Tables

 Table 6-1

 Performance Monitoring Airflow and Vacuum Measurement Schedule

Maggurgement		Pilot System Operation									Optional 6-Month
Measu	Filor System Operation								System Operation		
Loc	vation	Day 1	Day 2		Day 4	Day 5	WEEK Z		WOTUT Z	WORUT 3	Monthly
LUC		Day I	Day Z	Day 5	Day 4	Day 5	V	V	V	V	wonting
	NIVV-BVV-62-A	<u>X</u>	X	X	X	X	X	X	X	X	X
	MW-BW-63-A	X	X	X	X	X	X	X	X	X	X
Extraction Wells	MW-BW-68-A	<u>X</u>	X	X	X	X	X	X	X	X	X
(Airflow and Vacuum)	MW-BW-69-A	X	Х	Х	X	Х	X	Х	Х	Х	X
	MW-BW-70-A	Х	Х	Х	Х	Х	Х	Х	Х	Х	X
	Interior										
	CTP-SGP-61	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	CTP-SGP-62	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	Perimeter										
	CTP-SGP-51	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	CTP-SGP-52	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	CTP-SGP-53	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	CTP-SGP-54	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Monitoring Probes	CTP-SGP-55	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
(Vacuum)	CTP-SGP-56	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
,	CTP-SGP-57	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	CTP-SGP-58	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	CTP-SGP-59	X	X	X	X	X	X	X	X	X	X
	CTP-SGP-60	X	X	X	X	X	X	X	X	X	X
	Shallow										
	CTP-SGP-35	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
	CTP-SGP-37	X	X	X	X	X	X	X	X	X	X
	CTP-SGP-48	X	X	X	X	X	X	X	X	X	X
Treatment System	Total Airflow	X	X	X	X	X	X	X	X	X	X

Note: Flow rate and vacuum will be monitored at least twice on Day 1, and may be monitored more than once on days 2 through 5 depending on observed trends

Table 6-2
Performance Monitoring Volatile Organic Compound Sampling Schedule

S	Sampling					Pha	se 1 Operat	tion				0	ptional 6 Month	System Operatio	on
	Location	Baseline			Week 1			Week 2	Month 1	Month 2	Month 3	Months 4-5	Month 6	Months 7-8	Month 9
	MW-BW-62-A	1						1	1	1	1		1		1
	MW-BW-63-A	1						1	1	1	1		1		1
Extraction Wells	MW-BW-68-A	1						1	1	1	1		1		1
	MW-BW-69-A	1						1	1	1	1		1		1
	MW-BW-70-A	1						1	1	1	1		1		1
	Interior														
	CTP-SGP-61	3						3	3		3		3		3
	CTP-SGP-62	3						3	3		3		3		3
	Perimeter														
	CTP-SGP-51	3									3				3
	CTP-SGP-52	3							3		3		3		3
	CTP-SGP-53	3									3				3
	CTP-SGP-54	3									3				3
Monitoring Probes	CTP-SGP-55	3							3		3		3		3
	CTP-SGP-56	3									3				3
	CTP-SGP-57	3									3				3
	CTP-SGP-58	3							3		3		3		3
	CTP-SGP-59	3									3				3
	CTP-SGP-60	3							3		3		3		3
	Shallow						-	-							
	CTP-SGP-35	1									1				1
	CTP-SGP-37	1						1	1		1		1		1
	CTP-SGP-48	1						1	1		1		1		1
	6277 Lexington Court														
	CTP-SGP-49 (Sub-Slab)							1	1		1		1		1
	CTP-SGP-50 (Exterior)							1	1		1		1		1
	Sub-total	44	0	0	0	0	0	15	27	5	46	0	27	0	46
								-				-			
5	Sampling		-			Pha	se 1 Operat	tion				0	ptional 6 Month	System Operation	on

S	ampling	Phase 1 Operation								Optional 6 Month System Operation					
					Week 1			Week 2	Month 1	Month 2	Month 3	Months 4-5	Month 6	Months 7-8	Month 9
			Day 1		Day 3										
L	ocation	Baseline	(24-hour)	Day 2	(24-hour)	Day 4	Day 5								l
Soil Vapor	Influent	na	1	1	1	1	1	na	1	1	1	2	1	2	1
Treatment	Lead Carbon Vessel	na	1					na	1	1	1	2	1	2	1
System	Effluent	na	1	1	1	1	1	na	1	1	1	2	1	2	1
	Sub-total	0	3	2	2	2	2	0	3	3	3	6	3	6	3
	Total Samples	44	3	2	2	2	2	15	30	8	49	6	30	6	49

3 MONTH OPERATION	
TOTAL GAS SAMPLES =	15
FIELD DUPLICATES =	ç
CUMULATIVE TOTAL =	166
OPTIONAL 6 MONTH OPERATION	
TOTAL GAS SAMPLES =	9
FIELD DUPLICATES =	ł
CUMULATIVE TOTAL =	96

Table 7-1Practical Quantitation Limits for Volatile Organicsby U.S. Environmental Protection Agency Method TO-15^a

Parameter	Method	Analyte ^b	Reporting Limit (ppbv ^c)	PEL ^d (ppbv)	1/420 th PEL ^e (ppbv)
Volatile Organic Compounds	TO-15	Carbon Tetrachloride	0.5	2.000	4.76
Compoundo		Chloroform Trichloroethene Tetrachloroethene	0.5 0.5 0.5	2,000 25,000 25,000	4.76 59.52 59.52

Notes:

^a U.S. Environmental Protection Agency, 1999, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd Edition, EPA/624/R-96/0106

^b Control will be maintained on all analytes

^c Parts per billion by volume

^d Permissible Exposure Limit. The maximum permitted 8-hour time-weighted-average (TWA) concentration of an airborne contaminant, California Code of Regulations (CCR) Title 8, Section 5155, Table AC-1, Permissible Exposure Limits for Chemical Contaminants.

^e Monterey Bay Unified Air Pollution Control District Rule 1000, Permit Guidelines and Requirements For Sources Emitting Toxic Air Contaminants

Table 7-2Bromofluorobenzene Key Abundance Criteria for Volatile Organicsby U.S. Environmental Protection Agency Method TO-15^a

Mass	Ion Abundance Criteria
50	15 to 40 percent of mass 95
75	30 to 60 percent of mass 95
95	Base peak, 100 percent relative abundance
96	5 to 9 percent of mass 95
173	<2 percent of mass 174
174	>50 percent of mass 95
175	5 to 9 percent of mass 174
176	>95 percent but <101% of mass 174
177	5 to 9 percent of mass 176

Notes:

^a U.S. Environmental Protection Agency, 1999, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd Edition, EPA/624/R-96/0106

Table 7-3Laboratory Control Limits for Surrogate Spikes for Volatile Organicsby U.S. Environmental Protection Agency Method TO-15^a

Analytical Method	Spiking Compounds	Percent Recovery (%)
TO-15	1,2-dichloroethane-d ₄	70-130
	Toluene-d ₈	70-130
	4-Bromofluorobenzene	70-130

Notes:

^a U.S. Environmental Protection Agency, 1999, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd Edition, EPA/624/R-96/0106

Table 7-4Laboratory Control Limits for Internal Standards for Volatile Organicsby U.S. Environmental Protection Agency Method TO-15ª

Analytical Method	Internal Standard	Percent Recovery (%) ^b
TO-15	Bromochloromethane	50-200
	1,4-Difluorobenzene	50-200
	Chlorobenzene- d_5	50-200

Notes:

^a U.S. Environmental Protection Agency, 1999, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd Edition, EPA/624/R-96/0106

^b Internal standard area counts must not vary by more than a factor of two (-50 percent to +100 percent) from the associated 12hr calibration standard (per EPA Functional Guidelines), however, if the recovery is high, and samples are non-detectable then no corrective action is required.

Table 7-5Control Limits for Laboratory Control Samples for Volatile Organicsby U.S. Environmental Protection Agency Method TO-15^a

Analytical Method	Spiking Compounds ^b	Percent Recovery (%)
TO-15	Carbon Tetrachloride	70-130
	Chloroform	70-130
	Trichloroethene	70-130
	Tetrachloroethene	70-130

Notes:

^a U.S. Environmental Protection Agency, 1999, *Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air*, 2nd Edition, EPA/624/R-96/0106

Table 7-6 Summary of Calibration Procedures for Volatile Organics by U.S. Environmental Protection Agency Method TO-15^a

Method	Parameter	Calibration	Frequency	Acceptance Criteria	Corrective Action
TO-15	Volatile Organics	Check instrument tuning	Every 12 hours criteria using BFB ^b	Refer to Table 7-2	1) Retune instrument 2) Repeat BFB analysis
		Multipoint Calibration	Initially and as required (minimum 5 points) (ICAL) ^c	%RSD ^d ≤ 30%	1) Evaluate system 2) Recalibrate
		Continuing calibration	Every 12 hours check standard (CCV) ^e	%Difference ≤ 30%	 Evaluate system Repeat calibration check Recalibrate Reanalyze affected samples

Notes:

^a U.S. Environmental Protection Agency, 1999, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd Edition, EPA/624/R-96/0106 ^bBromofluorobenzene

^cInitial calibration

^dRelative Standard Deviation

^eContinuing calibration verification

Table 7-7 Summary of Internal Quality Control Procedures for Volatile Organics by U.S. Environmental Protection Agency Method TO-15^a

Method	Parameter	QC Element	Frequency	Acceptance Criteria	Corrective Action
TO-15	Volatile Organics	Method blank	1/batch; batch is not to exceed 20 samples	< PQL ^b	1) Check calculations 2) Inspect system 3) Reanalvze blank
		Laboratory duplicate	5 percent of the project samples	RPD ^c < 25% for detections >5 times the detection limit	1) Reanalyze sample 2) Inspect system for anomalies 3) Flag data
		Field duplicate	5 percent of the project samples	RPD ^c < 50% for detections	 Evaluate sampling procedure to determine potential cause No flagging, outlier noted.
		Surrogate spike	Every sample and the method blank	Refer to Table 7-3	 Check calculations Evaluate batch for adverse trends If no interference is evident, digest/reanalyze Narrate any outliers Reanalyze affected samples
		Internal standard (IS)	Every continuing calibration standard and sample	Retention time must be within 30 seconds of the CCV ^d ; IS area in the sample must be within factor of 2 of the IS in the CCV (Table 6)	 Check sensitvity of instrument Evaluate data Reanlayze sample or standard once Narrate any outliers
		Laboratory Control Standard	1/batch; not to exceed 20 samples	Refer to Table 7-4	 Check calculations Reanalyze LCS; if passes, report Reanalyze samples as needed Narrate any outliers

Notes:

^a U.S. Environmental Protection Agency, 1997, *Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air*, 2nd Edition, EPA/624/R-96/0106 ^bPractical Quantitation Limit ^cRelative Percent Difference ^dContinuing Calibration Verification standard

Table 9-1
Summary of Project Team QC Responsibilities

	TASK MANAGER	CONTRACTOR QUALITY CONTROL SYSTEMS MANAGER (CQCSM)	FIELD TECHNICIAN	SITE SAFETY AND HEALTH OFFICER (SSHO)	USACE REP
Preparatory Meeting	Coordinate prep meeting with CQCSM. Discuss task requirements and personnel responsibility.	Schedule and prepare package for the Prep Meeting. Invite USACE Rep a minimum of two days before the Prep Meeting. Discuss the overall QC process, including CQCSMs function as an extension of the Task Manager.	Must ensure that he/she understands the scope of work, assess task readiness, and prevent surprises.	Discuss Site-Specific Health and Safety Plan (SSHP) requirements and Activity Hazard Analyses (AHA).	He/She wants to understand scope of work, judge potential base impacts, and tell you how they would like to be involved on the task.
Preparatory Inspections	Prepare definable features of work. Coordinate with CQCSM. Ensure that plans are approved; materials and equipment are on-site, inspected and acceptable. Note: Prep Inspection status should be discussed at the Prep Meeting.	Ensure that plans, drawings, etc. are complete and approved with comments incorporated. Inspect submittals, materials, equipment, supplies, work areas, etc. prior to starting the task. Document inspection.	Understand the work plan. Communicate and resolve issues such as proposed exceptions or deviations with the Task Manager. Coordinate work schedule with Task Manager.	Inspect work area and other site health and safety requirements. Verify that workers have read and acknowledged the SSHP and AHA. Verify that workers have provided documentation or requisite training and physical exams.	Ensures approvals of submittals, materials, supplies, equipment, testing subs, etc. based on contract requirements. The CQCSM should coordinate and track status of all Government approvals.
Initial Inspection	Initial Phase often resembles on-the-job training. Never assume your task assumptions will be 100% valid. Expect to make procedure refinements based on the situation. Establish quality standards.	The CQCSM will coordinate independent USACE oversight activities. Notify USACE Rep a minimum of two days before the initial inspection. Observe Task Manager/USACE concerns during work performance, and formulate follow-up inspection strategy. Know the standard of quality expected. <u>Note</u> : Task Managers must be advised of proposed changes to Plan/Procedure.	Review task requirements and readiness before you depart to the job site. Are your properly equipped to do task? Don't arrive with expectation of being told what to do. Demonstrate you can follow the plan, effectively perform the work, and complete documentation. Establish an expected "quality standard" with the Task Manager and CQCSM.	The SSHO monitors the workers to independently verify that workers are effectively implementing SSHP procedures. The SSHO may modify AHAs to reflect any unanticipated hazards.	Government oversight may include any of the following; safety checks, task surveillance, material inspections, independent testing, etc., to verify conformance w/contract requirements.
Follow-Up Inspections	Review and discuss follow-up inspections with CQCSM based on results of initial phase inspection.	Perform daily follow-up inspections. Identify and document task inspected. As with Preparatory and Initial Inspections, attach inspection records to your Daily QC Report. Document, communicate and resolve task nonconformance(s) with Task Manager.	Continue to achieve expected quality and productivity. Offer suggestions to the Task Manager to improve productivity. Do not deviate from task procedures and requirements without receiving Task Manager authorization.	Implement Daily Tailgate Safety Meetings. Make sure workers continue to adhere to SSHP and AHA requirements. Evaluate any monitoring data relative to action levels established in the SSHP and AHA.	Coordinate and schedule independent follow-up inspections or testing of ongoing work with CQCSM. Review and approve daily and task- related submittals as required by contract requirements and the Project Submittal Register.
Completion Inspection	Verify that work performance and results will achieve contractual requirements and project objectives.	Notify USACE Rep a minimum of two working days before the Completion Inspection. Escort USACE Rep during Completion Inspection. Perform final review of submittals and testing required by contract (or subcontract). Take lead on Punch List.	Make sure that task completion inspection is scheduled prior to your departure or demobilization from the job site. Complete punch list (action items) based on completion inspection.	Ensure health and safety requirements and submittals (e.g., air monitoring data), if required, have been completed before workers demobilize from site.	Conduct site walk and completion Inspection with CQCSM. Develop punch list of rework items. Discuss schedule for re-inspection.