessed October 19, 2021. Available at: https://www.nature.com/scitable/knowledge/library/explaining-general-patterns-in-speciesabundance-and-23162842/
- Witham CW, ET Bauder, D Belk, WR, Jr., Ferren, R Ornduff (eds.). 1998. Ecology, Conservation, and Management of Vernal Pool Ecosystems - Proceedings from a 1996 Conference. California Native Plant Society, Sacramento, CA.
- Zhang H, John R, Peng Z, Yuan J, Chu C, (eds.) 2012. The Relationship between Species Richness and Evenness in Plant Communities along a Successional Gradient: A Study from Sub-Alpine Meadows of the Eastern Qinghai-Tibetan Plateau, China. Available at: PLoS ONE 7(11): e49024. doi:10.1371/ journal.pone.0049024

This page intentionally left blank

APPENDIX A

Vegetation Transect Data

This page intentionally left blank

Table A-1. Pond 5 (Reference) Wetland Vegetation Transect Data by Stratum

		P	OND 5									
Date	5/6/2022, 5/	/10/2022										
Surveying Personnel	Kayti Christia	anson, Emily Poor, and Brett I	3ell									
Vegetation Type	% Cover	Species	Notes									
Emergent Vegetation												
Floating Vegetation												
Submerged Vegetation												
Open Water												
	Notes											
Pond 5 held water from .	lanuary throug	h February during the 2021-2	2022 water-year, with shallow peripheral ponding observed in December and									
March (Chanses 2022)	Church una 1 aus d	the second state of the second structure	was asted from 2010 and 2010 2021. Ctusts 2 and 2 was sensed from									

March (Chenega 2023). Stratum 1 and the associated transect were repeated from 2016 and 2018-2021. Strata 2 and 3 were repeated from 2016-2021. Stratum 7 was repeated from 2019-2021. Stratum 8 was repeated from 2021. Transects 2 and 8 were relocated because the previous locations were no longer within the correct strata. Transect 3 was repeated from 2020 and 2021. Transect 7 was relocated to a more representative location and reduced from 10 m to 5 m.

		Relative	Quadra	nt #1	Quadra	at #2	Quadra	at #3	Quadrat #4		Quadrat #5		Quadrat #6		
Transect Transect # Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover		
			ELMA	35	ELMA	40	ELMA	33	BAPI	1	CRTR	1	CRTR	5	
				MALE	13	MALE	12	MALE	12	ELMA	38	ELMA	33	ELMA	32
			TH	51	SOOL	2	SOOL	1	MALE	7	MALE	10	SOOL	2	
1	10 m	35%	BG	1	TH	45	TH	52	SOOL	2	SOOL	2	TH	59	
					BG	1	BG	2	TH	51	TH	53	BG	2	
									BG	1	BG	1			
			TOTAL	100	TOTAL	100									

		Relative	Quadra	nt #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
# Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	
			DISP	28	DISP	22	DISP	28	DISP	30	CRTR	1	CRTR	1
			ELMA	5	ELMA	6	ELMA	4	ELMA	4	DISP	20	DISP	17
		2401	MALE	1	MALE	1	MALE	1	MALE	1	ELMA	4	ELMA	4
			TH	66	SOOL	1	SOAS	7	SEGL	2	MALE	1	HYGL	1
2	10				TH	69	TH	59	TH	61	RUCR	1	MALE	2
2	10 m	21%			BG	1	BG	1	BG	2	SEGL	1	RUCR	1
											TH	70	SEGL	1
											BG	2	TH	72
													BG	1
			TOTAL	100	TOTAL	100								

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			DISP	11	DISP	3	DISP	7	BRMI	1	ACWR	1	BRMI	1
		ELMA	1	ELMA	1	ELMA	1	CRTR	1	BRMI	1	DISP	8	
		ERBO	1	GEDI	7	GEDI	6	DISP	6	DISP	14	ELMA	1	
		8%	GEDI	3	HYGL	11	HYGL	6	ERBO	2	ELMA	1	ERBO	2
			HYGL	9	MAGR	1	MALE	1	FEBR	1	FEBR	1	FEBR	1
			HYRA	1	PHLE	4	PHLE	1	GEDI	8	GEDI	8	GEDI	4
			PHLE	1	POMO	1	PLCHH	1	HYGL	15	HYGL	10	HYGL	6
3	10 m		PLCHH	1	RUCR	1	RUCR	1	HYRA	1	PHLE	1	PHLE	1
			POMO	1	SEGL	1	STAJ	14	PHLE	2	RUCR	1	STAJ	11
			RUCR	2	STAJ	11	TH	61	POMO	1	SOOL	1	TH	62
			SEGL	2	TH	57	BG	1	STAJ	6	STAJ	13	BG	3
			STAJ	13	BG	2			TH	53	TH	30		
			TH	51					BG	3	BG	18		
			BG	3										
			TOTAL	100										

		Relative	Quadra	at #1	Quadr	at #2	Quadr	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			BAPI	2	BRHO	1	JUBA	45
			BRMI	1	GEDI	1	GEDI	1
			DISP	1	JUBA	43	SOOL	1
			ERCA	1	PS sp.	1	TH	51
			GEDI	2	TH	53	BG	2
			HYGL	2	BG	1		
7	5 m	0.4%	JUBA	35				
			PS sp.	1				
			SEGL	1				
			SOOL	3				
			TH	48				
			BG	3				
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover											
			BRMI	1	BRMI	1	BRMI	1	BRMI	2	BRMI	1	CRTR	9	
		CRTR	5	CRTR	5	CRTR	3	CRTR	8	CRTR	6	FEBR	1		
			DISP	1	GEDI	12	DISP	1	ELMA	1	ELMA	1	GAUS	4	
		36%	GEDI	10	HYGL	6	ERBO	1	ERBO	3	GEDI	14	GEDI	13	
				HYGL	12	HYRA	4	GEDI	9	GEDI	15	HYGL	1	HYGL	8
			PHLE	9	JUBUB	1	HYGL	6	HYGL	1	HYRA	2	PHLE	14	
8	10 m		POMO	1	LYHY	1	PHLE	11	LYHY	1	JUBUb	1	RUAC	1	
			TH	60	PHLE	3	SEGL	2	PHLE	7	LYHY	1	STAJ	1	
			BG	1	PS sp.	1	TH	63	RUCR	1	PHLE	13	TH	42	
					TH	58	BG	3	SOOL	1	TH	32	BG	7	
					BG	8			TH	56	BG	28			
									BG	4					
			TOTAL	100											

2022 Annual Report – Appendix A

		Pond 5 20	022 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common yarrow	ACMI	Hypochaeris glabra	smooth cat's-ear	HYGL
Acmispon wrangelianus	Chilean trefoil	ACWR	Hypochaeris radicata	rough cat's-ear	HYRA
Agoseris grandiflora	large-flowered agoseris	AGGR	Isoetes howellii	Howell's quillwort	ISHO
Agrostis avenacea	Pacific bent grass	AGAV	Juncus balticus	Baltic rush	JUBA
Aira caryophyllea	silvery hair-grass	AICA	Juncus bufonius var. bufonius	common toad rush	JUBUB
Artemisia californica	California sagebrush	ARCA11	Juncus phaeocephalus	brown-headed rush	JUPH
Atriplex prostrata	fat-hen	ATPR	Lactuca serriola	prickly lettuce	LASE
Avena barbata	slender wild oat	AVBA	Lasthenia glaberrima	smooth goldfields	LAGL3
Baccharis glutinosa	marsh baccharis	BAGL	Lysimachia arvensis	scarlet pimpernel	LYAR
Baccharis pilularis	coyote brush	BAPI	Lythrum hyssopifolia	grass poly	LYHY
Brassica sp.	· · · · · · · · · · · · · · · · · · ·		Madia gracilis	gumweed	MAGR
Briza maxima	rattlesnake grass	BRMA	Madia sativa	coast tarweed	MASA
Briza minor	annual quaking grass	BRMI	Malvella leprosa	alkali mallow	MALE
Bromus carinatus	California brome	BRCA	Nuttallanthus texanus	blue toadflax	NUTE
Bromus diandrus	ripgut grass	BRDI	Phalaris lemmonii	Lemmon's canary grass	PHLE
Bromus hordeaceus	soft chess	BRHO	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Calandrinia menziesii	redmaids	CAME	Plantago coronopus	cut-leaved plantain	PLCO
Carduus pycnocephalus	Italian thistle	CAPY	Polypogon monspeliensis	rabbitfoot grass	POMO
Cirsium brevistylum	Indian thistle	CIBR	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Cirsium vulgare	bull thistle	CIVU	Pseudognaphalium ramosissimum	pink everlasting	PSRA
Clinopodium douglasii	yerba buena	CLDO	Pseudognaphalium stramineum	cottonbatting plant	PSST
Cressa truxillensis	spreading alkaliweed	CRTR	Pseudognaphalium sp.		
Cynosurus echinatus	bristly dogtail grass	CYEC	Rumex acetosella	sheep sorrel	RUAC
Daucus pusillus	rattlesnake weed	DAPU	Rumex crispus	curly dock	RUCR
Distichlis spicata	salt grass	DISP	Sanicula crassicaulis	Pacific sanicle	SACR
Eleocharis macrostachya	pale spikerush	ELMA	Senecio glomeratus	cutleaf burnweed	SEGL
Epilobium ciliatum	fringed willowherb	EPCI	Senecio vulgaris	common groundsel	SEVU
Erigeron canadensis	horseweed	ERCA	Silene gallica	small-flower catchfly	SIGA
Erodium botrys	long-beaked filaree	ERBO	Sonchus asper	prickly sow thistle	SOAS
Erodium cicutarium	redstem filaree	ERCI	Sonchus oleraceus	common sow thistle	SOOL
Eryngium armatum	coyote thistle	ERAR12	Stachys ajugoides	bugle hedge nettle	STAJ
Euphorbia spathulata	warty spurge	EUSP	Trifolium barbigerum	bearded clover	TRBA
Euthamia occidentalis	western goldenrod	EUOC	Trifolium depauperatum var. amplectens	pale sack clover	TRDEA
Festuca bromoides	brome fescue	FEBR	Trifolium microcephalum	small head clover	TRMI
Festuca myuros	rattail sixweeks grass	FEMY	Unknown 1		
Frankenia salina	alkali heath	FRSA	Verbena lasiostachys var. lasiostachys	western vervain	VELAL
Galium aparine	goose grass	GAAP	Groundcover Codes		
Gamochaeta ustulata	purple cudweed	GAUS	BG	Bare Ground	
Geranium dissectum	cut-leaved geranium	GEDI	ТН	Thatch/Duff/Algae	
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO	AL	Algae	

Table A-2. Pond 101 East (East) (Reference) Wetland Vegetation Transect Data by Stratum

POND 101 East (East)								
Date	5/5/2022							
Surveying Personnel	Kayti Christians	on, Emily Poor, and Brett Bel						
Vegetation Type	% Cover	Species	Notes					
Emergent Vegetation								
Floating Vegetation								
Submerged Vegetation								
Open Water								
		Notes						
Pond 101 East (East) held water b	oriefly in January a	and early February but was c	ompletely dry by the February 17 hydrology monitoring event					

(Chenega 2023). Stratum 3 was repeated from 2016 and 2021. Stratum 4 was repeated from 2016, 2020, and 2021 whereas stratum 5 was repeated from 2017-2021. Stratum 9 and the corresponding transect were newly established in 2022. Transects 3 and 5 were repeated from 2021, whereas Transect 4 was relocated because the previous location was no longer within the correct stratum.

		Relative	Quadra	at #1	Quadra	Quadrat #2		Quadrat #3		Quadrat #4		Quadrat #5		at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRDI	5	AGAV	6	ELMA	30	ELMA	38	ELMA	30	ELMA	33
			ELMA	25	ELMA	24	MALE	24	MALE	40	MALE	28	MALE	36
			GEDI	10	MALE	18	PHLE	26	TH	22	RUCR	6	RUCR	9
3	10 m	33%	MALE	30	PHLE	8	RUCR	3			TH	36	TH	22
5	10 m	33%	RUCR	5	RUCR	1	TH	17						
			VELAL	1	TH	43								
			TH	24										
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ERCA	2	BAGL	1	BAGL	1	EUOC	9	BAGL	1	BRDI	3
			EUOC	5	EUOC	7	EUOC	2	GEDI	7	EUOC	3	GEDI	9
			GEDI	3	GEDI	1	JUBA	15	JUBA	22	GEDI	21	HYGL	1
			JUBA	12	JUBA	8	TODI	2	POMO	1	JUBA	7	JUBA	24
			MASA	6	PSST	1	TH	79	PSST	1	MASA	5	RUAC	7
4	10 m	10%	POMO	1	SEGL	1	BG	1	RUAC	2	TH	62	TH	54
			PSST	1	SOAS	4			UNK2	1	BG	1	BG	2
			TH	40	TODI	1			TH	54				
			BG	30	TH	60			BG	3				
					BG	16								
			TOTAL	100										

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ERBO	4	AGAV	1	AGAV	1	BRMI	1	ERBO	15	AGAV	1
			GEDI	30	EPCI	1	ERBO	11	EPCI	1	GEDI	10	BRMI	1
			HYGL	6	ERBO	11	GEDI	15	ERBO	9	HYGL	8	ERBO	8
			HYRA	3	GEDI	17	HYGL	3	FEBR	1	HYRA	5	GEDI	5
			MALE	1	HYGL	3	HYRA	14	GEDI	10	MAGR	1	HECUO	3
			RUAC	7	HYRA	8	MASA	4	HYGL	8	MASA	8	HYGL	7
			RUCR	1	MASA	5	PHLE	1	HYRA	1	POMO	1	HYRA	9
			STAJ	3	POMO	1	POMO	1	RUAC	8	STAJ	5	MAGR	1
5	10 m	55%	VISA	6	RUAC	1	STAJ	1	TRDE	1	TRMI	3	MASA	4
			TH	26	STAJ	1	TRDE	4	TRMI	1	TRVA	1	POMO	1
			BG	13	TRGR	2	TRGR	3	VISA	3	VISA	4	TRBA	1
					VISA	3	TRMI	1	TH	24	TH	31	TRDE	1
					TH	37	VISA	3	BG	32	BG	8	TRGR	1
					BG	9	TH	8					VISA	6
							BG	30					TH	46
													BG	5
			TOTAL	100										

		Relative	Quadr	at #1	Quadr	at #2	Quadr	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Quad Species BRHO ELMA FEBR LAGL3 MALE PHLE TRDE TH	% Cover
			ELMA	11	ELMA	10	BRHO	1
			ERCI	3	HYRA	1	ELMA	6
			HYRA	2	LAGL3	40	FEBR	6
			LAGL3	42	MALE	12	LAGL3	44
9	5 m	2%	MALE	4	PHLE	2	MALE	13
			TRDE	1	TRDE	1	PHLE	1
			TH	37	TH	34	TRDE	1
							TH	28
			TOTAL	100	TOTAL	100	TOTAL	100

	Pond 1	01 East (East	t) 2022 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Agrostis avenacea	Pacific bent grass	AGAV	Lasthenia glaberrima	smooth goldfields	LAGL3
Agrostis pallens	seashore bent grass	AGPA	Lupinus bicolor	miniature lupine	LUBI
Aira caryophyllea	silvery hair-grass	AICA	Lythrum hyssopifolia	grass poly	LYHY
Alopecurus saccatus	Pacific foxtail	ALSA	Madia gracilis	gumweed	MAGR
Atriplex prostrata	fat-hen	ATPR	Madia sativa	coast tarweed	MASA
Avena barbata	slender wild oat	AVBA	Malvella leprosa	alkali mallow	MALE
Baccharis glutinosa	marsh baccharis	BAGL	Nuttallanthus texanus	blue toadflax	NUTE
Baccharis pilularis	coyote brush	BAPI	Phalaris lemmonii	Lemmon's canary grass	PHLE
Brassica sp.			Polygonum aviculare ssp. depressum	prostrate knotweed	POAVD
Briza maxima	rattlesnake grass	BRMA	Polypogon monspeliensis	rabbitfoot grass	POMO
Briza minor	annual quaking grass	BRMI	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Bromus carinatus	California brome	BRCA	Pseudognaphalium sp.		
Bromus diandrus	ripgut grass	BRDI	Pseudognaphalium stramineum	cottonbatting plant	PSST
Bromus hordeaceus	soft chess	BRHO	Rorippa curvisiliqua	western yellowcress	ROCU
Carduus pycnocephalus	Italian thistle	CAPY	Rubus ursinus	California blackberry	RUUR
Centaurea solstitialis	yellow star-thistle	CESO3	Rumex acetosella	sheep sorrel	RUAC
Cirsium brevistylum	Indian thistle	CIBR	Rumex crispus	curly dock	RUCR
Cirsium vulgare	bull thistle	CIVU	Rumex salicifolius	willow dock	RUSA
Drymocallis glandulosa var. wrangelliana	sticky cinquefoil	DRGLW	Senecio glomeratus	cutleaf burnweed	SEGL
Eleocharis macrostachya	pale spikerush	ELMA	Silene gallica	small-flower catchfly	SIGA
Epilobium ciliatum	fringed willowherb	EPCI	Sonchus asper	prickly sow thistle	SOAS
Erigeron canadensis	horseweed	ERCA	Sonchus oleraceus	common sow thistle	SOOL
Erodium botrys	long-beaked filaree	ERBO	Stachys ajugoides	bugle hedge nettle	STAJ
Erodium cicutarium	redstem filaree	ERCI	Toxicodendron diversilobum	poison oak	TODI
Euthamia occidentalis	western goldenrod	EUOC	Trifolium barbigerum	bearded clover	TRBA
Festuca bromoides	brome fescue	FEBR	Trifolium depauperatum	sack clover	TRDE
Festuca perennis	Italian rye grass	FEPE	Trifolium depauperatum var. amplectens	pale sack clover	TRDEA
Galium aparine	goose grass	GAAP	Trifolium gracilentum	pin point clover	TRGR
Gamochaeta ustulata	purple cudweed	GAUS	Trifolium microcephalum	small head clover	TRMI
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium variegatum	variegated clover	TRVA
Gnaphalium palustre	lowland cudweed	GNPA	Unknown 2		
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO	Verbena lasiostachys var. lasiostachys	western vervain	VELAL
Heterotheca grandiflora	telegraph weed	HEGR	Veronica peregrina ssp. xalapensis	speedwell	VEPEX
Hordeum brachyantherum	meadow barley	HOBR	Vicia sativa ssp. sativa	spring vetch	VISAS
Hypochaeris glabra	smooth cat's-ear	HYGL	Groundcover Codes	, 0	
Hypochaeris radicata	rough cat's-ear	HYRA	BG	Bare Ground	
Juncus balticus	Baltic rush	JUBA	ТН	Thatch/Duff	
Juncus bufonius var. bufonius	common toad rush	JUBUB	AL	Algae	

Table A-3. Pond 997 (Reference) Wetland Vegetation Transect Data by Stratum

		PON	D 997
Date	5/2/2022,	5/3/2022	
Surveying Personnel	Kayti Chris	tianson, Emily Poor, and Bret	Bell
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
, ,	5	, , , ,	2023). Strata and Transects 1 and 3 were repeated from 2017-2021.

Stratum 2 was repeated from the same range of years but consisted of CCG and no transects were placed in this stratum.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadr	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRHO	3	BRDI	2	AICA	1	BRHO	1	BRMI	1	AICA	1
			BRMI	1	BRHO	2	BAPI	1	ERAR12	18	ERAR12	5	BRHO	1
			ELMA	1	BRMI	1	BRHO	1	ERBO	3	ERBO	18	ERBO	9
			ERAR12	10	BRTET	1	BRMI	1	FEBR	1	FEBR	1	FEBR	2
			ERBO	2	ERAR12	5	CIQU	1	HYGL	1	HYGL	1	HYGL	2
			FEBR	6	ERBO	1	CRAQ	1	HYRA	1	HYRA	4	HYRA	1
			HYGL	2	FEBR	25	ELMA	1	LYHY	3	LYHY	1	LYHY	1
			HYRA	2	HYGL	3	ERAR12	12	LYMI	1	LYMI	1	PLCHH	2
1	10 m	5%	LYAR	1	HYRA	1	ERBO	3	PLCHH	3	PLCHH	2	PLCO	6
1	10 m	5%	LYHY	1	LYAR	1	FEBR	1	PLCO	1	PLCO	1	POMO	1
			POMO	1	PLCHH	1	LYHY	1	POMO	1	POMO	1	PSCH	1
			PSCH	1	POMO	1	PLCHH	2	PS sp.	1	PS sp.	1	TH	45
			SIGA	1	PSCH	1	POMO	1	PSCH	5	PSCH	2	BG	28
			TH	13	TH	10	PS sp.	1	TH	10	TH	26		
			BG	55	BG	45	PSCH	3	BG	50	BG	35		
							TH	9						
							BG	60						
			TOTAL	100										

		Relative	Quadra	at #1	Quadr	at #2	Quadr	at #3	Quadr	at #4	Quadra	at #5	Quadra	t #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			AICA	1	ACAMA	1								
			BRMA	16	BRMA	25	BRMA	8	BRMA	5	BRMA	3	AICA	1
			BRMI	2	BRMI	2	BRMI	1	BRMI	1	BRMI	1	BRMA	3
			CAAMA3	1	DACA	3	DACA	7	DACA	30	DACA	6	CAAMA3	1
			DECO	3	ERAR12	3	DECO	1	ERAR12	2	DECO	1	DACA	2
			ERAR12	2	ERBO	12	ERAR12	3	ERBO	15	ERAR12	2	DECO	3
			ERBO	6	FEBR	2	ERBO	24	FEBR	2	ERBO	9	ERBO	25
			FEBR	1	HYGL	13	FEBR	3	HYGL	3	FEBR	1	FEBR	2
			GEDI	1	MAGR	3	FEMY	1	MIPA	2	FEMY	2	FEMY	2
3	10 m	89%	HYGL	22	PLCO	1	HYGL	5	TH	36	HYGL	12	HYGL	12
			JUCA	1	TH	28	MAGR	1	BG	3	HYRA	3	HYRA	3
			LYMI	1	BG	7	TH	42			JUCA	1	LYMI	1
			MAGR	1			BG	3			LYAR	1	MAGR	2
			PS sp.	1							MAGR	2	RUAC	2
			TH	36							PLCO	1	SIBE	2
			BG	5							RUAC	1	TH	27
											TH	18	BG	11
											BG	35		
			TOTAL	100										

		Pond 997 202	22 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lasthenia conjugens	Contra Costa goldfields	LACO
Acmispon parviflorus	hill lotus	ACPA	Logfia gallica	narrowleaf cottonrose	LOGA
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Lupinus nanus	sky lupine	LUNA
Aira caryophyllea	silvery hair-grass	AICA	Luzula comosa	Pacific woodrush	LUCO6
Avena barbata	slender wild oat	AVBA	Lysimachia arvensis	scarlet pimpernel	LYAR
Baccharis pilularis	coyote brush	BAPI	Lysimachia minima	chaffweed	LYMI
Briza maxima	rattlesnake grass	BRMA	Lythrum hyssopifolia	grass poly	LYHY
Briza minor	annual quaking grass	BRMI	Madia gracilis	gumweed	MAGR
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Madia sativa	coast tarweed	MASA
Bromus diandrus	ripgut grass	BRDI	Microseris paludosa	marsh microseris	MIPA
Bromus hordeaceus	soft chess	BRHO	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Plantago coronopus	cut-leaved plantain	PLCO
Cicendia quadrangularis	timwort	CIQU	Polypogon monspeliensis	rabbitfoot grass	POMO
Crassula aquatica	aquatic pygmy-weed	CRAQ	Pseudognaphalium californicum	California everlasting	PSCA
Danthonia californica	California oat grass	DACA	Pseudognaphalium ramosissimum	pink everlasting	PSRA
Deinandra corymbosa	coastal tarweed	DECO	Pseudognaphalium sp.		
Eleocharis acicularis var. acicularis	needle spikerush	ELACA	Psilocarphus chilensis	round woolly-marbles	PSCH
Eleocharis macrostachya	pale spikerush	ELMA	Quercus agrifolia	coast live oak	QUAG
Elymus triticoides	beardless wild rye	ELTR3	Ranunculus californicus	California buttercup	RACA
Erodium botrys	long-beaked filaree	ERBO	Rumex acetosella	sheep sorrel	RUAC
Eryngium armatum	coyote thistle	ERAR12	Senecio glomeratus	cutleaf burnweed	SEGL
Festuca bromoides	brome fescue	FEBR	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM
Festuca myuros	rattail sixweeks grass	FEMY	Silene gallica	small-flower catchfly	SIGA
Festuca perennis	Italian rye grass	FEPE	Sisyrinchium bellum	western blue-eyed grass	SIBE
Galium aparine	goose grass	GAAP	Sonchus oleraceus	common sow thistle	SOOL
Galium porrigens	climbing bedstraw	GAPO	Spiranthes romanzoffiana	hooded lady's tresses	SPRO
Gamochaeta ustulata	purple cudweed	GAUS	Stipa pulchra	purple needle grass	STPU
Geranium dissectum	cut-leaved geranium	GEDI	Taraxia ovata	sun cups	TAOV
Horkelia cuneata var. cuneata	wedge-leaved horkelia	HOCUC	Triteleia ixioides	coast pretty face	TRIX
Hypochaeris glabra	smooth cat's-ear	HYGL	Zeltnera davyi	Davy's centuary	ZEDA
Hypochaeris radicata	rough cat's-ear	HYRA	Groundcover Codes	, ,	
Juncus bufonius var. bufonius	common toad rush	JUBUB	BG	Bare Ground	
Juncus capitatus	dwarf rush	JUCA	ТН	Thatch/Duff	
Juncus phaeocephalus	brown-headed rush	JUPH	AL	Algae	

Table A-4. Pond 16 (Year 4 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		POND 16	
Date	5/10/2022		
Surveying Personnel	Kayti Christia	anson, Emily Poor and Brett Bell	
Vegetation Type	% Cover	Species	Notes
Emergant Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		Notes	
Pond 16 remained dry throughou	it the 2021-20	22 water-year (Chenega 2023). Str	ata 3 and 5 were repeated from 2015, 2017, and 2019-2021.

Strata 1, 4, and 6 were repeated from 2017 and 2019-2021. Stratum 8 and the associated transect were repeated from 2015, 2017, and 2019-2021. Strata 1, 4, and 6 were repeated from 2017 and 2019-2021. Stratum 8 and the associated transect were repeated from 2021. Transect 1 was repeated from 2017 and 2019. Transects 3 and 4 were relocated because the previous locations were no longer within the correct strata. Transect 3 was also reduced from 10 m to 5 m to better represent the extent of vegetation across the pond. Transect 5 was repeated from 2015, 2017, and 2019-2021.

Transect	Transect	Relative %	Quadra	at #1	Quadra	at #2	Quadrat #3		
#	Length	Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	
		5%	HECUO	2	HECUO	3	HECUO	7	
			SCCA	5	SCCA	8	SCCA	8	
1	5 m		SOAM	1	TH	77	TH	69	
1	5 111		TH	60	BG	12	BG	16	
			BG	32					
			TOTAL	100	TOTAL	100	TOTAL	100	

Transect	Transect	Relative %	Quadr	at #1	Quadr	at #2	Quadrat #3		
#	Length	Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	
			ELMA	40	ELMA	47	ELMA	45	
		34%	HEGR	1	HEGR	1	ERCA	1	
			POMO	1	POMO	2	HEGR	2	
3	5 m		SIGA	1	PSLU	1	POMO	3	
5	5 M		BG	9	BG	7	PSLU	1	
			TH	48	TH	42	BG	7	
							TH	41	
			TOTAL	100	TOTAL	100	TOTAL	100	

Transect	Transect	Relative %	Quadr	at #1	Quadr	at #2	Quadrat #3		
#	Length	Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	
		10%	CAPR	58	CAPR	50	CAPR	50	
			GEDI	1	GEDI	1	GEDI	2	
4	F		JUBA	2	JUBA	1	JUBA	1	
4	5 m	10%	TH	38	RUUR	3	RUUR	2	
			BG	1	TH	45	TH	45	
			TOTAL	100	TOTAL	100	TOTAL	100	

Transect	Transact	Relative %	Quadr	at #1	Quadr	at #2	Quadr	at #3	Quadr	at #4	Quadr	at #5	Quadr	at #6
#	Transect Length	Cover of Wetland	Species	% Cover										
			CABA	55	CABA	10	CABA	40	CABA	17	CABA	20	CABA	40
		m 32%	RUUR	5	RUUR	9	RUUR	3	RUUR	10	RUUR	2	RUUR	10
-	10		SOEL	4	SOEL	6	SOEL	7	SOEL	12	SOEL	2	SOEL	15
5	5 10 m		TH	33	TH	73	TH	49	TH	60	TH	75	TH	30
			BG	3	BG	2	BG	1	BG	1	BG	1	BG	5
			TOTAL	100										

Transect	Transect	Relative %	Quadr	at #1	Quadra	at #2	Quadrat #3		
#	Length	Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	
		12%	GEDI	1	JUBA	28	JUBA	40	
			JUBA	48	TH	67	PSLU	1	
6	Em		TH	51	BG	5	RUUR	4	
0	5 m						TH	53	
							BG	2	
			TOTAL	100	TOTAL	100	TOTAL	100	

Transect	Transect	Relative %	Quadr	at #1	Quadr	at #2	Quadr	at #3	Quadr	at #4	Quadr	at #5	Quadr	at #6	
#	Length	Cover of Wetland	Species	% Cover											
			BAPI	2	BAPI	3	BRDI	3	CIBR	3	CIBR	8	BAPI	4	
			CIBR	11	CIBR	5	CIBR	1	FEBR	1	FEBR	1	CIBR	4	
		CIVU	4	CIVU	3	CIVU	2	HEGR	2	HEGR	2	CIVU	4		
		7%		GEDI	1	FEBR	2	FEBR	1	POMO	64	POMO	52	FEBR	1
8	10 m		POMO	52	GEDI	4	HEGR	1	TH	25	TH	33	HEGR	3	
0	10 11	1 70	TH	27	POMO	30	POMO	42	BG	5	BG	4	POMO	55	
			BG	3	SIGA	1	PS sp.	1					TH	27	
				TH	24	TH	16					BG	2		
					BG	28	BG	33							
			TOTAL	100											

Pond 16 2022 Species List											
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code						
Achillea millefolium	common yarrow	ACMI	Juncus falcatus	falcate rush	JUFA						
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Juncus phaeocephalus	brown-headed rush	JUPH						
Acmispon strigosus	strigose lotus	ACST	Linum bienne	pale flax	LIBI5						
Agoseris grandiflora	large-flowered agoseris	AGGR	Lupinus arboreus	yellow bush lupine	LUAR						
Agrostis exarata	spike bent grass	AGEX	Luzula comosa	Pacific woodrush	LUCO6						
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Lysimachia arvensis	scarlet pimpernel	LYAR						
Agrostis pallens	seashore bent grass	AGPA	Madia sativa	coast tarweed	MASA						
Aira caryophyllea	silvery hair-grass	AICA	Malvella leprosa	alkali mallow	MALE						
Amsinckia menziesii	common fiddleneck	AMME	Nuttallanthus texanus	blue toadflax	NUTE						
Artemisia douglasiana	mugwort	ARDO	Petrorhagia dubia	hairypink	PEDU						
Avena barbata	slender wild oat	AVBA	Phalaris lemmonii	Lemmon's canary grass	PHLE						
Baccharis pilularis	coyote brush	BAPI	Plantago coronopus	cut-leaved plantain	PLCO						
Bowlesia incana	hoary bowlesia	BOIN3	Poa sp.								
Briza maxima	rattlesnake grass	BRMA	Polypogon monspeliensis	rabbitfoot grass	POMO						
Briza minor	annual quaking grass	BRMI	Pseudognaphalium luteoalbum	weedy cudweed	PSLU						
Bromus diandrus	ripgut grass	BRDI	Pseudognaphalium ramosissimum	pink everlasting	PSRA						
Bromus hordeaceus	soft chess	BRHO	Pseudognaphalium sp.								
Camissoniopsis micrantha	miniature suncup	CAMI	Quercus agrifolia	coast live oak	QUAG						
Carex barbarae	whiteroot	CABA	Ranunculus californicus	California buttercup	RACA						
Carex pachystachya	chamisso sedge	CAPA	Rosa californica	California wild rose	ROCA						
Carex praegracilis	clustered field sedge	CAPR	Rubus ursinus	California blackberry	RUUR						
Carpobrotus edulis	ice plant	CAED	Rumex acetosella	sheep sorrel	RUAC						
Cerastium glomeratum	sticky mouse-ear chickweed	CEGL	Rumex crispus	curly dock	RUCR						
Cirsium brevistylum	Indian thistle	CIBR	Rumex salicifolius	willow dock	RUSA						
Cirsium vulgare	bull thistle	CIVU	Salix lasiandra var. lasiandra	shining willow	SALAL						
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Schoenoplectus californicus	California bulrush	SCCA						
Conium maculatum	poison hemlock	COMA	Senecio glomeratus	cutleaf burnweed	SEGL						
Cyperus eragrostis	tall cyperus	CYER	Senecio vulgaris	common groundsel	SEVU						
Deschampsia cespitosa ssp. cespitosa	tufted hair grass	DECEC2	Silene gallica	small-flower catchfly	SIGA						
Diplacus aurantiacus	sticky monkey flower	DIAU	Silybum marianum	milk thistle	SIMA						
Drymocallis glandulosa var. wrangelliana	sticky cinquefoil	DRGLW	Solanum americanum	small-flowered nightshade	SOAM						
Eleocharis macrostachya	pale spikerush	ELMA	Solidago elongata	West Coast Canada goldenrod	SOEL						
Erigeron canadensis	horseweed	ERCA	Solidago velutina ssp. californica	California goldenrod	SOVEC						
Festuca bromoides	brome fescue	FEBR	Sonchus asper	prickly sow thistle	SOAS						
Galium aparine	goose grass	GAAP	Sonchus oleraceus	common sow thistle	SOOL						
Geranium dissectum	cut-leaved geranium	GEDI	Spergularia rubra	red sand-spurrey	SPRU						
Gnaphalium palustre	lowland cudweed	GNPA	Stachys ajugoides	bugle hedge nettle	STAJ						
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO	Torilis arvensis	tall sock destroyer	TOAR						
Helminthotheca echioides	bristly oxtongue	HEEC	Toxicodendron diversilobum	poison oak	TODI						
Heterotheca grandiflora	telegraph weed	HEGR	Trifolium microcephalum	small head clover	TRMI						
Hypericum anagalloides	creeping St. John's wort	HYAN	Vicia americana ssp. americana	American vetch	VIAMA						
Hypochaeris glabra	smooth cat's-ear	HYGL	Groundcover Codes								
Hypochaeris radicata	rough cat's-ear	HYRA	BG	Bare Ground							
Iris douglasiana	Douglas iris	IRDO	ТН	Thatch/Duff							
Juncus balticus	Baltic rush	JUBA	AL	Algae	-						
Juncus effusus	common rush	JUEF		-							

Table A-5. Pond 39 (Year 4 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		POI	ND 39
Date	4/29/2022,	5/2/2022	
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and B	rett Bell
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		Γ	lotes
Pond 39 was dry by the Februar	v 17 hydrolog	y monitoring event (Cher	ega 2023) Strata 1 and 3 were repeated from 2016 and 2018-2021

Pond 39 was dry by the February 17 hydrology monitoring event (Chenega 2023). Strata 1 and 3 were repeated from 2016 and 2018-2021. Stratum 4 was repeated from 2018-2021. Transect 1 was relocated to a more representative location and reduced from 10 m to 5 m. Transect 3 was relocated because the previous location was no longer within the correct stratum, whereas Transect 4 was repeated from 2019.

		Relative	Quadra	at #1	Quadr	at #2	Quadi	rat #3	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	
			BRHO	1	AICA	1	ELACA	1	
			BRMI	1	ELACA	2	ELMA	23	
			CIQU	1	ELMA	25	GEDI	1	
				ELMA	20	FEBR	1	LAGL3	4
			FEBR	1	FEPE	1	PLCHH	40	
			FEPE	2	GEDI	1	PLCO	5	
		3%	GEDI	2	LAGL3	8	RUCR	9	
				HYGL	1	LYHY	1	TH	14
			LAGL3	1	PLCHH	15	BG	3	
1	F		LYHY	1	PLCO	10			
1	5 m	3%	PLCHH	35	POMO	1			
			PLCO	3	TH	19			
			POMO	1	BG	15			
			SOOL	1					
			TRAN	1					
			TRDU	1					
			VISA	1					
			TH	16					
			BG	10					
			TOTAL	100	TOTAL	100	TOTAL	100	

		Relative	Quadra	at #1	Quadr	at #2	Quadr	at #3	Quadr	at #4	Quadr	at #5	Quad	rat #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ELMA	2	ELMA	4	AVBA	1	AVBA	1	BRDI	1	ELMA	4
			FEBR	4	FEBR	1	BRDI	1	BRHO	1	ELMA	4	FEBR	1
			FEPE	25	FEPE	28	BRHO	1	BRMI	1	FEBR	1	FEPE	40
			GEDI	4	GEDI	7	ELMA	5	ELMA	8	FEPE	48	GEDI	4
		HOBR	2	HOMAG	2	FEPE	33	FEBR	5	GEDI	3	HOMAG	1	
			HOMAG	2	HYGL	1	GEDI	8	FEPE	40	HOMAG	1	HYGL	2
			-	JUPH	1	JUBU	1	LYHY	1	GEDI	7	TRAN	1	RUCR
3	10 m	9%	PLCO	13	LYHY	1	POAVD	1	HOMAG	1	VISA	1	TRAN	2
3	10 111	576	TRAN	1	POAVD	1	POMO	1	RUCR	4	TH	38	VISA	1
			TRDU	1	POMO	1	RUCR	3	TRAN	1	BG	2	TH	36
			TH	35	PS sp.	1	TH	35	TRDU	1			BG	8
			BG	10	RUCR	1	BG	10	VISA	1				
					TRDU	1			TH	25				
					TH	25			BG	4				
					BG	25								
			TOTAL	100										

		Relative	Quadr	at #1	Quadr	at #2	Quadr	at #3	Quadr	at #4	Quadr	at #5	Quadr	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRHO	4	BRHO	1	AICA	1	AICA	1	AVBA	1	AICA	1
			DACA	6	DACA	4	BRHO	8	BRDI	1	BRDI	1	AVBA	1
			ERBO	22	ERBO	12	DACA	7	BRHO	2	BRHO	2	BRDI	2
			FEBR	1	FEBR	1	ERBO	27	DACA	3	DACA	4	DACA	4
			HYGL	1	FEMY	15	FEBR	2	ERBO	35	ERBO	24	ERBO	30
			JUPH	1	PLCO	4	FEMY	4	FEMY	1	SIMAM	17	GEDI	1
			PLCO	2	TH	57	LYAR	1	HYGL	2	TRAN	9	HYGL	2
4	10 m	67%	SIGA	1	BG	6	PLCO	3	HYRA	1	VISAN	1	LYAR	2
4	10 10	0770	TRAN	1			TRAN	1	PLCO	6	TH	38	PLCO	3
			TH	56			TH	40	TRAN	11	BG	3	SIMAM	2
			BG	5			BG	6	VISAN	1			TAOV	1
									TH	34			TRAN	8
									BG	2			TRDU	1
													TH	37
													BG	5
			TOTAL	100										

2022 Annual Report – Appendix A

			2 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Achillea millefolium	common yarrow	ACMI	Lasthenia glaberrima	smooth goldfields	LAGL3
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lepidium nitidum	shining pepperweed	LENI
Acmispon parviflorus	hill lotus	ACPA	Luzula comosa	Pacific woodrush	LUCO6
Aira caryophyllea	silvery hair-grass	AICA	Lysimachia arvensis	scarlet pimpernel	LYAR
Avena barbata	slender wild oat	AVBA	Lythrum hyssopifolia	grass poly	LYHY
Baccharis pilularis	coyote brush	BAPI	Madia gracilis	gumweed	MAGR
Briza minor	annual quaking grass	BRMI	Madia sativa	coast tarweed	MASA
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Microseris paludosa	marsh microseris	MIPA
Bromus diandrus	ripgut grass	BRDI	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Bromus hordeaceus	soft chess	BRHO	Plantago coronopus	cut-leaved plantain	PLCO
Calochortus uniflorus	pink star-tulip	CAUN	Plantago erecta	California plantain	PLER
Cicendia quadrangularis	timwort	CIQU	Plantago lanceolata	English plantain	PLLA
Clarkia purpurea ssp. quadrivulnera	winecup clarkia	CLPUQ	Pogogyne zizyphoroides	Sacramento mesa mint	POZI
Cotula coronopifolia	brass buttons	COCO	Polygonum aviculare ssp. depressum	prostrate knotweed	POAVD
Danthonia californica	California oat grass	DACA	Polypogon monspeliensis	rabbitfoot grass	POMO
Daucus pusillus	rattlesnake weed	DAPU	Pseudognaphalium sp.		
Deinandra corymbosa	coastal tarweed	DECO	Psilocarphus chilensis	round woolly-marbles	PSCH
Deschampsia danthonioides	annual hair grass	DEDA	Quercus agrifolia	coast live oak	QUAG
Distichlis spicata	salt grass	DISP	Rumex acetosella	sheep sorrel	RUAC
Eleocharis acicularis var. acicularis	needle spikerush	ELACA	Rumex crispus	curly dock	RUCR
Eleocharis macrostachya	pale spikerush	ELMA	Rumex salicifolius	willow dock	RUSA
Erodium botrys	long-beaked filaree	ERBO	Senecio glomeratus	cutleaf burnweed	SEGL
Erodium cicutarium	redstem filaree	ERCI	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM
Eryngium armatum	coyote thistle	ERAR12	Silene gallica	small-flower catchfly	SIGA
Festuca bromoides	brome fescue	FEBR	Sisyrinchium bellum	western blue-eyed grass	SIBE
Festuca myuros	rattail sixweeks grass	FEMY	Sonchus oleraceus	common sow thistle	SOOL
Festuca perennis	Italian rye grass	FEPE	Spergula arvensis	corn spurry	SPAR
Galium porrigens	climbing bedstraw	GAPO	Stipa pulchra	purple needle grass	STPU
Gamochaeta ustulata	purple cudweed	GAUS	Taraxia ovata	sun cups	TAOV
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium angustifolium	narrow-leaved clover	TRAN
Heterotheca grandiflora	telegraph weed	HEGR	Trifolium dubium	little hop clover	TRDU
Hordeum brachyantherum	meadow barley	HOBR	Trifolium hirtum	rose clover	TRHI
Hordeum marinum ssp. gussoneanum	Mediterranean barley	HOMAG	Vicia hirsuta	hairy vetch	VIHI
Horkelia cuneata var. sericea	wedge-leaved horkelia	HOCUS	Vicia sativa ssp. nigra	common vetch	VISAN
Hypochaeris glabra	smooth cat's-ear	HYGL	Vicia sativa ssp. nigra	spring vetch	VISAS
Hypochaeris radicata	rough cat's-ear	HYRA	Zeltnera davvi	Davy's centuary	ZEDA
luncus balticus	Baltic rush	JUBA	Groundcover Codes	Davy S Centuary	LLUA
luncus bufonius	toad rush	JUBU	BG	Bare Ground	
luncus occidentalis	western rush	JUBO	ТН	Thatch/Duff	
Juncus occidentalis Juncus phaeocephalus	brown-headed rush	JUPH	AL	Algae	

Table A-6. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		POND 4	O South
Date	4/29/2022		
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Bre	tt Bell
Vegetation Type	% Cover	Species	Notes
Emergent Vegetation			
Floating Vegetation			
Submerged Vegetation			
Open Water			
		No	otes
Dand 40 Couth remained dry th	roughout the	2021 2022 water waar (Ch	anage 2022) Stratum 2 was repeated from 2016 and 2018 2021 Strate

Pond 40 South remained dry throughout the 2021-2022 water-year (Chenega, 2023). Stratum 3 was repeated from 2016 and 2018-2021. Strata 4 and 5 and the corresponding transects were identified and established in 2022. Transect 3 was relocated because the previous location was no longer within the correct stratum.

		Relative	Quadra	Quadrat #1 Quadrat #2		at #2	Quadr	at #3	Quadra	at #4	Quadra	at #5	Quadrat #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover
			FEBR	2	BRMI	1	FEPE	48	BRHO	1	FEPE	65	FEPE	44
			FEPE	60	ERCI	2	TH	33	FEPE	55	GEDI	1	GEDI	3
			GEDI	3	FEBR	3	BG	19	GEDI	1	HOBR	1	HOBR	1
			TH	27	FEPE	55			HYGL	2	PLCHH	1	LYAR	1
			BG	8	GEDI	2			TH	40	SOOL	1	MAGR	1
3	10 m	37%			HYGL	2			BG	1	TH	28	PLCHH	1
					TRAN	1					BG	3	PS sp.	1
					TH	31							SOOL	1
					BG	3							TH	45
													BG	2
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	nt #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ERBO	32	BRHO	1	BRHO	2	AVBA	1	BRHO	1	AICA	1
		HYGL	2	BRMI	1	ERBO	40	BRHO	1	ERBO	71	BRHO	1	
			PLCO	8	ERBO	38	FEBR	1	ERBO	38	GEDI	1	ERBO	20
		50%	TRAN	26	FEBR	1	FEPE	1	FEBR	1	HYGL	1	HYGL	2
			TH	8	HYGL	1	GEDI	3	HYGL	3	PLCO	8	JUPH	1
4	10 m		BG	24	PLCO	2	HYGL	1	HYRA	1	SIGA	1	PLCO	4
4	10 m	56%			TRAN	40	RUAC	4	PLCO	2	TRAN	2	SIGA	1
					TH	6	TRAN	23	TRAN	35	TH	10	TRAN	24
					BG	10	TRDU	2	TH	4	BG	5	TH	11
							TH	20	BG	14			BG	35
						BG	3							
			TOTAL	100										

		Relative	Quadr	at #1	Quadra	at #2	Quadr	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			CAED	1	BRHO	1	AICA	1
			ELMA	1	ELACA	1	DECO	1
			ERBO	2	ELMA	3	ELACA	1
			FEBR	1	ERAR12	12	ELMA	2
			FEPE	4	FEBR	1	FEBR	1
			GEDI	4	FEPE	6	FEPE	2
			HEGR	1	GEDI	8	GEDI	6
			HYGL	14	HYGL	3	HEGR	1
5	5 m	7%	HYRA	1	LYAR	2	HYGL	1
5	5 111	1 /0	LYHY	1	PLCHH	12	HYRA	3
			LYMI	1	PLCO	17	PLCHH	18
			PLCHH	13	VISAS	3	PLCO	22
			PLCO	22	TH	19	VISAS	1
		-	TRHI	1	BG	12	TH	27
			VISAS	2			BG	13
			TH	24				
			BG	7				
			TOTAL	100	TOTAL	100	TOTAL	100

Pond 40 South 2022 Species List									
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code				
Acaena pinnatifida var. californica	California acaena	ACPIC	Lupinus nanus	sky lupine	LUNA				
Achillea millefolium	common yarrow	ACMI	Lysimachia arvensis	scarlet pimpernel	LYAR				
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lysimachia minima	chaffweed	LYMI				
Acmispon parviflorus	hill lotus	ACPA	Lythrum hyssopifolia	grass poly	LYHY				
Aira caryophyllea	silvery hair-grass	AICA	Madia exigua	small tarweed	MAEX				
Avena barbata	slender wild oat	AVBA	Madia gracilis	gumweed	MAGR				
Baccharis pilularis	coyote brush	BAPI	Madia sativa	coast tarweed	MASA				
Briza minor	annual quaking grass	BRMI	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH				
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Plantago coronopus	cut-leaved plantain	PLCO				
Bromus diandrus	ripgut grass	BRDI	Plantago lanceolata	English plantain	PLLA				
Bromus hordeaceus	soft chess	BRHO	Pseudognaphalium luteoalbum	weedy cudweed	PSLU				
Bromus madritensis ssp. madritensis	foxtail chess	BRMAM3	Pseudognaphalium sp.						
Carduus pycnocephalus	Italian thistle	CAPY	Rumex acetosella	sheep sorrel	RUAC				
Carpobrotus edulis	ice plant	CAED	Rumex salicifolius	willow dock	RUSA				
Castilleja densiflora ssp. densiflora	dense flower owl's clover	CADED	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM				
Danthonia californica	California oat grass	DACA	Silene gallica	small-flower catchfly	SIGA				
Deinandra corymbosa	coastal tarweed	DECO	Sisyrinchium bellum	western blue-eyed grass	SIBE				
Eleocharis acicularis var. acicularis	needle spikerush	ELACA	Sonchus asper	prickly sow thistle	SOAS				
Eleocharis macrostachya	pale spikerush	ELMA	Sonchus oleraceus	common sow thistle	SOOL				
Erodium botrys	long-beaked filaree	ERBO	Stipa pulchra	purple needle grass	STPU				
Erodium cicutarium	redstem filaree	ERCI	Taraxia ovata	sun cups	TAOV				
Eryngium armatum	coyote thistle	ERAR12	Trifolium angustifolium	narrow-leaved clover	TRAN				
Festuca bromoides	brome fescue	FEBR	Trifolium campestre	hop clover	TRCA5				
Festuca perennis	Italian rye grass	FEPE	Trifolium dubium	little hop clover	TRDU				
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium hirtum	rose clover	TRHI				
Heterotheca grandiflora	telegraph weed	HEGR	Vicia hirsuta	hairy vetch	VIHI				
Hordeum brachyantherum	meadow barley	HOBR	Vicia sativa ssp. sativa	spring vetch	VISAS				
Hypochaeris glabra	smooth cat's-ear	HYGL	Vicia sativa ssp. nigra	common vetch	VISAN				
Hypochaeris radicata	rough cat's-ear	HYRA	Groundcover Codes						
Juncus occidentalis	western rush	JUOC	BG	Bare Ground					
Juncus phaeocephalus	brown-headed rush	JUPH	TH	Thatch/Duff					
Logfia gallica	narrowleaf cottonrose	LOGA	AL	Algae					

Table A-7. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Transect Data by Stratum

	POND 41										
Date	5/3/2022										
Surveying Personnel	Kayti Chris	tianson, Emily Poor, and Bret	t Bell								
Vegetation Type	% Cover	Species	Notes								
Emergent Vegetation											
Floating Vegetation											
Submerged Vegetation											
Open Water											
		N	otes								
Pond 11 briefly held water in	lanuary with	some peripheral ponding pre	sent but was otherwise dry throughout the 2021-2022 water-year								

Pond 41 briefly held water in January with some peripheral ponding present but was otherwise dry throughout the 2021-2022 water-year (Chenega, 2023). Strata 1, 2, and 3 were repeated from 2016, 2019, 2020, and 2021. Stratum 4 was repeated from 2019-2021. Transects 1, 3, and 4 were relocated because the previous locations were no longer within the correct strata. Transect 2 was relocated to an area with more representative vegetative composition.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			BRHO	2	LAGL3	10	DEDA	1
			DEDA	1	BRHO	2	ELACa	2
			ELACa	1	DEDA	1	ELMA	2
			ELMA	2	ELACa	2	GEDI	17
			GEDI	3	ELMA	1	LAGL3	14
			LAGL3	8	GEDI	2	MALE	10
1	E m	3%	MALE	6	HYGL	2	PLCHH	3
1	5 m	3%	PHLE	3	MALE	8	PS sp.	1
			PLCHH	1	PHLE	3	TH	49
			SOOL	1	PLCHH	3	BG	1
			TH	70	POMO	1		
			BG	2	TH	62		
					BG	3		
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quad	at #1	Quadr	rat #2	Quadr	at #3	Quadr	at #4	Quadr	at #5	Quadr	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			ELACa	4	ELACa	1	BRMI	1	ELACa	5	BRHO	8	BRHO	6
			ELMA	2	ELMA	1	ELACa	3	ELMA	2	DEDA	1	ELMA	1
			GEDI	18	GEDI	16	ELMA	2	GEDI	35	ELACa	1	GEDI	25
			MALE	7	LAGL3	1	GEDI	30	LAGL3	1	ELMA	1	MALE	2
		91%	PHLE	25	MALE	4	LAGL3	1	MALE	4	GEDI	20	PHLE	1
			PLCHH	2	PHLE	14	MALE	7	PHLE	6	MALE	2	STAJ	2
2	10 m		TH	40	PLCHH	7	MASA	2	PLCHH	8	PHLE	6	TH	62
2	10 111	91%	BG	2	TH	55	PHLE	11	STAJ	1	PLCHH	6	BG	1
					BG	1	PLCHH	9	TH	37	POMO	1		
							RUCR	1	BG	1	TH	50		
						STAJ	1			BG	4			
							TH	26						
							BG	6						
			TOTAL	100										

		Relative	Quadr	at #1	Quadi	rat #2	Quadr	at #3	Quadr	at #4	Quadr	at #5	Quadr	at #6
# Length of	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	
			GEDI	7	BRHO	1	BRHO	1	BRMI	1	GEDI	8	BRHO	1
			JUPH	18	BRMI	3	BRMI	3	GEDI	8	HYGL	6	BRMI	1
		a 0/	MALE	2	ERBO	4	ERBO	1	JUPH	26	HYRA	1	GEDI	7
			RUCR	1	GEDI	3	GEDI	13	MALE	2	JUPH	11	JUPH	5
3	10 m		SOOL	1	JUPH	20	JUPH	50	PHLE	3	MALE	2	MALE	1
5	10 m	4%	TH	70	MALE	1	MALE	4	TH	59	PHLE	1	PHLE	3
			BG	1	SOOL	2	TH	26	BG	1	PSLU	1	TH	82
					TH	65	BG	2			STAJ	1		
					BG	1					TH	69		
			TOTAL	100	TOTAL	100								

		Relative	Quad	rat #1	Quad	rat #2	Quad	rat #3	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	
			MASA	4	DACA	30	DACA	12	
			CAAM	1	ERBO	16	ERBO	12	
			HYGL	8	MAGR	1	HYGL	2	
			MAGR	3	MASA	2	MALE	1	
			ERBO	12	ERAR12	10	ERAR12	7	
			DACA	11	AICA	1	FEBR	8	
				AICA	1	HYGL	3	MASA	1
4	5 m	1%	FEBR	3	FEBR	1	MAGR	1	
			FEMY	2	CAAM	1	AICA	1	
			ERAR12	2	TH	16	TH	44	
			GEDI	6	BG	19	BG	11	
			JUPH	1					
			TH	35					
			BG	11					
			TOTAL	100	TOTAL	100	TOTAL	100	

2022 Annual Report – Appendix A

	Pond 41 2022 Species List										
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code						
Achillea millefolium	common yarrow	ACMI	Hypochaeris radicata	rough cat's-ear	HYRA						
Agoseris grandiflora var. grandiflora	large-flowered agoseris	AGGRG	Juncus balticus	Baltic rush	JUBA						
Aira caryophyllea	silvery hair-grass	AICA	Juncus phaeocephalus	brown-headed rush	JUPH						
Baccharis pilularis	coyote brush	BAPI	Lasthenia glaberrima	smooth goldfields	LAGL3						
Briza minor	annual quaking grass	BRMI	Luzula comosa	Pacific woodrush	LUCO6						
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Lysimachia arvensis	scarlet pimpernel	LYAR						
Bromus diandrus	ripgut grass	BRDI	Lythrum hyssopifolia	grass poly	LYHY						
Bromus hordeaceus	soft chess	BRHO	Madia gracilis	gumweed	MAGR						
Calandrinia menziesii	redmaids	CAME	Madia sativa	coast tarweed	MASA						
Carduus pycnocephalus	Italian thistle	CAPY	Malvella leprosa	alkali mallow	MALE						
Castilleja ambigua	Johnny-Nip	CAAM	Oxalis corniculata	creeping woodsorrel	ОХСО						
Danthonia californica	California oat grass	DACA	Phalaris lemmonii	Lemmon's canary grass	PHLE						
Deinandra corymbosa	coastal tarweed	DECO	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH						
Deschampsia danthonioides	annual hair grass	DEDA	Plantago coronopus	cut-leaved plantain	PLCO						
Drymocallis glandulosa var. wrangelliana	sticky cinquefoil	DRGLW	Polypogon monspeliensis	rabbitfoot grass	POMO						
Eleocharis acicularis var. acicularis	needle spikerush	ELACA	Pseudognaphalium luteoalbum	weedy cudweed	PSLU						
Eleocharis macrostachya	pale spikerush	ELMA	Pseudognaphalium sp.								
Elymus glaucus	blue wild-rye	ELGL	Rumex acetosella	sheep sorrel	RUAC						
Elymus triticoides	beardless wild rye	ELTR3	Rumex crispus	curly dock	RUCR						
Erigeron canadensis	horseweed	ERCA	Senecio glomeratus	cutleaf burnweed	SEGL						
Erodium botrys	long-beaked filaree	ERBO	Sonchus asper	prickly sow thistle	SOAS						
Erodium cicutarium	redstem filaree	ERCI	Sonchus oleraceus	common sow thistle	SOOL						
Eryngium armatum	coyote thistle	ERAR12	Stachys ajugoides	bugle hedge nettle	STAJ						
Festuca bromoides	brome fescue	FEBR	Trifolium depauperatum	sack clover	TRDE						
Festuca myuros	rattail sixweeks grass	FEMY	Trifolium microcephalum	small head clover	TRMI						
Gamochaeta ustulata	purple cudweed	GAUS	Verbena bracteata	bracted verbena	VEBR						
Geranium dissectum	cut-leaved geranium	GEDI	Verbena lasiostachys var. lasiostachys	western vervain	VELAL						
Gnaphalium palustre	lowland cudweed	GNPA	Groundcover Codes								
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO	BG	Bare Ground							
Heterotheca grandiflora	telegraph weed	HEGR	ТН	Thatch/Duff							
Hypochaeris glabra	smooth cat's-ear	HYGL	AL	Algae							

Table A-8. Pond 42 (Year 4 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

POND 42									
Date	5/4/2022								
Surveying Personnel	Kayti Christi	ayti Christianson, Emily Poor, and Brett Bell							
Vegetation Type	% Cover	Cover Species Notes							
Emergent Vegetation									
Floating Vegetation									
Submerged Vegetation									
Open Water									
Notes									
Pond 42 was dry by the February 1 hydrology monitoring event (Chenega, 2023). Strata 1 through 4 were repeated from 2017-2021. Stratum 5									

was repeated from 2019-2021. Transects 1, 3, and 4 were relocated because the previous locations were no longer within the correct strata. Transect 2 was repeated from 2018-2021. Transect 5 was repeated from 2020 and 2021.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3
Transe ct #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cove r
			BRMI	1	AGLAV	1	BRMI	1
			BRTET	1	DEDA	2	DEDA	28
			DEDA	2	ELACA	13	ELACA	8
			ELACA	30	ERAR12	18	GAUS	2
			ERAR12	14	ERCA	1	GEDI	1
			FEBR	1	GAUS	1	HYGL	2
		18%	GAUS	1	GEDI	3	LYHY	2
			GEDI	2	HYGL	3	PLCHH	4
1	5 m		HYRA	5	HYRA	4	POMO	2
-	5 111	10/0	JUPH	2	LYHY	1	PSCH	1
			LOGA	1	PLCHH	7	SEGL	1
			LYHY	2	PLCO	1	TH	39
			PLCHH	1	POMO	1	BG	9
			POMO	3	PSCH	2		
			SEGL	1	TH	39		
			TH	18	BG	3		
			BG	15				
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			CIBR	1	ELACA	3	ELMA	46
			COCO	1	ELMA	28	TH	54
			ELMA	37	PHLE	1	BG	0
			GEDI	2	PLCHH	1		
2	5 m	7%	PLCHH	1	PSLU	1		
2	5 111	1 70	PSLU	1	TH	65		
			SOOL	1	BG	1		
			TH	54				
		-	BG	2				
			TOTAL	100	TOTAL	100	TOTAL	100

		Relative	Quadr	at #1	Quadr	at #2	Quadr	at #3	Quadr	at #4	Quadr	at #5	Quadr	at #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover											
			BRHO	1	BAPI	1	BRHO	1	BRHO	1	BRHO	2	AICA	1	
				ELACA	2	BRHO	2	COCO	1	DEDA	1	DEDA	1	BRHO	2
			ERAR12	8	ELACA	6	ELACA	1	ELACA	4	ELACA	10	DEDA	1	
			GEDI	1	ERAR12	8	ERAR12	6	GEDI	7	ERAR12	4	ELACA	4	
			JUPH	30	GEDI	2	GEDI	1	JUPH	28	GEDI	6	ERAR12	6	
			SEGL	1	JUPH	30	HYRA	1	LYHY	1	JUPH	16	GEDI	7	
			TH	51	PLCHH	1	JUPH	40	SOOL	1	PLCHH	1	HYGL	1	
3	10 m	22%	BG	6	POMO	1	POMO	1	TH	54	POMO	2	JUPH	25	
					PSLU	1	SEGL	1	BG	3	SEGL	1	POMO	1	
					SEGL	1	SOOL	1			SOAS	1	SEGL	1	
					TH	38	TH	37			SOOL	3	SOAS	1	
					BG	9	BG	9			TH	51	SOOL	1	
											BG	2	TH	45	
													BG	4	
			TOTAL	100											

		Relative	Quadra	at #1	Quadra	at #2	Quadra	nt #3	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	
			AVBA	1	AVBA	1	AVBA	1	
			CIQU	1	BRTET	1	DECO	4	
				DACA	5	CAAT	1	ERAR12	9
			DECO	7	DACA	1	ERBO	3	
			ELACA	1	DECO	6	FEBR	1	
			ERAR12	2	ERAR12	2	GEDI	1	
			ERBO	8	ERBO	2	HYGL	7	
			FEMY	1	FEMY	1	HYRA	1	
			HYGL	8	HYGL	8	LOGA	1	
4	5 m	25%	HYRA	2	HYRA	1	LYAR	2	
			LOGA	1	LOGA	1	PLCHH	1	
			LYAR	2	LYAR	2	POMO	1	
			LYHY	1	LYHY	1	TROB	1	
			ZEDA	1	LYMI	1	TH	30	
			TH	30	POMO	1	BG	36	
			BG	29	PSCH	1			
					TH	27			
					BG	42			
			TOTAL	100	TOTAL	100	TOTAL	99	

		Relative	Quadi	at #1	Quadr	at #2	Quadra	nt #3
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			POMO	60	FEBR	1	BRHO	1
			LYHY	1	POMO	53	POMO	12
5	F	120/	, TH 28	28	TH	44	TROB	1
5	5 m	12%	BG	11	BG	2	TH	79
							BG	7
			TOTAL	100	TOTAL	100	TOTAL	100

	Pc	ond 42 2022 S	Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Cod
Achillea millefolium	common yarrow	ACMI	Lysimachia arvensis	scarlet pimpernel	LYAR
Acmispon parviflorus	hill lotus	ACPA	Lysimachia minima	chaffweed	LYMI
Agrostis avenacea	Pacific bent grass	AGAV	Lythrum hyssopifolia	grass poly	LYHY
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Madia gracilis	gumweed	MAGR
Aira caryophyllea	silvery hair-grass	AICA	Madia sativa	coast tarweed	MASA
Arctostaphylos hookeri	Hooker's manzanita	ARHO	Melilotus indicus	Indian sweetclover	MEIN
Arctostaphylos tomentosa	woolly leaf manzanita	ARTO	Microseris paludosa	marsh microseris	MIPA
Avena barbata	slender wild oat	AVBA	Phalaris lemmonii	Lemmon's canary grass	PHLE
Baccharis pilularis	coyote brush	BAPI	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Briza maxima	rattlesnake grass	BRMA	Plantago coronopus	cut-leaved plantain	PLCO
Briza minor	annual quaking grass	BRMI	Plantago elongata	annual coast plantain	PLEL
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Plantago erecta	California plantain	PLER
Bromus carinatus	California brome	BRCA	Plantago lanceolata	English plantain	PLLA
Bromus diandrus	ripgut grass	BRDI	Pogogyne zizyphoroides	Sacramento mesa mint	POZI
Bromus hordeaceus	soft chess	BRHO	Polypogon monspeliensis	rabbitfoot grass	POMO
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Castilleja attenuata	valley tassels	CAAT	Pseudognaphalium ramosissimum	pink everlasting	PSRA
Centaurea melitensis	Maltese star-thistle	CEME	Pseudognaphalium stramineum	cottonbatting plant	PSST
Cicendia quadrangularis	timwort	CIQU	Psilocarphus chilensis	round woolly-marbles	PSCH
Cirsium brevistylum	Indian thistle	CIBR	Rubus ursinus	California blackberry	RUUR
Cotula coronopifolia	brass buttons	COCO	Rumex acetosella	sheep sorrel	RUAC
Crocanthemum scoparium	peak rush-rose	CRSC	Rumex salicifolius	willow dock	RUSA
Danthonia californica	California oat grass	DACA	Senecio glomeratus	cutleaf burnweed	SEGL
Deinandra corymbosa	coastal tarweed	DECO	Silene gallica	small-flower catchfly	SIGA
Deschampsia danthonioides	annual hair grass	DEDA	Sisyrinchium bellum	western blue-eyed grass	SIBE
Diplacus aurantiacus	sticky monkey flower	DIAU	Sonchus asper	prickly sow thistle	SOAS
Eleocharis acicularis var. acicularis	needle spikerush	ELACA	Sonchus oleraceus	common sow thistle	SOOL
Eleocharis macrostachya	pale spikerush	ELMA	Stachys ajugoides	bugle hedge nettle	STAJ
Elymus glaucus	blue wild-rye	ELGL	Stachys bullata	California hedge nettle	STBU
Erigeron canadensis	horseweed	ERCA	Stipa pulchra	purple needle grass	STPU
Eriodictyon californicum	yerba santa	ERCA6	Toxicodendron diversilobum	poison oak	TODI
Erodium botrys	long-beaked filaree	ERBO	Tribolium obliterum	Capetown grass	TROB
Eryngium armatum	coyote thistle	ERAR12	Trifolium angustifolium	narrow-leaved clover	TRAN
Festuca bromoides	brome fescue	FEBR	Trifolium campestre	hop clover	TRCA5
Festuca myuros	rattail sixweeks grass	FEMY	Trifolium dubium	little hop clover	TRDU
Galium aparine	goose grass	GAAP	Trifolium microdon	thimble clover	TRMI5
Galium porrigens	climbing bedstraw	GAPO	Trifolium willdenovii	tomcat clover	TRWI
Gamochaeta ustulata	purple cudweed	GAUS	Typha sp.		
Geranium dissectum	cut-leaved geranium	GEDI	Vicia sativa	spring vetch	VISA
Hypochaeris glabra	smooth cat's-ear	HYGL	Zeltnera davyi	Davy's centuary	ZEDA
Hypochaeris radicata	rough cat's-ear	HYRA	Groundcover Codes		
Juncus phaeocephalus	brown-headed rush	JUPH	BG	Bare Ground	
Lasthenia glaberrima	smooth goldfields	LAGL3	тн	Thatch/Duff	-
Logfia gallica	narrowleaf cottonrose	LOGA	AL	Algae	
Luzula comosa	Pacific woodrush	LUCO6		0	

Table A-9. Pond 61 (Year 4 Post-Subsurface Munitions Remediation)Wetland Vegetation Transect Data by Stratum

		PON	ID 61						
Date	4/28/2022								
Surveying Personnel	Kayti Christ	ianson, Emily Poor, and Bre	ett Bell						
Vegetation Type	% Cover	Cover Species Notes							
Emergent Vegetation									
Floating Vegetation									
Submerged Vegetation									
Open Water									
Notes									
Pond 61 was dry by the March 2	Pond 61 was dry by the March 2 hydrology monitoring event (Chenega, 2023). Strata 2 through 4 were repeated from 2017-2021. Transect 3								

was was relocated to an area with more representative vegetative composition, whereas Transect 4 was repeated from 2017-2021. Stratum 2 consisted of CCG and no transect was placed in this stratum.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRMA	1	BRHO	1	BRTET	5	BRTET	6	BRTET	16	BRTET	10
			BRMI	1	BRMA	1	DEDA	5	DEDA	2	CIQU	1	DECO	1
			BRTET	5	BRTET	4	ERAR12	4	ELACA	5	DEDA	1	DEDA	2
			CIQU	1	CIQU	1	HYGL	2	ERAR12	3	ELACA	2	ELACA	2
			DEDA	3	DECO	1	JUPH	2	FEBR	1	ERAR12	9	ERAR12	7
			ERAR12	9	DEDA	3	LYHY	3	GEDI	1	HYGL	2	FEBR	1
			FEBR	4	ERAR12	6	LYMI	1	HYGL	4	LAGL3	1	HYGL	4
			HYGL	1	GEDI	1	PLCHH	30	HYRA	1	LYAR	1	LAGL3	2
			JUPH	2	HYGL	2	POZI	1	JUPH	1	LYHY	1	LYAR	1
3	10 m	4%	LAGL3	1	LYHY	2	SOOL	1	LAGL3	1	LYMI	1	LYHY	1
			LYHY	2	PLCHH	35	TH	32	LYHY	1	MIPA	1	LYMI	1
			LYMI	1	POMO	1	BG	14	PLCHH	35	PLCHH	30	PLCHH	35
			MIDOD	1	PSCH	1			TH	35	POZI	9	TH	30
			MIPA	1	TH	31			BG	4	TH	23	BG	3
			PLCHH	30	BG	10					BG	2		
			PSCH	1										
			TH	22										
			BG	14										
			TOTAL	100										

		Relative	Quadra	t #1	Quadr	at #2	Quadra	at #3	Quadra	t #4	Quadra	it #5	Quadr	at #6
Transect #	Transect Length	% Cover of Wetland	Species	% Cover										
			BRMA	40	BRHO	1	BRHO	1	BRMA	15	BRMA	25	BRHO	3
			BRMI	1	BRMA	35	BRMA	20	BRMI	1	BRMI	1	BRMA	25
			BRTET	5	BRMI	1	BRMI	1	BRTET	1	CAAMA3	1	BRMI	1
			DECO	2	DECO	5	BRTET	1	CAAMA3	1	DACA	5	BRTET	1
			ERBO	3	ERBO	3	DACA	10	DACA	12	DECO	12	DECO	28
			FEBR	1	FEBR	1	DECO	1	DECO	5	ERBO	2	ERBO	7
			GEDI	1	HYGL	12	ERBO	5	ERBO	2	FEBR	10	FEBR	3
4	10 m	57%	HYGL	4	HYRA	2	FEBR	1	FEBR	2	GEDI	1	GEDI	3
4	10 M	57%	LYAR	1	LYAR	1	HYGL	10	GEDI	1	HYGL	8	HYGL	6
			MIPA	2	MAGR	1	LYAR	1	HYGL	12	LYAR	5	LYAR	9
			TH	34	MASA	1	LYHY	1	LYAR	4	LYHY	1	LYHY	1
			BG	6	SOOL	1	MA sp.	1	MIPA	1	MAEL	1	TH	10
					TH	24	MIPA	1	TH	8	MIPA	3	BG	3
					BG	12	TH	31	BG	35	TH	15		
						BG	15			BG	10			
			TOTAL	100										

		nd 61 2022			
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Acaena pinnatifida var. californica	California acaena	ACPIC	Juncus bufonius var. occidentalis	round-fruited toad rush	JUBUO
Achillea millefolium	common yarrow	ACMI	Juncus occidentalis	western rush	JUOC
Adenostoma fasciculatum	chamise	ADFA	Juncus phaeocephalus	brown-headed rush	JUPH
Agrostis lacuna-vernalis	vernal pool bent grass	AGLAV	Koeleria macrantha	June grass	KOMA
Aira caryophyllea	silvery hair-grass	AICA	Lasthenia conjugens	Contra Costa goldfields	LACO
Allium hickmanii	Hickman's onion	ALHI	Lasthenia glaberrima	smooth goldfields	LAGL3
Arctostaphylos hookeri	Hooker's manzanita	ARHO	Leptosiphon parviflorus	variable linanthus	LEPA
Avena barbata	slender wild oat	AVBA	Logfia gallica	narrowleaf cottonrose	LOGA
Baccharis pilularis	coyote brush	BAPI	Lupinus nanus	sky lupine	LUNA
Briza maxima	rattlesnake grass	BRMA	Luzula comosa	Pacific woodrush	LUCO6
Briza minor	annual quaking grass	BRMI	Lysimachia arvensis	scarlet pimpernel	LYAR
Brodiaea terrestris ssp. terrestris	dwarf brodiaea	BRTET	Lysimachia minima	chaffweed	LYMI
Bromus diandrus	ripgut grass	BRDI	Lythrum hyssopifolia	grass poly	LYHY
Bromus hordeaceus	soft chess	BRHO	Madia elegans	common madia	MAEL
Calochortus uniflorus	pink star-tulip	CAUN	Madia gracilis	gumweed	MAGR
Calystegia subacaulis ssp. subacaulis	hill morning glory	CASUS	Madia sativa	coast tarweed	MASA
Castilleja ambigua ssp. ambigua	Johnny-Nip	CAAMA3	Madia sp.		
Castilleja densiflora	dense flower owl's clover	CADE	Microseris douglasii ssp. douglasii	Douglas' silverpuffs	MIDOD
Centaurea melitensis	Maltese star-thistle	CEME	Microseris paludosa	marsh microseris	MIPA
Chlorogalum pomeridianum	wavyleaf soap plant	CHPO	Phalaris lemmonii	Lemmon's canary grass	PHLE
Cicendia quadrangularis	timwort	CIQU	Plagiobothrys chorisianus var. hickmanii	Hickman's popcornflower	PLCHH
Cirsium quercetorum	brownie thistle		Plantago coronopus	cut-leaved plantain	PLCO
Corethrogyne filaginifolia	common sandaster	COFI	Plantago elongata	annual coast plantain	PLEC
Cotula coronopifolia	brass buttons	COCO	Plantago erecta	California plantain	PLER
Crassula aquatica	aquatic pygmy-weed	CRAQ	Pogogyne zizyphoroides	Sacramento mesa mint	POZI
,		DACA			POZI
Danthonia californica	California oat grass	DACA	Polypogon monspeliensis	rabbitfoot grass	
Deinandra corymbosa	coastal tarweed		Primula clevelandii var. patula	Padre's shooting star	PRCLP
Deschampsia danthonioides	annual hair grass	DEDA	Pseudognaphalium californicum	California everlasting	PSCA
Dichelostemma capitatum ssp. capitatum	bluedicks	DICAC	Psilocarphus chilensis	round woolly-marbles	PSCH
Eleocharis acicularis var. acicularis	needle spikerush	ELACA	Quercus agrifolia	coast live oak	QUAG
Eleocharis macrostachya	pale spikerush	ELMA	Ranunculus californicus	California buttercup	RACA
Elymus glaucus	blue wild-rye	ELGL	Rumex acetosella	sheep sorrel	RUAC
Erodium botrys	long-beaked filaree	ERBO	Sidalcea malviflora ssp. malviflora	checkerbloom	SIMAM
Erodium cicutarium	redstem filaree	ERCI	Silene gallica	small-flower catchfly	SIGA
Eryngium armatum	coyote thistle	ERAR12	Sisyrinchium bellum	western blue-eyed grass	SIBE
Eschscholzia californica	California poppy	ESCA	Sonchus oleraceus	common sow thistle	SOOL
Festuca bromoides	brome fescue	FEBR	Spiranthes romanzoffiana	hooded lady's tresses	SPRO
Festuca myuros	rattail sixweeks grass	FEMY	Taraxia ovata	sun cups	TAOV
Festuca perennis	Italian rye grass	FEPE	Toxicodendron diversilobum	poison oak	TODI
Galium aparine	goose grass	GAAP	Trifolium depauperatum	sack clover	TRDE
Galium porrigens	climbing bedstraw	GAPO	Trifolium gracilentum	pin point clover	TRGR
Gamochaeta ustulata	purple cudweed	GAUS	Trifolium microdon	thimble clover	TRMI5
Geranium dissectum	cut-leaved geranium	GEDI	Trifolium polyodon	Pacific Grove clover	TRPO3
Gnaphalium palustre	lowland cudweed	GNPA	Triteleia sp.		
Hordeum marinum ssp. gussoneanum	Mediterranean barley	HOMAG	Vicia sativa ssp. sativa	spring vetch	VISAS
Hypochaeris glabra	smooth cat's-ear	HYGL	Groundcover Codes		
Hypochaeris radicata	rough cat's-ear	HYRA	BG	Bare Ground	
Isoetes howellii	Howell's quillwort	ISHO	ТН	Thatch/Duff	-
Juncus bufonius var. bufonius	common toad rush	JUBUB	AL	Algae	-

Table A-10. Pond 75 (Baseline) Wetland Vegetation Transect Data by Stratum

POND 75									
Date	5/9/2022								
Surveying Personnel	Surveying Personnel Kayti Christianson, Emily Poor, and Brett Bell								
Vegetation Type	% Cover	Species	Notes						
Emergent Vegetation									
Floating Vegetation									
Submerged Vegetation									
Open Water									
Notes									
Pand 75 remained dry throughout the 2021 2022 water year (Changes 2022) Strate 1 through 4 were repeated from 2021 Transacts 1 2 and									

Pond 75 remained dry throughout the 2021-2022 water-year (Chenega, 2023). Strata 1 through 4 were repeated from 2021. Transects 1, 2, and 4 were repeated from 2021; whereas Transect 3 was relocated to an area with more representative vegetative composition.

		Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3	Quadra	at #4	Quadra	at #5	Quadra	at #6
	Transect Length	% Cover of Wetland	Species	% Cover										
			ELMA	3	BRMI	1	BRMI	12	BRMI	1	ELMA	23	ELMA	20
			GAAP	2	ELMA	11	ELMA	12	ELMA	18	GEDI	12	GEDI	7
			GEDI	10	GAAP	1	GEDI	13	GEDI	16	MALE	6	MALE	6
			SIMA	55	GEDI	10	HOBR	1	MALE	7	TH	58	SOOL	1
			SOAS	2	SIMA	7	MALE	5	PHLE	2	BG	1	TH	65
1	10 m	16%	SOOL	1	SOAS	4	PHLE	1	SIMA	13			BG	1
			TH	25	TH	65	SIMA	1	SOAS	1				
			BG	2	BG	1	SOOL	2	VEPEX	1				
							TH	50	TH	40				
							BG	3	BG	1				
			TOTAL	100										

		Relative	e Quadrat #1		Quadrat #2		Quadrat #3		Quadrat #4		Quadrat #5		Quadrat #6	
Transect #	Transect Length	% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover	Species	% Cover
			ELMA	4	ELMA	5	ELMA	2	ELMA	3	ELMA	1	ELMA	2
			ELTR3	56	ELTR3	62	ELTR3	48	ELTR3	40	ELTR3	50	ELTR3	55
2	10 m	67%	TH	40	TH	33	TH	50	TH	56	TH	49	TH	42
									BG	1			BG	1
			TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100	TOTAL	100

	Transect Length	Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3
Transect #		% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			ELMA	1	ELMA	3	ELMA	10
			ELTR3	5	ELTR3	19	EUOC	28
			EUOC	19	EUOC	32	TH	62
3	5 m	5%	TH	73	GAAP	1		
			BG	2	RACA	1		
					TH	44		
			TOTAL	100	TOTAL	100	TOTAL	100

	Transect Length	Relative	Quadra	at #1	Quadra	at #2	Quadra	at #3
Transect #		% Cover of Wetland	Species	% Cover	Species	% Cover	Species	% Cover
			BRMI	1	ELTR3	2	ELTR3	2
			ELTR3	12	JUPH	53	JUPH	22
			JUPH	34	RACA	1	TH	75
4	5 m	12%	TH	50	TH	40	BG	1
			BG	3	BG	4		
			TOTAL	100	TOTAL	100	TOTAL	100

		Pond 75 202	22 Species List		
Species Name	Common Name	Species Code	Species Name	Common Name	Species Code
Acmispon americanus var. americanus	Spanish lotus	ACAMA	Lysimachia arvensis	scarlet pimpernel	LYAR
Aira caryophyllea	silvery hair-grass	AICA	Madia gracilis	gumweed	MAGR
Baccharis pilularis	coyote brush	BAPI	Malvella leprosa	alkali mallow	MALE
Briza minor	annual quaking grass	BRMI	Microseris paludosa	marsh microseris	MIPA
Bromus diandrus	ripgut grass	BRDI	Perideridia gairdneri	Gairdner's yampah	PEGA
Bromus hordeaceus	soft chess	BRHO	Phalaris lemmonii	Lemmon's canary grass	PHLE
Calandrinia menziesii	redmaids	CAME	Pseudognaphalium luteoalbum	weedy cudweed	PSLU
Carex praegracilis	clustered field sedge	CAPR	Pseudognaphalium stramineum	cottonbatting plant	PSST
Centaurea melitensis	Maltese star-thistle	CEME	Quercus agrifolia	coast live oak	QUAG
Cirsium brevistylum	Indian thistle	CIBR	Ranunculus californicus	California buttercup	RACA
Eleocharis macrostachya	pale spikerush	ELMA	Rumex crispus	curly dock	RUCR
Elymus triticoides	beardless wild rye	ELTR3	Silybum marianum	milk thistle	SIMA
Erigeron canadensis	horseweed	ERCA	Sisyrinchium bellum	western blue-eyed grass	SIBE
Euthamia occidentalis	western goldenrod	EUOC	Sonchus asper	prickly sow thistle	SOAS
Festuca bromoides	brome fescue	FEBR	Sonchus oleraceus	common sow thistle	SOOL
Galium aparine	goose grass	GAAP	Stachys bullata	California hedge nettle	STBU
Galium porrigens	climbing bedstraw	GAPO	Triodanis biflora	Venus' looking glass	TRBI2
Gamochaeta ustulata	purple cudweed	GAUS	Veronica peregrina ssp. xalapensis	speedwell	VEPEX
Geranium dissectum	cut-leaved geranium	GEDI	Vicia sativa ssp. sativa	spring vetch	VISAS
Heliotropium curassavicum var. oculatum	Chinese pusley	HECUO	Groundcover Codes		
Hordeum brachyantherum	meadow barley	HOBR	BG	Bare Ground	
Hypochaeris glabra	smooth cat's-ear	HYGL	TH	Thatch/Duff	
Juncus falcatus	falcate rush	JUFA	AL	Algae	
Juncus phaeocephalus	brown-headed rush	JUPH			

APPENDIX B

Stratum Cover by Vernal Pool

This page intentionally left blank

	Table B-1. Pond 5 (Reference) Wetland Vegetation Cover by Stratum									
	-	PON	ID 5							
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover						
		BAPI	coyote brush	0.2						
		CRTR	spreading alkaliweed	1.0						
		ELMA	pale spikerush	35.2						
1	35%	MALE	alkali mallow	9.0						
-	33%	SOOL	common sow thistle	1.5						
		TH	Thatch	51.8						
		BG	Bare Ground	1.3						
		TOTAL		100.0						
		CRTR	spreading alkaliweed	0.3						
		DISP	salt grass	24.2						
		ELMA	pale spikerush	4.5						
		HYGL	smooth cat's-ear	0.2						
		MALE	alkali mallow	1.2						
2	21%	RUCR	curly dock	0.3						
2	21/0	SEGL	cutleaf burnweed	0.7						
		SOAS	prickly sow thistle	1.2						
		SOOL	common sow thistle	0.2						
		TH	Thatch	66.2						
		BG	Bare Ground	1.2						
		TOTAL		100.0						

POND 5 Stratum **Relative % Cover of Wetland Species Code** % Cover **Species Common Name** ACWR Chilean trefoil 0.2 BRMI annual quaking grass 0.5 CRTR spreading alkaliweed 0.2 DISP salt grass 8.2 ELMA pale spikerush 0.8 ERBO long-beaked filaree 0.8 0.5 FEBR brome fescue GEDI cut-leaved geranium 6.0 9.5 HYGL smooth cat's-ear 0.3 HYRA rough cat's-ear MAGR gumweed 0.2 3 8% MALE alkali mallow 0.2 1.7 PHLE Lemmon's canary grass PLCHH Hickman's popcornflower 0.3 POMO rabbitfoot grass 0.5 RUCR 0.8 curly dock SEGL cutleaf burnweed 0.5 0.2 SOOL common sow thistle STAJ bugle hedge nettle 11.3 ΤH Thatch 52.3 BG **Bare Ground** 5.0 TOTAL 100.0 BAPI coyote brush 0.7 BRHO soft chess 0.3 BRMI annual quaking grass 0.3 DISP 0.3 salt grass ERCA horseweed 0.3 1.3 GEDI cut-leaved geranium HYGL smooth cat's-ear 0.7 7 1% JUBA Baltic rush 41.0 Pseudognaphalium sp. 0.7 PS sp. SEGL cutleaf burnweed 0.3 common sow thistle SOOL 1.3 ΤН Thatch 50.7 BG **Bare Ground** 2.0 TOTAL 100.0

Table B-1 (continued). Pond 5 (Reference) Wetland Vegetation Cover by Stratum

	POND 5									
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover						
		BRMI	annual quaking grass	1.0						
		CRTR	spreading alkaliweed	6.0						
		DISP	salt grass	0.3						
		ELMA	pale spikerush	0.3						
		ERBO	long-beaked filaree	0.7						
		FEBR	brome fescue	0.2						
		GAUS	purple cudweed	0.7						
		GEDI	cut-leaved geranium	12.2						
		HYGL	smooth cat's-ear	5.7						
		HYRA	rough cat's-ear	1.0						
		JUBUB	common toad rush	0.3						
8	35%	LYHY	grass poly	0.5						
		PHLE	Lemmon's canary grass	9.5						
		POMO	rabbitfoot grass	0.2						
		PS sp.	Pseudognaphalium sp.	0.2						
		RUAC	sheep sorrel	0.2						
		RUCR	curly dock	0.2						
		SEGL	cutleaf burnweed	0.3						
		SOOL	common sow thistle	0.2						
		STAJ	bugle hedge nettle	0.2						
		TH	Thatch	51.8						
		BG	Bare Ground	8.5						
		TOTAL		100.0						

Table B-1 (continued). Pond 5 (Reference) Wetland Vegetation Cover by Stratum

	Table B-2. Pond 101 East (E	ast) (Reference)	Wetland Vegetation Cover by Stratum	
		POND 101	East (East)	
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover
		AGAV	Pacific bent grass	1.0
		BRDI	ripgut grass	0.8
		ELMA	pale spikerush	30.0
		GEDI	cut-leaved geranium	1.7
3	33%	MALE	alkali mallow	29.3
5	53%	PHLE	Lemmon's canary grass	5.7
		RUCR	curly dock	4.0
		VELAL	western vervain	0.2
		TH	Thatch	27.3
		TOTAL		100.0
		BAGL	marsh baccharis	0.5
		BRDI	ripgut grass	0.5
		ERCA	horseweed	0.3
		EUOC	western goldenrod	4.3
		GEDI	cut-leaved geranium	6.8
		HYGL	smooth cat's-ear	0.2
		JUBA	Baltic rush	14.7
		MASA	coast tarweed	1.8
4	10%	POMO	rabbitfoot grass	0.3
4	10%	PSST	cottonbatting plant	0.5
		RUAC	sheep sorrel	1.5
		SEGL	cutleaf burnweed	0.2
		SOAS	prickly sow thistle	0.7
		TODI	poison oak	0.5
		UNK2	Unknown 2	0.2
		TH	Thatch	58.2
		BG	Bare Ground	8.8
		TOTAL		100.0

		POND 101	East (East)	
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover
		AGAV	Pacific bent grass	0.5
		BRMI	annual quaking grass	0.3
		EPCI	fringed willowherb	0.3
		ERBO	long-beaked filaree	9.7
		FEBR	brome fescue	0.2
		GEDI	cut-leaved geranium	14.5
		HECUO	Chinese pusley	0.5
		HYGL	smooth cat's-ear	5.8
		HYRA	rough cat's-ear	6.7
		MAGR	gumweed	0.3
		MALE	alkali mallow	0.2
		MASA	coast tarweed	3.5
-	FF9/	PHLE	Lemmon's canary grass	0.2
5	55%	POMO	rabbitfoot grass	0.7
		RUAC	sheep sorrel	2.7
		RUCR	curly dock	0.2
		STAJ	bugle hedge nettle	1.7
		TRBA	bearded clover	0.2
		TRDE	sack clover	1.0
		TRGR	pin point clover	1.0
		TRMI	small head clover	0.8
		TRVA	variegated clover	0.2
		VISA	spring vetch	4.2
		TH	Thatch	28.7
		BG	Bare Ground	16.2
		TOTAL		100.0
		BRHO	soft chess	0.3
		ELMA	pale spikerush	9.0
		ERCI	redstem filaree	1.0
		FEBR	brome fescue	2.0
		HYRA	rough cat's-ear	1.0
0	2%	LAGL3	smooth goldfields	42.0
9	۷/۵	MALE	alkali mallow	9.7
		PHLE	Lemmon's canary grass	1.0
		TRDE	sack clover	1.0
		TH	Thatch	33.0
		BG	Bare Ground	0.0
		TOTAL		100.0

		PONE	997	
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover
		AICA	silvery hair-grass	0.3
		BAPI	coyote brush	0.2
		BRDI	ripgut grass	0.3
		BRHO	soft chess	1.3
		BRMI	annual quaking grass	0.7
		BRTET	dwarf brodiaea	0.2
		CIQU	timwort	0.2
		CRAQ	aquatic pygmy-weed	0.2
		ELMA	pale spikerush	0.3
		ERAR12	coyote thistle	8.3
		ERBO	long-beaked filaree	6.0
		FEBR	brome fescue	6.0
1	F9/	HYGL	smooth cat's-ear	1.5
1	5%	HYRA		1.5
		LYAR	scarlet pimpernel	0.3
		LYHY	grass poly	1.2
		LYMI	chaffweed	0.3
		PLCHH	Hickman's popcornflower	1.7
		PLCO	cut-leaved plantain	1.3
		POMO	rabbitfoot grass	1.0
		PS sp.	Pseudognaphalium sp.	0.5
		PSCH	round woolly-marbles	2.2
		SIGA	small-flower catchfly	0.2
		TH	Thatch	18.8
		BG	Bare Ground	45.5
		TOTAL		100.0
2 (CCG)	6%	-	-	-

Table B-3. Pond 997 (Reference) Wetland Vegetation Cover by Stratum

	Table B-3 (continued). Pond	997 (Reference)	Wetland Vegetation Cover by Stratum	
		PONE	997	
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover
		ACAMA	Spanish lotus	0.2
		AICA	silvery hair-grass	1.0
		BRMA	rattlesnake grass	10.0
		BRMI	annual quaking grass	1.2
		CAAMA3	Johnny-Nip	0.3
		DACA	California oat grass	8.0
		DECO	coastal tarweed	1.3
		ERAR12	coyote thistle	2.0
		ERBO	long-beaked filaree	15.2
		FEBR	brome fescue	1.8
		FEMY	rattail sixweeks grass	0.8
		GEDI	cut-leaved geranium	0.2
3	89%	HYGL	smooth cat's-ear	11.2
3	83%	HYRA	rough cat's-ear	1.0
		JUCA	dwarf rush	0.3
		LYAR	scarlet pimpernel	0.2
		LYMI	chaffweed	0.3
		MAGR	gumweed	1.5
		MIPA	marsh microseris	0.3
		PLCO	cut-leaved plantain	0.3
		PS sp.	Pseudognaphalium sp.	0.2
		RUAC	sheep sorrel	0.5
		SIBE	western blue-eyed grass	0.3
		TH	Thatch	31.2
		BG	Bare Ground	10.7
		TOTAL		100.0

Table B-4. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

	-	PON	D 16	
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover
		HECUO	Chinese pusley	4.0
		SCCA	California bulrush	7.0
1	5%	SOAM	small-flowered nightshade	0.3
-	576	TH	Thatch	68.7
		BG	Bare Ground	20.0
		TOTAL		100.0
		ELMA	pale spikerush	44.0
		ERCA	horseweed	0.3
		HEGR	telegraph weed	1.3
		POMO	rabbitfoot grass	2.0
3	34%	PSLU	weedy cudweed	0.7
		SIGA	small-flower catchfly	0.3
		TH	Thatch	43.7
		BG	Bare Ground	7.7
		TOTAL		100.0
		CAPR	clustered field sedge	52.7
		GEDI	cut-leaved geranium	1.3
		JUBA	Baltic rush	1.3
4	10%	RUUR	California blackberry	1.7
		TH	Thatch	42.7
		BG	Bare Ground	0.3
		TOTAL		100.0
		CABA	whiteroot	30.3
		RUUR	California blackberry	6.5
5	32%	SOEL	West Coast Canada goldenrod	7.7
5	52%	TH	Thatch	53.3
		BG	Bare Ground	2.2
		TOTAL		100.0

Table B-4 (continued). Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 16					
Stratum	Relative % Cover of Wetland	Species	Species Common Name	% Cover	
	12%	GEDI	cut-leaved geranium	0.3	
		JUBA	Baltic rush	38.7	
		PSLU	weedy cudweed	0.3	
6		RUUR	California blackberry	1.3	
		TH	Thatch	57.0	
		BG	Bare Ground	2.3	
		TOTAL		100.0	
		BAPI	coyote brush	1.5	
		BRDI	ripgut grass	0.5	
	7%	CIBR	Indian thistle	5.3	
		CIVU	bull thistle	2.2	
		FEBR	brome fescue	1.0	
		GEDI	cut-leaved geranium	0.8	
8		HEGR	telegraph weed	1.3	
		POMO	rabbitfoot grass	49.2	
		PS sp.	Pseudognaphalium sp.	0.2	
		SIGA	small-flower catchfly	0.2	
		ТН	Thatch	25.3	
		BG	Bare Ground	12.5	
		TOTAL		100.0	

POND 39					
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover	
		AICA	silvery hair-grass	0.3	
		BRHO	soft chess	0.3	
		BRMI	annual quaking grass	0.3	
		CIQU	timwort	0.3	
		ELACA	needle spikerush	1.0	
		ELMA	pale spikerush	22.7	
		FEBR	brome fescue	0.7	
		FEPE	Italian rye grass	1.0	
		GEDI	cut-leaved geranium	1.3	
		HYGL	smooth cat's-ear	0.3	
		LAGL3	smooth goldfields	4.3	
1	3%	LYHY	grass poly	0.7	
		PLCHH	Hickman's popcornflower	30.0	
		PLCO	cut-leaved plantain	6.0	
		POMO	rabbitfoot grass	0.7	
		RUCR	curly dock	3.0	
		SOOL	common sow thistle	0.3	
		TRAN	narrow-leaved clover	0.3	
		TRDU	little hop clover	0.3	
		VISA	spring vetch	0.3	
		TH	Thatch	16.3	
		BG	Bare Ground	9.3	
		TOTAL		100.0	

Table B-5. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 39 Species Code Stratum **Relative % Cover of Wetland Species Common Name** % Cover AVBA 0.3 slender wild oat BRDI 0.3 ripgut grass BRHO soft chess 0.3 0.2 BRMI annual quaking grass 4.5 ELMA pale spikerush 2.0 FEBR brome fescue FEPE 35.7 Italian rye grass 5.5 GEDI cut-leaved geranium 0.3 HOBR meadow barley HOMAG Mediterranean barley 1.2 HYGL 0.5 smooth cat's-ear JUBU toad rush 0.2 3 9% JUPH 0.2 brown-headed rush LYHY 0.3 grass poly PLCO 2.2 cut-leaved plantain POAVD 0.3 prostrate knotweed POMO rabbitfoot grass 0.3 0.2 PS sp. Pseudognaphalium sp. 1.5 RUCR curly dock narrow-leaved clover 0.8 TRAN TRDU little hop clover 0.5 VISA 0.5 spring vetch ΤН 32.3 Thatch ΒG 9.8 **Bare Ground** TOTAL 100.0

Table B-5 (continued). Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 39					
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover	
		AICA	silvery hair-grass	0.5	
		AVBA	slender wild oat	0.3	
		BRDI	ripgut grass	0.7	
		BRHO	soft chess	2.8	
		DACA	California oat grass	4.7	
		ERBO	long-beaked filaree	25.0	
		FEBR	brome fescue	0.7	
		FEMY	rattail sixweeks grass	3.3	
		GEDI	cut-leaved geranium	0.2	
		HYGL	smooth cat's-ear	0.8	
		HYRA	rough cat's-ear	0.2	
4	67%	JUPH	brown-headed rush	0.2	
		LYAR	scarlet pimpernel	0.5	
		PLCO	cut-leaved plantain	3.0	
		SIGA	small-flower catchfly	0.2	
		SIMAM	checkerbloom	3.2	
		TAOV	sun cups	0.2	
		TRAN	narrow-leaved clover	5.0	
		TRDU	little hop clover	0.2	
		VISAN	common vetch	0.3	
		TH	Thatch	43.7	
		BG	Bare Ground	4.5	
		TOTAL		100.0	
UPLAND	21%	-		-	

Table B-5 (continued). Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum POND 40 SOUTH						
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover		
		BRHO	soft chess	0.2		
		BRMI	annual quaking grass	0.2		
		ERCI	redstem filaree	0.3		
		FEBR	brome fescue	0.8		
		FEPE	Italian rye grass	54.5		
		GEDI	cut-leaved geranium	1.7		
		HOBR	meadow barley	0.3		
		HYGL	smooth cat's-ear	0.7		
3	37%	LYAR	scarlet pimpernel	0.2		
		MAGR	gumweed	0.2		
		PLCHH	Hickman's popcornflower	0.3		
		PS sp.	Pseudognaphalium sp.	0.2		
		SOOL	common sow thistle	0.3		
		TRAN	narrow-leaved clover	0.2		
		TH	Thatch	34.0		
		BG	Bare Ground	6.0		
		TOTAL		100.0		
		AICA	silvery hair-grass	0.2		
		AVBA	slender wild oat	0.2		
		BRHO	soft chess	1.0		
		BRMI	annual quaking grass	0.2		
		ERBO	long-beaked filaree	39.8		
		FEBR	brome fescue	0.5		
		FEPE	Italian rye grass	0.2		
		GEDI	cut-leaved geranium	0.7		
		HYGL	smooth cat's-ear	1.7		
4	56%	HYRA	rough cat's-ear	0.2		
		JUPH	brown-headed rush	0.2		
		PLCO	cut-leaved plantain	4.0		
		RUAC	sheep sorrel	0.7		
		SIGA	small-flower catchfly	0.3		
		TRAN	narrow-leaved clover	25.0		
		TRDU	little hop clover	0.3		
		TH	Thatch	9.8		
		BG	Bare Ground	15.2		
		TOTAL		100.0		

POND 40 SOUTH					
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover	
		AICA	silvery hair-grass	0.3	
		BRHO	soft chess	0.3	
		CAED	ice plant	0.3	
		DECO	coastal tarweed	0.3	
	7%	ELACA	needle spikerush	0.7	
		ELMA	pale spikerush	2.0	
		ERAR12	coyote thistle	4.0	
		ERBO	long-beaked filaree	0.7	
		FEBR	brome fescue	1.0	
		FEPE	Italian rye grass	4.0	
		GEDI	cut-leaved geranium	6.0	
5		HEGR	telegraph weed	0.7	
5		HYGL	smooth cat's-ear	6.0	
		HYRA	rough cat's-ear	1.3	
		LYAR	scarlet pimpernel	0.7	
		LYHY	grass poly	0.3	
		LYMI	chaffweed	0.3	
		PLCHH	Hickman's popcornflower	14.3	
		PLCO	cut-leaved plantain	20.3	
		TRHI	rose clover	0.3	
		VISAs	spring vetch	2.0	
		TH	Thatch	23.3	
		BG	Bare Ground	10.7	
		TOTAL		100.0	

Table B-6 (continued). Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

Table B-7. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

	POND 41				
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover	
		BRHO	soft chess	1.3	
		DEDA	annual hair grass	1.0	
		ELACA	needle spikerush	1.7	
		ELMA	pale spikerush	1.7	
		GEDI	cut-leaved geranium	7.3	
		HYGL	smooth cat's-ear	0.7	
		LAGL3	smooth goldfields	10.7	
1	3%	MALE	alkali mallow	8.0	
1	376	PHLE	Lemmon's canary grass	2.0	
		PLCHH	Hickman's popcornflower	2.3	
		POMO	rabbitfoot grass	0.3	
		PS sp.	Pseudognaphalium sp.	0.3	
		SOOL	common sow thistle	0.3	
		TH	Thatch	60.3	
		BG	Bare Ground	2.0	
		TOTAL		100.0	
		BRHO	soft chess	2.3	
		BRMI	annual quaking grass	0.2	
		DEDA	annual hair grass	0.2	
		ELACA	needle spikerush	2.3	
		ELMA	pale spikerush	1.5	
		GEDI	cut-leaved geranium	24.0	
		LAGL3	smooth goldfields	0.5	
		MALE	alkali mallow	4.3	
2	91%	MASA	coast tarweed	0.3	
		PHLE	Lemmon's canary grass	10.5	
		PLCHH	Hickman's popcornflower	5.3	
		РОМО	rabbitfoot grass	0.2	
		RUCR	curly dock	0.2	
		STAJ	bugle hedge nettle	0.7	
		TH	Thatch	45.0	
		BG	Bare Ground	2.5	
		TOTAL		100.0	

Cover by Stratum POND 41 Relative % Cover of Stratum **Species Code Species Common Name** % Cover Wetland 0.5 BRHO soft chess 1.3 BRMI annual quaking grass ERBO long-beaked filaree 0.8 7.7 GEDI cut-leaved geranium smooth cat's-ear 1.0 HYGL HYRA rough cat's-ear 0.2 21.7 JUPH brown-headed rush alkali mallow 2.0 MALE 3 5% 1.2 PHLE Lemmon's canary grass PSLU 0.2 weedy cudweed 0.2 RUCR curly dock 0.5 SOOL common sow thistle bugle hedge nettle 0.2 STAJ ΤH Thatch 61.8 0.8 BG Bare Ground TOTAL 100.0 AICA 1.0 silvery hair-grass 0.7 CAAM Johnny-Nip 17.7 DACA California oat grass 6.3 ERAR12 coyote thistle ERBO long-beaked filaree 13.3 4.0 FEBR brome fescue 0.7 FEMY rattail sixweeks grass GEDI cut-leaved geranium 2.0 4 1% HYGL smooth cat's-ear 4.3 JUPH brown-headed rush 0.3 1.7 MAGR gumweed

Table B-7 (continued). Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation

0.3

2.3

31.7

13.7

100.0

alkali mallow

coast tarweed

Thatch

Bare Ground

MALE

MASA

ΤН

BG

TOTAL

Table B-8. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

	POND 42				
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover	
		AGLAV	vernal pool bent grass	0.3	
		BRMI	annual quaking grass	0.7	
		BRTET	dwarf brodiaea	0.3	
		DEDA	annual hair grass	10.7	
		ELACA	needle spikerush	17.0	
		ERAR12	coyote thistle	10.7	
		ERCA	horseweed	0.3	
		FEBR	brome fescue	0.3	
		GAUS	purple cudweed	1.3	
		GEDI	cut-leaved geranium	2.0	
		HYGL	smooth cat's-ear	1.7	
1	18%	HYRA	rough cat's-ear	3.0	
		JUPH	brown-headed rush	0.7	
		LOGA	LOGA narrowleaf cottonrose		
		LYHY	grass poly	1.7	
		PLCHH	Hickman's popcornflower	4.0	
		PLCO	cut-leaved plantain	0.3	
		POMO	rabbitfoot grass	2.0	
		PSCH	round woolly-marbles	1.0	
		SEGL	cutleaf burnweed	0.7	
		TH	Thatch	32.0	
		BG	Bare Ground	9.0	
		TOTAL		100.0	
		CIBR	Indian thistle	0.3	
		COCO	brass buttons	0.3	
		ELACA	needle spikerush	1.0	
2		ELMA	pale spikerush	37.0	
		GEDI	cut-leaved geranium	0.7	
	70/	PHLE	Lemmon's canary grass	0.3	
	7%	PLCHH	Hickman's popcornflower	0.7	
		PSLU	weedy cudweed	0.7	
		SOOL	common sow thistle	0.3	
		ТН	Thatch	57.7	
		BG	Bare Ground	1.0	
		TOTAL		100.0	

	POND 42				
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover	
		AICA	silvery hair-grass	0.2	
		BAPI	coyote brush	0.2	
		BRHO	soft chess	1.5	
		COCO	brass buttons	0.2	
		DEDA	annual hair grass	0.5	
		ELACA	needle spikerush	4.5	
		ERAR12	coyote thistle	5.3	
		GEDI	cut-leaved geranium	4.0	
		HYGL	smooth cat's-ear	0.2	
		HYRA	rough cat's-ear	0.2	
3	22%	JUPH	brown-headed rush	28.2	
		LYHY	grass poly	0.2	
		PLCHH	Hickman's popcornflower	0.3	
		POMO	rabbitfoot grass	0.8	
		PSLU	weedy cudweed	0.2	
		SEGL	cutleaf burnweed	0.8	
		SOAS	prickly sow thistle	0.3	
		SOOL	common sow thistle	1.0	
		TH	Thatch	46.0	
		BG	Bare Ground	5.5	
		TOTAL		100.0	

Table B-8 (continued). Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

POND 42				
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover
		AVBA	slender wild oat	1.0
		BRTET	dwarf brodiaea	0.3
		CAAT	valley tassels	0.3
		CIQU	timwort	0.3
		DACA	California oat grass	2.0
		DECO	coastal tarweed	5.7
		ELACA	needle spikerush	0.3
		ERAR12	coyote thistle	4.3
		ERBO	long-beaked filaree	4.3
		FEBR	brome fescue	0.3
		FEMY	rattail sixweeks grass	0.7
		GEDI	cut-leaved geranium	0.3
4	25%	HYGL	smooth cat's-ear	7.7
4	23%	HYRA	rough cat's-ear	1.3
		LOGA	narrowleaf cottonrose	1.0
		LYAR	scarlet pimpernel	2.0
		LYHY	grass poly	0.7
		LYMI	chaffweed	0.3
		PLCHH	Hickman's popcornflower	0.3
		POMO	rabbitfoot grass	0.7
		PSCH	round woolly-marbles	0.3
		TROB	Capetown grass	0.3
		ZEDA	Davy's centuary	0.3
		TH	Thatch	29.0
		BG	Bare Ground	35.7
		TOTAL		99.7
		BRHO	soft chess	0.3
_		FEBR	brome fescue	0.3
		LYHY	grass poly	0.3
	12%	POMO	rabbitfoot grass	41.7
5	1270	TROB	Capetown grass	0.3
		TH	Thatch	50.3
		BG	Bare Ground	6.7
		TOTAL		100.0
UPLAND	16%	-	-	-

Table B-8 (continued). Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

Table B-9. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

	POND 61					
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover		
2 (CCG)	6%	-	-	-		
		BRHO	soft chess	0.2		
		BRMA	rattlesnake grass	0.3		
		BRMI	annual quaking grass	0.2		
		BRTET	dwarf brodiaea	7.7		
		CIQU	timwort	0.5		
		DECO	coastal tarweed	0.3		
		DEDA	annual hair grass	2.7		
		ELACA	needle spikerush	1.5		
		ERAR12	coyote thistle	6.3		
		FEBR	brome fescue	1.0		
		GEDI	cut-leaved geranium	0.3		
		HYGL	smooth cat's-ear	2.5		
		HYRA	rough cat's-ear	0.2		
3	4%	JUPH	brown-headed rush	0.8		
5	470	LAGL3	smooth goldfields	0.8		
		LYAR	scarlet pimpernel	0.3		
		LYHY	grass poly	1.7		
		LYMI	chaffweed	0.7		
		MIDOD	Douglas' silverpuffs	0.2		
		MIPA	marsh microseris	0.3		
		PLCHH	Hickman's popcornflower	32.5		
		POMO	rabbitfoot grass	0.2		
		POZI	Sacramento mesa mint	1.7		
		PSCH	round woolly-marbles	0.3		
		SOOL	common sow thistle	0.2		
		TH	Thatch	28.8		
		BG	Bare Ground	7.8		
		TOTAL		100.0		

	POND 61				
Stratum	Relative % Cover of Wetland Species Code Species Common Name		Species Common Name	% Cover	
		BRMA	rattlesnake grass	26.7	
		BRHO	soft chess	0.8	
		BRMI	annual quaking grass	1.0	
		BRTET	dwarf brodiaea	1.3	
		CAAMa3	Johnny-Nip	0.3	
		DACA	California oat grass	4.5	
		DECO	coastal tarweed	8.8	
		ERBO	long-beaked filaree	3.7	
		FEBR	brome fescue	3.0	
			cut-leaved geranium	1.0	
		HYGL	smooth cat's-ear	8.7	
4	57%	HYRA	rough cat's-ear	0.3	
		LYAR	scarlet pimpernel	3.5	
		LYHY	grass poly	0.5	
		MA sp.	<i>Madia</i> sp.	0.2	
		MAEL	common madia	0.2	
		MAGR	gumweed	0.2	
		MASA	coast tarweed	0.2	
		MIPA	marsh microseris	1.2	
		SOOL	common sow thistle	0.2	
		TH	Thatch	20.3	
		BG	Bare Ground	13.5	
		TOTAL		100.0	
UPLAND	33%	-	-	-	

Table B-9 (continued). Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Wetland Vegetation Cover by Stratum

	POND 75				
Stratum	Relative % Cover of Wetland	Species Code	Species Common Name	% Cover	
		BRMI	annual quaking grass	2.3	
		ELMA pale spikerush		14.5	
		GAAP	goose grass	0.5	
		GEDI	cut-leaved geranium	11.3	
		HOBR	meadow barley	0.2	
		MALE	alkali mallow	4.0	
1	16%	PHLE	Lemmon's canary grass	0.5	
T	10%	SIMA	milk thistle	12.7	
		SOAS	prickly sow thistle	1.2	
		SOOL	common sow thistle	0.7	
		VEPEX	speedwell	0.2	
		ТН	Thatch	50.5	
		BG	Bare Ground	1.5	
		TOTAL		100.0	
		ELMA	pale spikerush	2.8	
		ELTR3	beardless wild rye	51.8	
2	67%	TH	Thatch	45.0	
		BG	Bare Ground	0.3	
		TOTAL		100.0	
		ELMA	pale spikerush	4.7	
		ELTR3	beardless wild rye	8.0	
		EUOC	western goldenrod	26.3	
2	5%	GAAP	goose grass	0.3	
3	5%	RACA	California buttercup	0.3	
		TH	Thatch	59.7	
		BG	Bare Ground	0.7	
		TOTAL		100.0	
4		BRMI	annual quaking grass	0.3	
		ELTR3	beardless wild rye	5.3	
		JUPH	brown-headed rush	36.3	
	12%	RACA	California buttercup	0.3	
		TH	Thatch	55.0	
		BG	Bare Ground	2.7	
		TOTAL		100.0	

Table B-10. Pond 75 (Baseline) Wetland Vegetation Cover by Stratum

APPENDIX C

Site Photos

This page intentionally left blank

Figure C-1. Pond 5 (Reference): Vegetation Photo Point 1 on 5/6/2022

Figure C-2. Pond 5 (Reference): Vegetation Photo Point 2 on 5/6/2022

Figure C-3. Pond 101 East (East) (Reference): Vegetation Photo Point on 5/6/2022

Figure C-4. Pond 997 (Reference): Vegetation Photo Point on 5/2/2022

Figure C-5. Photo of Contra Costa goldfields (*Lasthenia conjugens*) at Pond 997 (Reference): Vegetation Photo Point on 5/2/2022

Former Fort Ord Wetland Monitoring

Figure C-6. Pond 16 (Year 4 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 5/10/2022

Figure C-7. Photo 1: New population of vernal pool bent grass (*Agrostis lacuna-vernalis*) at Pond 16 (Year 4 Post-Subsurface Munitions Remediation) on 5/10/2022

Figure C-8. Photo 2: New population of vernal pool bent grass (*Agrostis lacuna-vernalis*) at Pond 16 (Year 4 Post-Subsurface Munitions Remediation) on 5/10/2022

Figure C-9. Photo 3: New population of vernal pool bent grass (*Agrostis lacuna-vernalis*) at Pond 16 (Year 4 Post-Subsurface Munitions Remediation) on 5/10/2022

Figure C-10. Pond 39 (Year 4 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 4/29/2022

Figure C-11. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation): Vegetation Photo Point 1 on 4/29/2022

Figure C-12. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation): Vegetation Photo Point 2 on 4/29/2022

Figure C-13. Pond 41 (Year 4 Post-Subsurface Munitions Remediation): Vegetation Photo Point 1 on 5/3/2022

Figure C-14. Pond 41 (Year 4 Post-Subsurface Munitions Remediation): Vegetation Photo Point 2 on 5/3/2022

Figure C-15. Pond 42 (Year 4 Post-Subsurface Munitions Remediation): Vegetation Photo Point on 5/4/2022

Figure C-16. Pond 61 (Year 4 Post-Subsurface Munitions Remediation): Vegetation Photo Point 1 on 4/28/2022

Figure C-17. Pond 61 (Year 4 Post-Subsurface Munitions Remediation): Vegetation Photo Point 2 on 4/28/2022

2022 Annual Report – Appendix C

Former Fort Ord Wetland Monitoring

Figure C-18. Photo 1 of Contra Costa goldfields (*Lasthenia conjugens*) at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) on 3/30/2022

Figure C-20. Photo 3 of Contra Costa goldfields (*Lasthenia conjugens*) at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) on 3/30/2022

Figure C-19. Photo 2 of Contra Costa goldfields (*Lasthenia conjugens*) at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) on 3/30/2022

Figure C-21. Photo 4 of Contra Costa goldfields (*Lasthenia conjugens*) at Pond 61 (Year 4 Post-Subsurface Munitions Remediation) on 3/30/2022

Figure C-22. Pond 75 (Baseline): Vegetation Photo Point 1 on 5/9/2022

Figure C-23. Pond 75 (Baseline): Vegetation Photo Point 2 on 5/9/2022

APPENDIX D

Vegetation Species Richness of Native and Non-Native Species and Wetland Indicator Category by Vernal Pool This page intentionally left blank

Table D-1. Pond 5 (Reference) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 5				
Stratum	Native	Non-Native	Unidentified	
1	4	1	0	
2	4	5	0	
3	9	10	0	
7	4	6	1	
8	7	12	1	
Basin Total	42	31	3	

Table D-2. Pond 101 East (East) (Reference) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 101 East (East)						
Stratum	Stratum Native Non-Native Unidentified					
3	4	4	0			
4	7	7	1			
5	12	11	0			
9 5 4 0						
Basin Total	40	29	3			

Table D-3. Pond 997 (Reference) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 997					
Stratum Native Non-Native Unidentified					
1	9	13	1		
3	9	13	1		
Basin Total	40	23	1		

Table D-4. Pond 16 (Year 4 Post-SubsurfaceMunitions Remediation) Vegetation SpeciesRichness of Native and Non-Native Species by

Stratum						
	Pond 16					
Stratum	Native	Non-Native	Unidentified			
1	3	0	0			
3	3	3	0			
4	3	1	0			
5	3	0	0			
6	2	2	0			
8	3	6	1			
Basin Total	53	32	2			

Table D-5. Pond 39 (Year 4 Post-SubsurfaceMunitions Remediation) Vegetation SpeciesRichness of Native and Non-Native Species by

Stratum						
	Pond 39					
Stratum	Stratum Native Non-Native Unidentified					
1	5	15	0			
3	4	17	1			
4	4	16	0			
Basin Total	42	33	1			

Table D-6. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native

Pond 40 South								
Stratum	Stratum Native Non-Native Unidentified							
3	3	10	1					
4	1	15	0					
5	7	14	0					
Basin Total	27	32	1					

Table D-7. Pond 41 (Year 4 Post-SubsurfaceMunitions Remediation) Vegetation SpeciesRichness of Native and Non-Native Species by

Pond 41							
Stratum Native Non-Native Unidentified							
1	7	5	1				
2	9	5	0				
3	4	9	0				
4	7	6	0				
Basin Total	35	22	1				

Table D-8. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by Stratum

Stratum	Native	Non-Native	Unidentified
1	10	10	0
2	5	4	0
3	6	12	0
4	11	12	0
5	0	5	0
Basin Total	51	33	1

Table D-9. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Vegetation Species Richness of Native and Non-Native Species by

Stratum							
Pond 61							
Stratum Native Non-Native Unidentified							
3	14	11	0				
4	8	11	1				
Basin Total	66	26	2				

Table D-10. Pond 75 (Baseline) Vegetation Species Richness of Native and Non-Native Species by Stratum

Pond 75							
Stratum	atum Native Non-Native Uniden						
1	6	5	0				
2	2	0	0				
3	5	0	0				
4	3	1	0				
Basin Total	28	15	0				

Table D-11. Vegetation Species Richness of Native and Non-Native Species within Entire Vernal PoolBasin at Vernal Pools Monitored in 2022

Vernal Pool	Native	Non-Native	Unidentified	Total
5	42	31	3	76
101 East (East)	40	29	3	72
997	40	23	1	64
16	53	32	2	87
39	42	33	1	76
40 South	27	32	1	60
41	35	22	1	58
42	51	33	1	85
61	66	26	2	94
75	28	15	0	43

Pond 5							
Stratum	OBL	FACW	FAC	FACU	UPL	NL	
1	1	1	0	1	1	1	
2	1	2	1	2	1	2	
3	3	4	2	3	1	6	
7	0	2	1	2	1	5	
8	3	5	2	3	1	6	
Basin Total	7	13	10	15	1	30	

Table D-12. Pond 5 (Reference) Number of Wetland Plants by Indicator Category by Stratum

Table D-13. Pond 101 East (East) (Reference) Number of Wetland Plantsby Indicator Category by Stratum

Pond 101 East (East)								
Stratum	OBL	FACW	FAC	FACU	UPL	NL		
3	1	1	2	1	0	3		
4	1	3	2	3	0	6		
5	1	4	5	4	1	8		
9	2	1	1	3	0	2		
Basin Total	6	13	13	11	3	26		

Table D-14. Pond 997 (Reference) Number of Wetland Plants by Indicator Category by Stratum

Pond 997								
Stratum	OBL	FACW	FAC	FACU	UPL	NL		
1	4	5	3	4	0	7		
3	0	4	4	6	0	9		
Basin Total	5	13	9	8	1	28		

Table D-15. Pond 16 (Year 4 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Pond 16								
Stratum	OBL	FACW	FAC	FACU	UPL	NL		
1	1	0	0	1	0	1		
3	1	2	0	1	0	2		
4	0	2	0	1	0	1		
5	0	0	1	2	0	0		
6	0	2	0	1	0	1		
8	0	1	0	1	0	8		
Basin Total	4	15	16	17	2	33		

Pond 40 South							
Stratum	Stratum OBL FACW FAC FACU UPL NL						
1	5	2	4	3	2	4	
3	2	4	6	2	1	7	
4	0	2	3	6	1	8	
Basin Total	7	15	10	9	3	32	

Table D-16. Pond 39 (Year 4 Post-Subsurface Munitions Remediation) Number of Wetland Plants byIndicator Category by Stratum

Table D-17. Pond 40 South (Year 4 Post-Subsurface Munitions Remediation) Number of WetlandPlants by Indicator Category by Stratum

Pond 40 South							
Stratum	OBL	FACW	FAC	FACU	UPL	NL	
3	1	1	3	1	1	7	
4	0	1	3	6	0	6	
5	4	2	3	4	1	7	
Basin Total	4	9	5	10	3	29	

Table D-18. Pond 41 (Year 4 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Pond 41								
Stratum	OBL	NL						
1	4	3	0	2	1	3		
2	5	3	2	2	0	2		
3	1	3	2	4	1	2		
4	0	3	1	4	0	5		
Basin Total	6	9	12	12	1	18		

Table D-19. Pond 42 (Year 4 Post-Subsurface Munitions Remediation) Number of Wetland Plants by Indicator Category by Stratum

Pond 42								
Stratum	OBL	FACW	FAC	FACU	UPL	NL		
1	3	6	2	2	0	7		
2	4	2	0	0	1	2		
3	4	5	0	4	1	4		
4	3	5	2	3	0	10		
5	1	1	0	1	0	2		
Basin Total	8	14	7	17	2	37		

Pond 61								
Stratum	OBL FACW FAC FACU UPL NL							
3	5	7	2	2	2	7		
4	1	1	3	3	1	11		
Basin Total	9	21	10	10	3	41		

Table D-20. Pond 61 (Year 4 Post-Subsurface Munitions Remediation) Number of Wetland Plants byIndicator Category by Stratum

Table D-21. Pond 75 (Baseline) Number of Wetland Plantsby Indicator Category by Stratum

Pond 75								
Stratum	OBL	OBL FACW FAC FACU UPL						
1	1	3	1	3	1	2		
2	1	0	1	0	0	0		
3	1	1	2	1	0	0		
4	0	1	3	0	0	0		
Basin Total	1	9	7	6	2	18		

Table D-22. Wetland Plants by Indicator Category within Entire Vernal Pool Basin at Vernal Pools Monitored in 2022

Vernal Pool	OBL	FACW	FAC	FACU	UPL	NL	Total	
5	7	13	10	15	1	30	76	
101 East (East)	6	13	13	11	3	26	72	
997	5	13	9	8	1	28	64	
16	4	15	16	17	2	33	87	
39	7	15	10	9	3	32	76	
40 South	4	9	5	10	3	29	60	
41	6	9	12	12	1	18	58	
42	8	14	7	17	2	37	85	
61	9	21	10	10	3	41	94	
75	1	9	7	6	2	18	43	

This page intentionally left blank

APPENDIX E

Species Composition of Follow-Up Wetland Vegetation Monitoring by Vernal Pool This page intentionally left blank

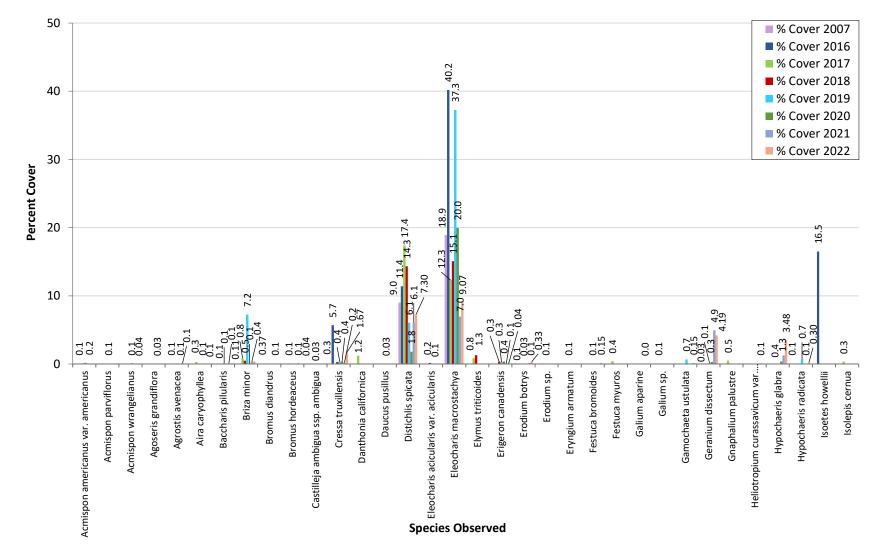
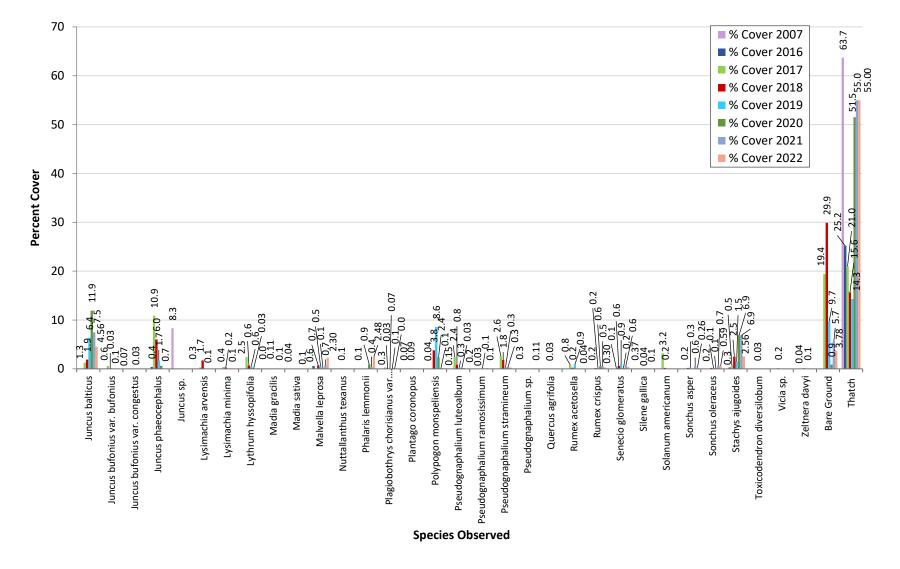



Figure E-1. Comparison Graph of Percent Cover by Wetland Plant Species for 2007, 2016, 2017, 2018, 2019, 2020, 2021, and 2022 at Pond 5 (Reference)

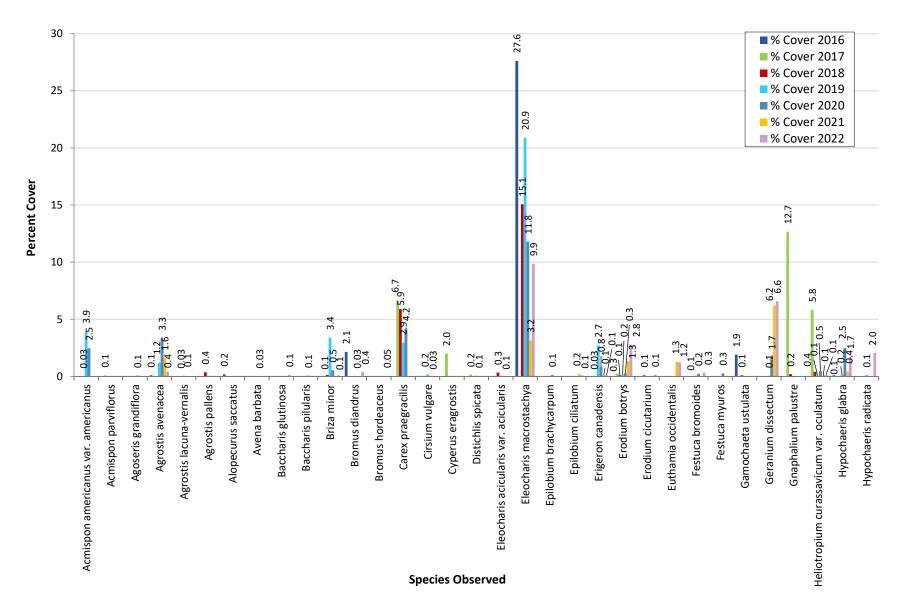
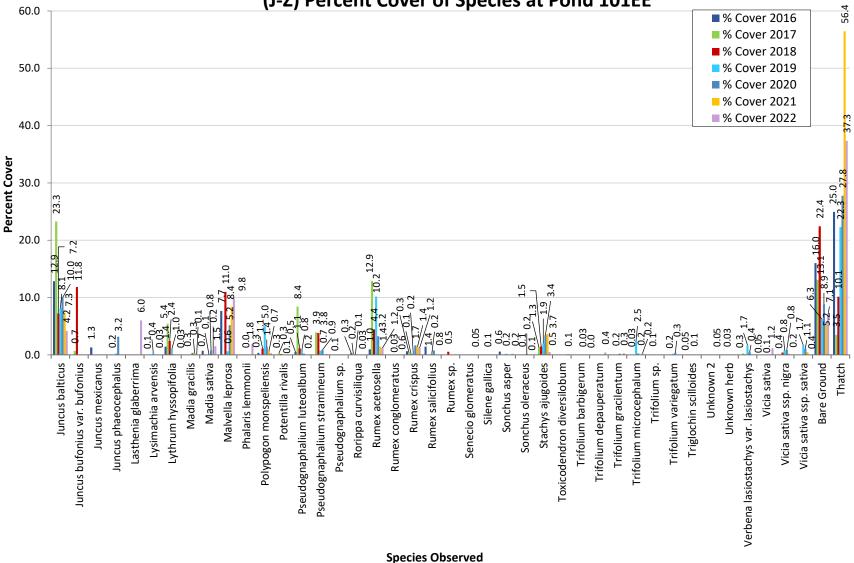



Figure E-2. Comparison Graph of Percent Cover by Wetland Plant Species for 2016, 2017, 2018, 2019, 2020, 2021, and 2022 at Pond 101 East (East)(Reference)

(J-Z) Percent Cover of Species at Pond 101EE

Figure E-2 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 2016, 2017, 2018, 2019, 2020, 2021, and 2022 at Pond 101 East (East) (Reference)

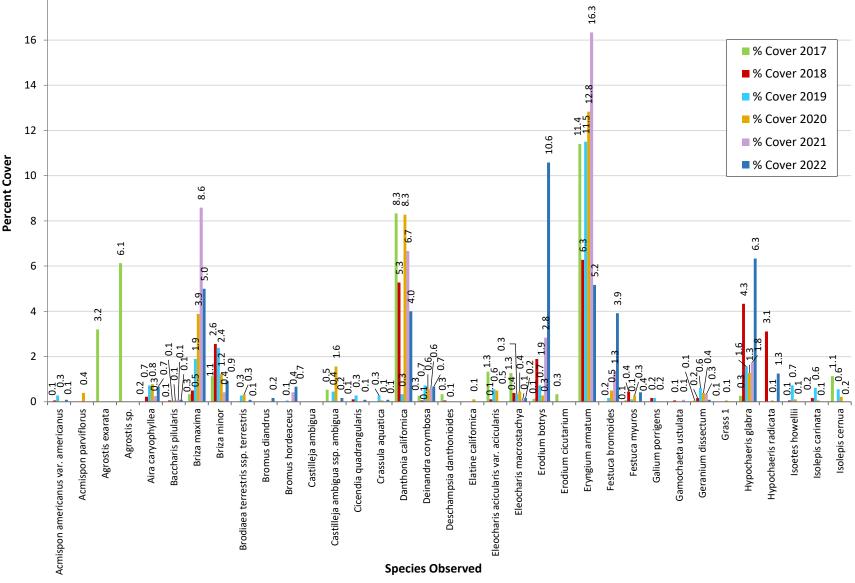


Figure E-3. Comparison Graph of Percent Cover by Wetland Plant Species for 2017, 2018, 2019, 2020, 2021, and 2022 at Pond 997 (Reference)

18

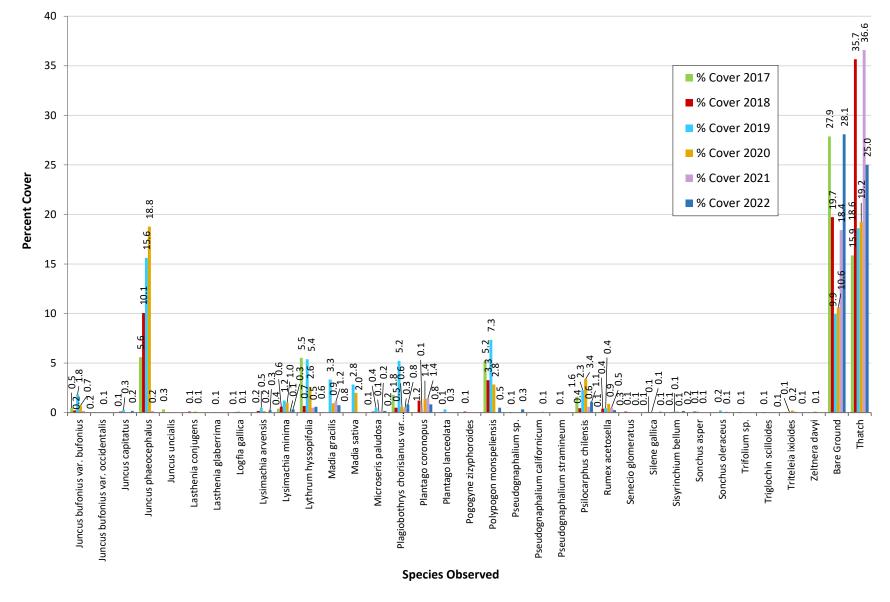
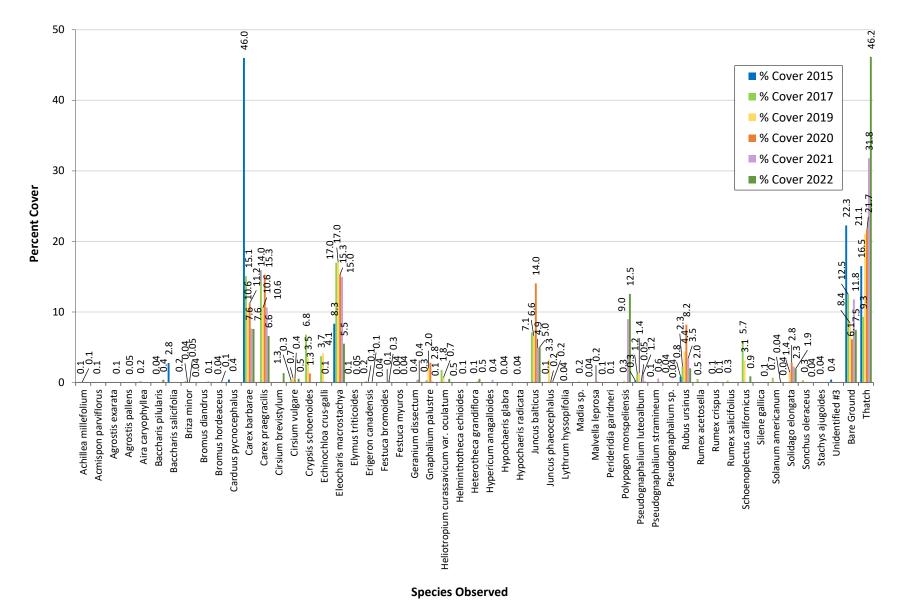
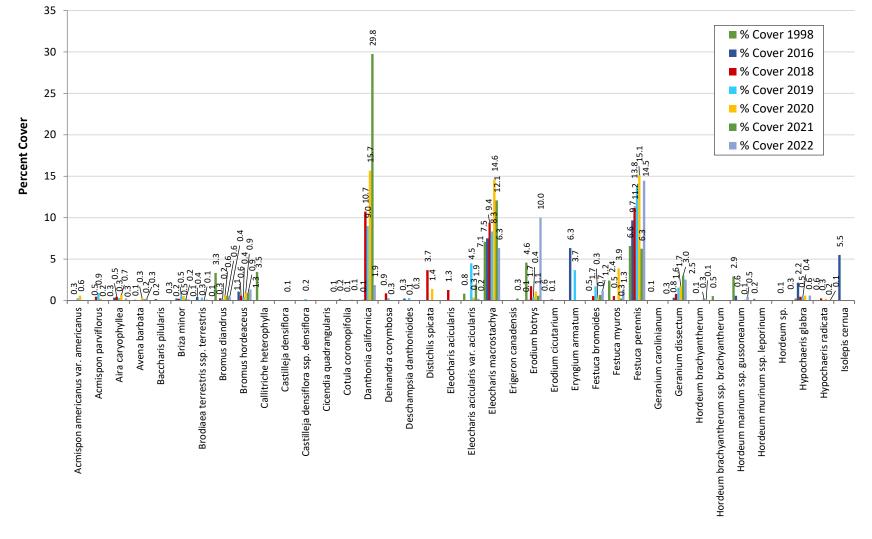
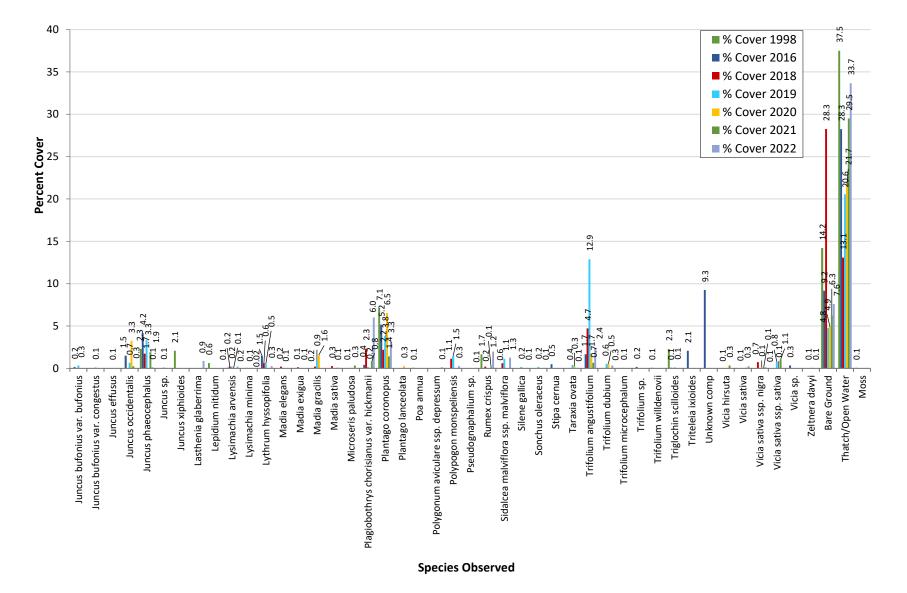
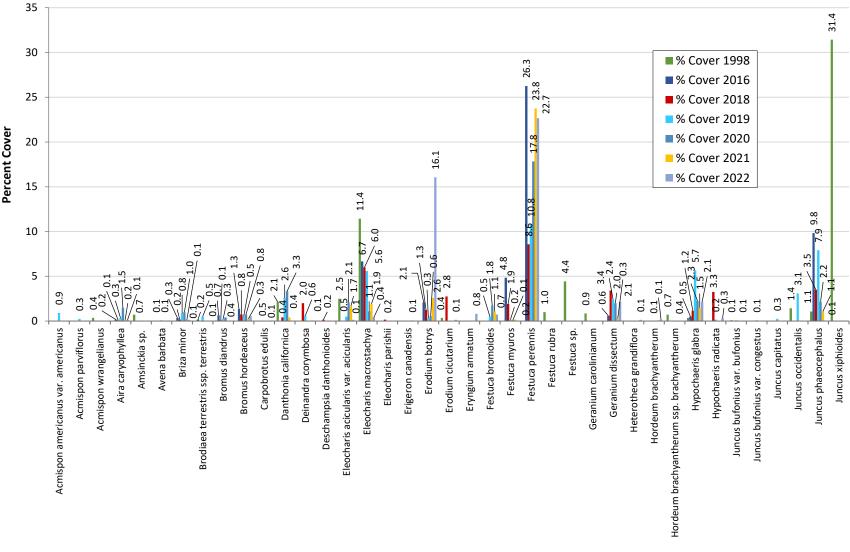




Figure E-3 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 2017, 2018, 2019, 2020, 2021, and 2022 at Pond 997 (Reference)


Figure E-4. Comparison Graph of Percent Cover by Wetland Plant Species for 2015, 2017, 2019, 2020, 2021, and 2022 at Pond 16 (Year 4 Post-Subsurface Munitions Remediation)



Species Observed

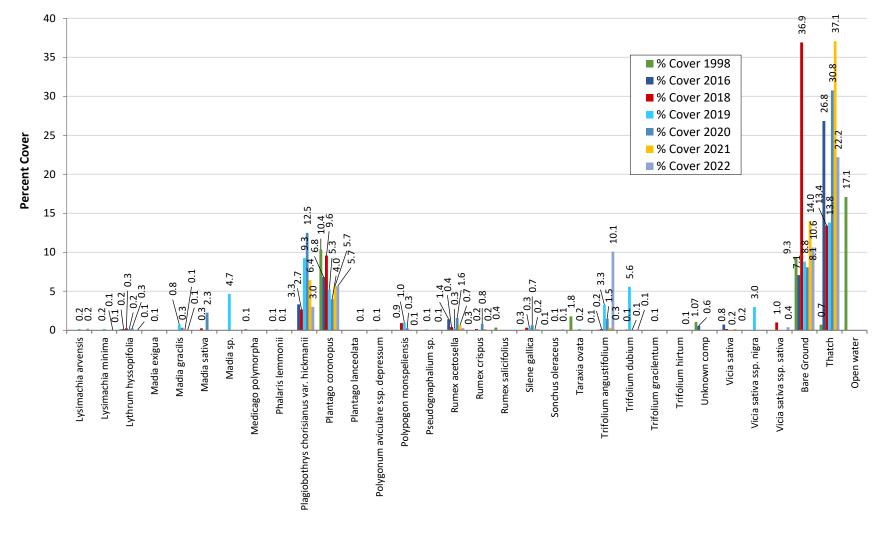
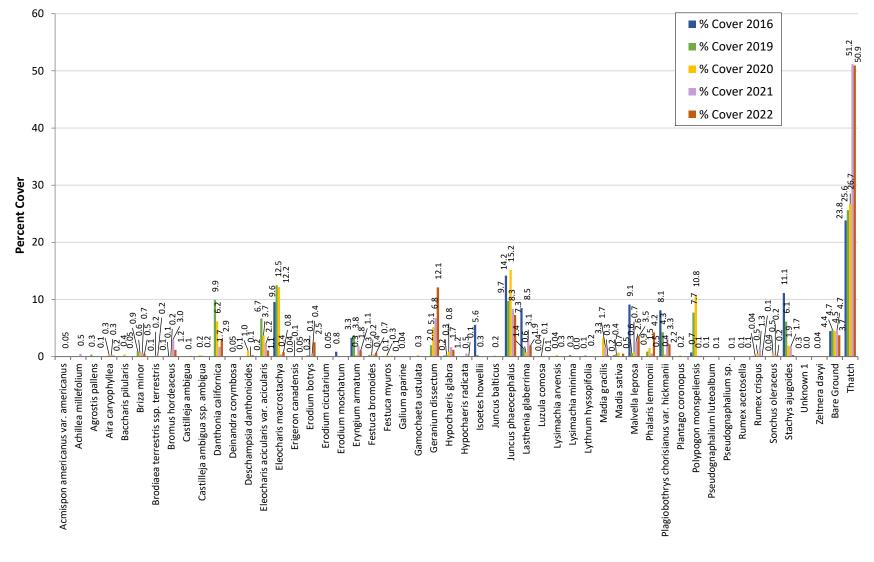

Figure E-5. Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2016, 2018, 2019, 2020, 2021, and 2022 at Pond 39 (Year 4 Post-Subsurface Munitions Remediation)

Figure E-5 (Continued). Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2016, 2018, 2019, 2020, 2021, and 2022 at Pond 39 (Year 4 Post-Subsurface Munitions Remediation)

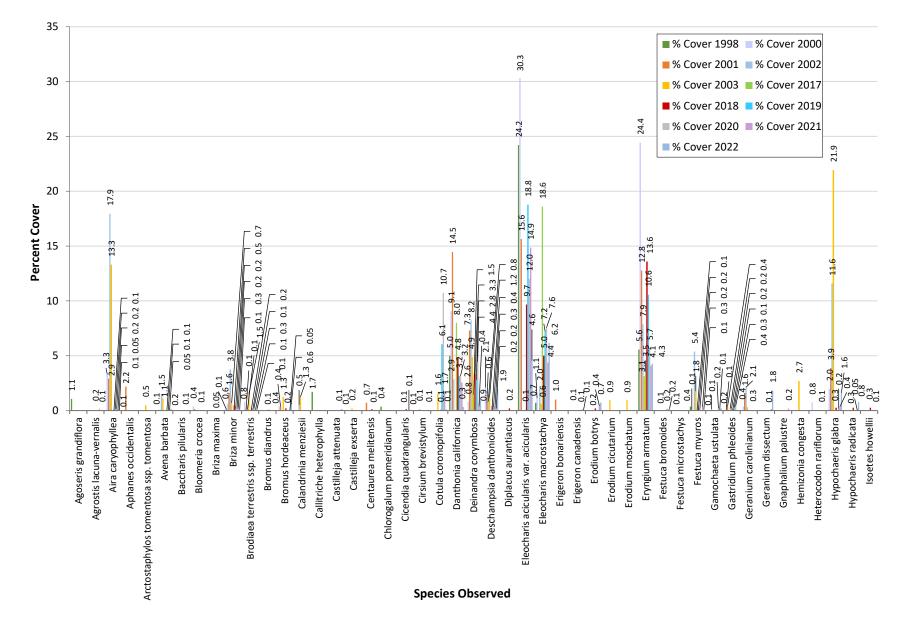
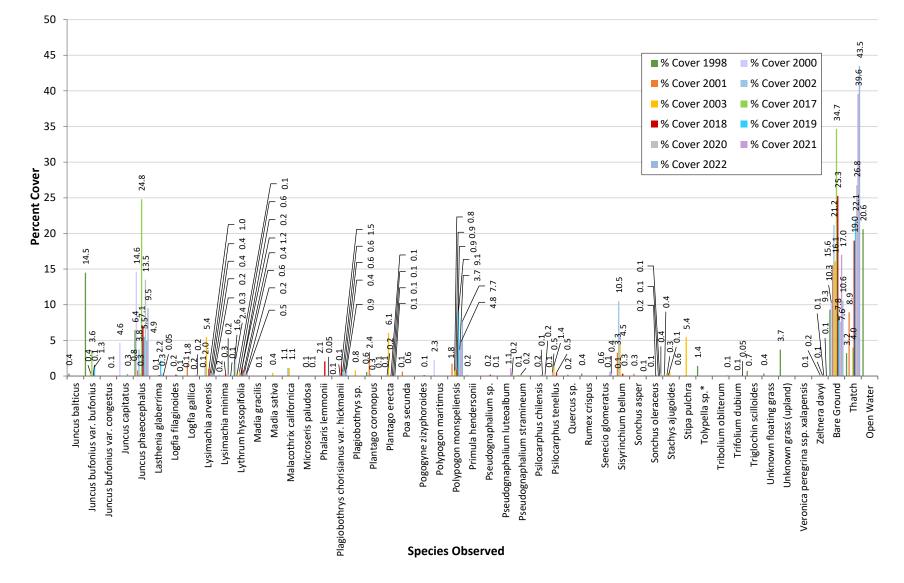
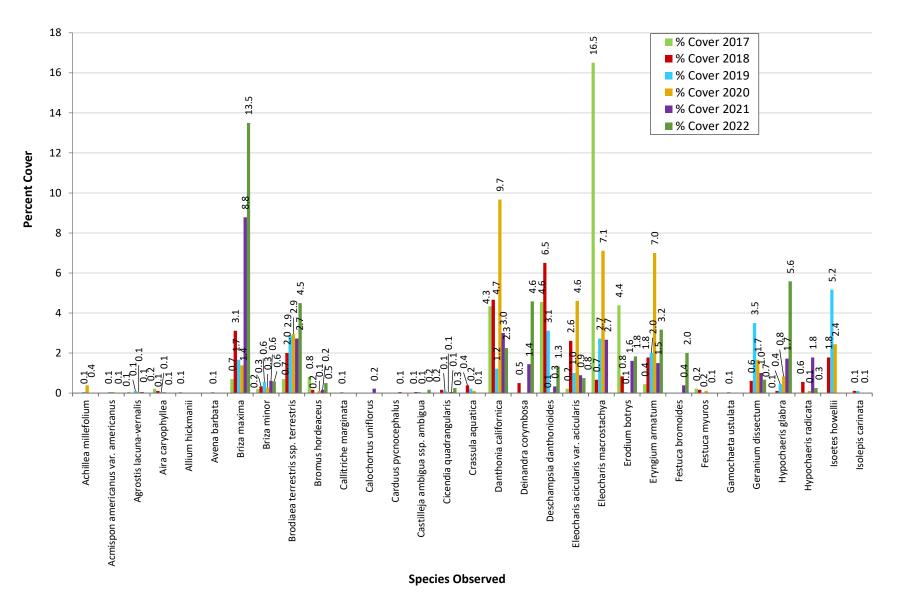
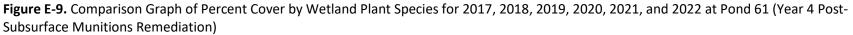

Figure E-6. Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2016, 2018, 2019, 2020, 2021, and 2022 at Pond 40 South (Year 4 Post-Subsurface Munitions Remediation)

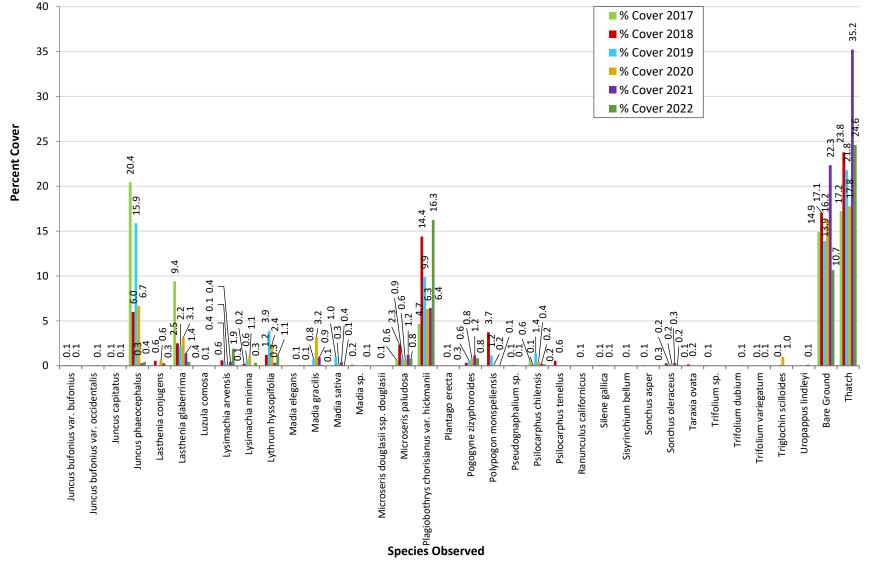
Species Observed

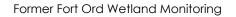
Figure E-6 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2016, 2018, 2019, 2020, 2021, and 2022 at Pond 40 South (Year 4 Post-Subsurface Munitions Remediation)

Species Observed

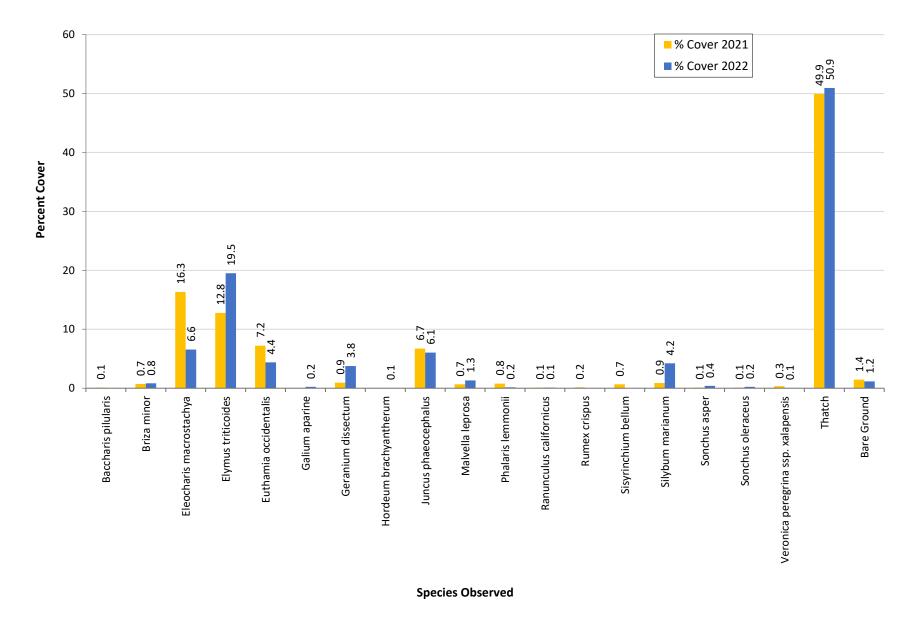
Figure E-7. Comparison Graph of Percent Cover by Wetland Plant Species for 2016, 2019, 2020, 2021, and 2022 at Pond 41 (Year 4 Post-Subsurface Munitions Remediation)

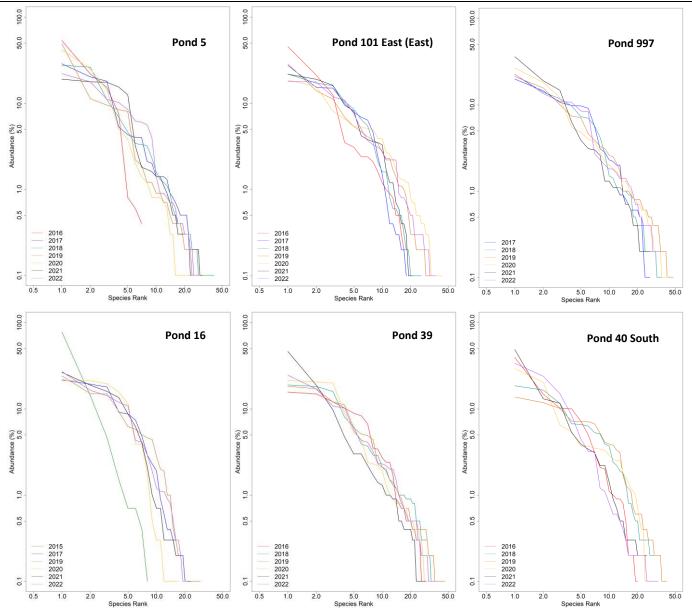






Figure E-8. Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2000, 2001, 2002, 2003, 2017, 2018, 2019, 2020, 2021, and 2022 at Pond 42 (Year 4 Post-Subsurface Munitions Remediation)

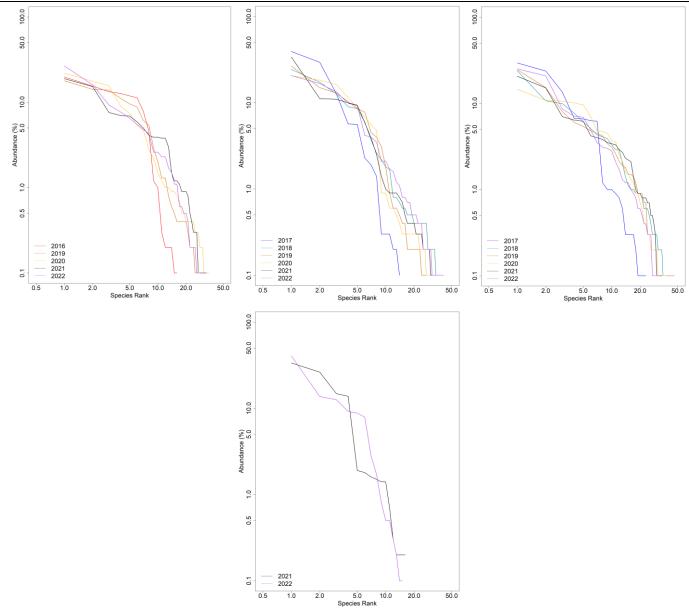

Figure E-8 (continued). Comparison Graph of Percent Cover by Wetland Plant Species for 1998, 2000, 2001, 2002, 2003, 2017, 2018, 2019, 2020, 2021, and 2022 at Pond 42 (Year 4 Post-Subsurface Munitions Remediation)

2022 Annual Report – Appendix E




Figure E-10. Comparison Graph of Percent Cover by Wetland Plant Species for 2021 and 2022 at Pond 75 (Baseline)

This page intentionally left blank


APPENDIX F

Rank Abundance Curves

This page intentionally left blank

Figure F-1. Comparison Plots for RACs by Pond for all years. Top three plots are reference vernal pools. The bottom three plots are vernal pools in their fourth year of monitoring. Both the x-axis and y-axis are in log-10 scale.

Figure F-2, Continued. Comparison Plots for RACs by Pond for all years. All plots are vernal pools in their fourth year of monitoring. Both the x-axis and y-axis are in log-10 scale.