APPENDIX A Johnson and Ettinger Spreadsheets # APPENDIX A # Johnson and Ettinger Spreadsheets # **Monitoring Well MW-BW-53-A** # Sampled September 9, 2004 Carbon Tetrachloride Trichloroethene Chloroform # Sampled September 15, 2005 Carbon Tetrachloride Trichloroethene Chloroform # **Monitoring Well MW-BW-49-A** # Sampled September 15, 2004 Carbon Tetrachloride Chloroform Sampled September 20, 2005 Carbon Tetrachloride # Soil Gas Location CTP-SGP-35 at 6 Feet BGS # Sampled June 18, 2004 Carbon Tetrachloride Chloroform Tetrachloroethene Trichloroethene DATA ENTRY SHEET Carbon Tetrachloride for Well MW-BW-53-A ampled September 9, 200 | | | | Sampled September | | | |---------------------------------|--|---|---------------------|-------------------------------|---| | GW-SCREEN
Version 3.0; 04/03 | CALCULATE RISK- | BASED GROUNDV | VATER CONCENTR | ATION (enter "X" in "YES" box | X) DTSC
Vapor Intrusion Guidanc | | Reset to Defaults | CALCUL ATE INCOM | YES | OR
POMACTUAL CRO | UNDWATER CONCENTRAT | Interim Final 12/04
(last modified 1/21/05) | | Donamo | (enter "X" in "YES" b | | | | ION | | | | YES | Х | | | | | ENTER Chemical CAS No. (numbers only, | ENTER Initial groundwater conc., C _W | | | | | | no dashes) | (μg/L) | Cł | nemical | | | | 56235 | 1.30E+01 | Carbon | tetrachloride | | | MORE | ENTER
Depth | ENTER | ENTER | ENTER | | | ↓ | below grade
to bottom | Depth | | Average soil/ | ENTER
Average vapor | | | of enclosed
space floor, | below grade
to water table. | SCS
soil type | groundwater
temperature, | flow rate into bldg. (Leave blank to calculate) | | | L _F | L _{WT} | directly above | T _S | Q _{soil} | | | (cm) | (cm) | water table | (°C) | (L/m) | | | | | | | | | ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability) | OR | ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²) | ENTER Vadose zone SCS Soil type Lookup Soil Parameters | ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³) | ENTER Vadose zone soil total porosity, n ^V (unitless) | ENTER Vadose zone soil water-filled porosity, θ_w^{\vee} (cm³/cm³) | |--|----|--|--|---|--|--| | | • | | | | | | | S | | | S | 1.66 | 0.375 | 0.054 | MORE **↓** | ENTER Target risk for carcinogens, TR (unitless) | ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | ENTER Averaging time for carcinogens, AT _C (yrs) | ENTER Averaging time for noncarcinogens, AT _{NC} (yrs) | ENTER Exposure duration, ED (yrs) | ENTER Exposure frequency, EF (days/yr) | |--|---|---|---|-------------------------------------|--| | 1.0E-06 | 1 ate risk-based | 70 | 30 | 30 | 350 | #### Carbon Tetrachloride for Well MW-BW-53-A Sampled September 9, 2004 ABC | ABC | | | | • | | * | | | | | |----------------------|-----------------------|--|--|--|-----------------------|-----------------------|--|---|-------------------------|----------------------| | Diffusivity in air, | Diffusivity in water, | Henry's law constant at reference temperature, | Henry's
law constant
reference
temperature, | Enthalpy of
vaporization at
the normal
boiling point, | Normal boiling point, | Critical temperature, | Organic
carbon
partition
coefficient, | Pure
component
water
solubility, | Unit
risk
factor, | Reference conc., | | D_a | D_w | Н | T_R | $\Delta H_{v,b}$ | T_B | T_C | K _{oc} | S | URF | RfC | | (cm ² /s) | (cm ² /s) | (atm-m ³ /mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | $(\mu g/m^3)^{-1}$ | (mg/m ³) | | | | - | - | - | • | | | • | | | | 7.80E-02 | 8.80E-06 | 3.03E-02 | 25 | 7,127 | 349.90 | 556.60 | 1.74E+02 | 7.93E+02 | 4.2E-05 | 4.0E-02 | #### INTERMEDIATE CALCULATIONS SHEET Carbon Tetrachloride for Well MW-BW-53-A Sampled September 9, 2004 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone effective total fluid saturation, S _{te} (cm³/cm³) | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone
soil
relative air
permeability,
k _{rg}
(cm²) | Vadose zone
soil
effective vapor
permeability,
k _v
(cm ²) | Thickness of capillary zone, L _{cz} (cm) | Total porosity in capillary zone, n _{cz} (cm ³ /cm ³) | Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³) | Water-filled porosity in capillary zone, $\theta_{w,cz} = \frac{(cm^3/cm^3)}{cm^2}$ | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | : | |--|--|---|---|--|---|---|---|--|---|---|----------------------| | 2915.96 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 17.05 | 0.375 | 0.122 | 0.253 | 4,000 | | | Bldg.
ventilation
rate,
Q _{bullding}
(cm ³ /s) | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack depth below grade, Z _{crack} (cm) | Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol) | Henry's law constant at ave. groundwater temperature, H_{TS} (atm-m 3 /mol) | Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
μ _{TS}
(g/cm-s) | Vadose zone
effective
diffusion
coefficient,
D ^{eff} _V
(cm ² /s) | Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s) | Total overall effective diffusion coefficient, D ^{eff} _T (cm ² /s) | | | 3.39E+04 | 1.00E+06 | 5.00E-03 | 15 | 7,778 | 2.21E-02 | 9.26E-01 | 1.78E-04 | 1.26E-02 | 5.00E-04 | 1.10E-02 | | | Diffusion
path
length, | Convection path length, | Source
vapor
conc., | Crack
radius, | Average
vapor
flow rate
into bldg., | Crack
effective
diffusion
coefficient, | Area of crack, | Exponent of equivalent foundation Peclet number, | Infinite
source
indoor
attenuation
coefficient, | Infinite
source
bldg.
conc., | Unit
risk
factor, | Reference conc., | | L _d | L_{p} | C _{source} | r _{crack} | Q_{soil} | D ^{crack} | A _{crack} | exp(Pe ^t) | α | C_{building} | URF | RfC | | (cm) | (cm) | (μg/m³) | (cm) | (cm ³ /s) | (cm ² /s) | (cm ²) | (unitless) | (unitless) | (µg/m³) | (μg/m³) ⁻¹ | (mg/m ³) | | 2915.96 | 15 | 1.20E+04 | 1.25 | 8.33E+01 | 1.26E-02 | 5.00E+03 | 5.50E+05 | 1.07E-04 | 1.29E+00 | 4.2E-05 | 4.0E-02 | #### RESULTS SHEET Carbon Tetrachloride for Well MW-BW-53-A Sampled September 9, 2004 # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: #### INCREMENTAL RISK CALCULATIONS: | Indoor
exposure
groundwater
conc.,
carcinogen
(µg/L) | Indoor
exposure
groundwater
conc.,
noncarcinogen
(µg/L) | Risk-based
indoor
exposure
groundwater
conc.,
(µg/L) | Pure
component
water
solubility,
S
(μg/L) | Final indoor exposure groundwater conc., (µg/L) | | Incremental
risk from
vapor
intrusion to
indoor air,
carcinogen
(unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) | |---|--|---|--|---|-----|--|--| | NA | NA | NA | 7.93E+05 | NA |] [| 2.2E-05 | 3.1E-02 | | | | | | | | | | MESSAGE SUMMARY BELOW: #### DATA ENTRY SHEET Trichloroethene for Well MW-BW-53-A Sampled September 9, 2004 Chemical **GW-SCREEN** Version 3.0; 04/03 Reset to Defaults CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) YES OR DTSC **Vapor Intrusion Guidance** Interim
Final 12/04 (last modified 1/21/05) CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES **ENTER ENTER** Initial Chemical groundwater CAS No. conc., (numbers only, C_{W} no dashes) (μg/L) | 79016 | 4.90E+00 | Tric | hloroethylene | |--------------------------------|------------------------------------|-----------------------------|--------------------------------| | ENTER
Depth | ENTER | ENTER | ENTER | | below grade
to bottom | Depth | | Average
soil/ | | of enclosed | below grade | SCS | groundwater | | space floor,
L _F | to water table,
L _{WT} | soil type
directly above | temperature,
T _S | | (cm) | (cm) | water table | (°C) | | | | | - | | 15 | 2930.96 | S | 18 | **ENTER** Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m) 5 MORE MORE 4 | ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability) | OR | ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²) | ENTER Vadose zone SCS SOII type Lookup Soil Parameters | ENTER Vadose zone soil dry bulk density, Pb (g/cm³) | ENTER Vadose zone soil total porosity, n ^V (unitless) | ENTER Vadose zone soil water-filled porosity, $\theta_w^{\ V}$ (cm^3/cm^3) | |--|----|--|--|---|--|---| | S | | | S | 1.66 | 0.375 | 0.054 | MORE | ENTER
Target | ENTER
Target hazard | ENTER
Averaging | ENTER
Averaging | ENTER | ENTER | |-----------------|------------------------|--------------------|--------------------|-----------|-----------| | risk for | quotient for | time for | time for | Exposure | Exposure | | carcinogens, | noncarcinogens, | carcinogens, | noncarcinogens, | duration, | frequency | | TR | THQ | AT _C | AT _{NC} | ED | EF | | (unitless) | (unitless) | (yrs) | (yrs) | (yrs) | (days/yr) | | 1.0E-06 | 1 | 70 | 30 | 30 | 350 | Used to calculate risk-based groundwater concentration. #### Trichloroethene for Well MW-BW-53-A Sampled September 9, 2004 ARC: | ABC | | | | | | , | | | | | |------------------------|-----------------------|--|--|---|-----------------------------|-----------------------|--|---|-------------------------|----------------------| | Diffusivity
in air, | Diffusivity in water. | Henry's law constant at reference temperature. | Henry's
law constant
reference
temperature. | Enthalpy of vaporization at the normal boiling point, | Normal
boiling
point, | Critical temperature, | Organic
carbon
partition
coefficient. | Pure
component
water
solubility. | Unit
risk
factor, | Reference conc., | | Da | D_{w} | . H | T _R | $\Delta H_{v,b}$ | T _B | T _C | K _{oc} | S | URF | RfC | | (cm ² /s) | (cm ² /s) | (atm-m ³ /mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | $(\mu g/m^3)^{-1}$ | (mg/m ³) | | | | | | | | | | | | | | 7.90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7,505 | 360.36 | 544.20 | 1.66E+02 | 1.47E+03 | 2.0E-06 | 6.0E-01 | #### INTERMEDIATE CALCULATIONS SHEET #### Trichloroethene for Well MW-BW-53-A Sampled September 9, 2004 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone effective total fluid saturation, S _{te} (cm³/cm³) | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone soil relative air permeability, k_{rg} (cm^2) | Vadose zone soil effective vapor permeability, k _v (cm²) | Thickness of capillary zone, L _{cz} (cm) | Total porosity in capillary zone, n _{cz} (cm ³ /cm ³) | Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³) | Water-filled porosity in capillary zone, $\theta_{w,cz} = (cm^3/cm^3)$ | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | | |--|--|---|---|--|--|---|---|--|---|--|----------------------------| | 2915.96 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 17.05 | 0.375 | 0.122 | 0.253 | 4,000 | j | | Bldg.
ventilation
rate,
Q _{building}
(cm ³ /s) | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack depth below grade, Z _{crack} (cm) | Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol) | Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol) | Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
μ _{TS}
(g/cm-s) | Vadose zone
effective
diffusion
coefficient,
D ^{eff} _V
(cm ² /s) | Capillary
zone
effective
diffusion
coefficient,
D ^{eff} _{cz}
(cm ² /s) | Total overall effective diffusion coefficient, Deff_T (cm²/s) | | | 3.39E+04 | 1.00E+06 | 5.00E-03 | 15 | 8,458 | 7.29E-03 | 3.05E-01 | 1.78E-04 | 1.28E-02 | 5.08E-04 | 1.12E-02 | j | | Diffusion
path
length,
L _d | Convection path length, | Source vapor conc., | Crack
radius,
r _{crack} | Average
vapor
flow rate
into bldg.,
Q _{soil} | Crack
effective
diffusion
coefficient,
D ^{crack} | Area of
crack,
A _{crack} | Exponent of equivalent foundation Peclet number, exp(Pef) | Infinite source indoor attenuation coefficient, | Infinite
source
bldg.
conc.,
C _{building} | Unit
risk
factor,
URF | Reference
conc.,
RfC | | (cm) | (cm) | (µg/m³) | (cm) | (cm ³ /s) | (cm ² /s) | (cm ²) | (unitless) | (unitless) | (μg/m³) | (μg/m³) ⁻¹ | (mg/m ³) | | , , | , , | ,, , | ` ' | , , | , , | , , | • | | ,, , | , | | | 2915.96 | 15 | 1.49E+03 | 1.25 | 8.33E+01 | 1.28E-02 | 5.00E+03 | 4.65E+05 | 1.08E-04 | 1.62E-01 | 2.0E-06 | 6.0E-01 | #### RESULTS SHEET Trichloroethene for Well MW-BW-53-A Sampled September 9, 2004 # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: # INCREMENTAL RISK CALCULATIONS: | groundwater gr
conc., | exposure
oundwater | Risk-based indoor exposure groundwater conc., (μg/L) | Pure
component
water
solubility,
S
(μg/L) | Final indoor exposure groundwater conc., (µg/L) | · | Incremental
risk from
vapor
intrusion to
indoor air,
carcinogen
(unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) | |--------------------------|-----------------------|--|--|---|---|--|--| | NA | NA | NA | 1.47E+06 | NA | | 1.3E-07 | 2.6E-04 | MESSAGE SUMMARY BELOW: #### DATA ENTRY SHEET Chloroform for Well MW-BW-53-A Sampled September 9, 2004 Chemical GW-SCREEN Version 3.0; 04/03 CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) DTSC **Vapor Intrusion Guidance** Interim Final 12/04 (last modified 1/21/05) Reset to Defaults YES OR CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES **ENTER ENTER** Initial groundwater Chemical CAS No. conc., (numbers only, C_{W} no dashes) (μg/L) (cm) 15 1.60E+00 67663 Chloroform **ENTER ENTER ENTER ENTER** Depth below grade Average to bottom Depth soil/ of enclosed below grade SCS groundwater to water table, temperature, space floor, soil type directly above L_F L_{WT} T_S (cm) 2930.96 water table S ENTER Average vapor flow rate into bldg. (Leave blank to calculate) 5 \mathbf{Q}_{soil} (L/m) MORE MORE Ψ | ENTER
Vadose zone | | ENTER
User-defined | ENTER | ENTER | ENTER | ENTER | |----------------------|----|----------------------------|--------------------|-------------------------|------------------------|-------------------------------------| | SCS
soil type | | vandose zone
soil vapor | Vadose zone
SCS | Vadose zone
soil dry | Vadose zone soil total | Vadose zone soil water-filled | | (used to estimate | OR | permeability, | soil type | bulk density, | porosity, | porosity, | | soil vapor | | k_v | Lookup Soil | $\rho_b^{\ V}$ | n ^V | $\theta_{\mathbf{w}}^{\ \ V}$ | | permeability) | | (cm ²) | Parameters | (g/cm ³) | (unitless) | (cm ³ /cm ³) | | | | | | | | | | 9 | | | S | 1 66 | 0.375 | 0.054 | (°C) 18 MORE
 ENTER Target risk for carcinogens, TR (unitless) | ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | ENTER Averaging time for carcinogens, AT _C (yrs) | ENTER Averaging time for noncarcinogens, AT _{NC} (yrs) | ENTER Exposure duration, ED (yrs) | ENTER Exposure frequency, EF (days/yr) | |--|---|---|---|-------------------------------------|--| | 1.0E-06 | 1 | 70 | 30 | 30 | 350 | Used to calculate risk-based groundwater concentration. #### Chloroform for Well MW-BW-53-A Sampled September 9, 2004 ARC: | ABC | | | | • | | , | | | | | |----------------------|-----------------------|---|--|---|-----------------------|-----------------------|--|---|------------------------------------|----------------------| | Diffusivity in air, | Diffusivity in water, | Henry's
law constant
at reference
temperature, | Henry's
law constant
reference
temperature, | Enthalpy of vaporization at the normal boiling point, | Normal boiling point, | Critical temperature, | Organic
carbon
partition
coefficient, | Pure
component
water
solubility, | Unit
risk
factor, | Reference conc., | | Da | D_w | Н | T _R | $\Delta H_{v,b}$ | T _B | T _C | K _{oc} | S | URF | RfC | | (cm ² /s) | (cm ² /s) | (atm-m ³ /mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | (μg/m ³) ⁻¹ | (mg/m ³) | | | | | | | | | | | | | | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 6.988 | 334.32 | 536.40 | 3.98E+01 | 7.92E+03 | 5.3E-06 | 3.0E-01 | # INTERMEDIATE CALCULATIONS SHEET #### Chloroform for Well MW-BW-53-A Sampled September 9, 2004 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone effective total fluid saturation, S _{te} (cm³/cm³) | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone
soil
relative air
permeability,
k _{rg}
(cm²) | Vadose zone
soil
effective vapor
permeability,
k _v
(cm²) | Thickness of capillary zone, L _{cz} (cm) | Total porosity in capillary zone, n _{cz} (cm ³ /cm ³) | Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³) | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm^3/cm^3) | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | · | |--|--|---|---|---|--|---|---|--|--|--|----------------------| | 2915.96 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 17.05 | 0.375 | 0.122 | 0.253 | 4,000 | | | Bldg.
ventilation
rate,
Q _{building}
(cm ³ /s) | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack depth below grade, Z _{crack} (cm) | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol) | Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless) | Vapor viscosity at ave. soil temperature, | Vadose zone effective diffusion coefficient, Deff (cm²/s) | Capillary zone effective diffusion coefficient, Deff cz (cm²/s) | Total overall effective diffusion coefficient, Deff_T (cm²/s) | | | 3.39E+04 | 1.00E+06 | 5.00E-03 | 15 | 7,471 | 2.70E-03 | 1.13E-01 | 1.78E-04 | 1.68E-02 | 6.73E-04 | 1.47E-02 | | | Diffusion
path | Convection path | Source
vapor | Crack | Average
vapor
flow rate | Crack
effective
diffusion | Area of | Exponent of equivalent foundation Peclet | Infinite
source
indoor
attenuation | Infinite
source
bldg. | Unit
risk | Reference | | length, | length, | conc., | radius, | into bldg., | coefficient, | crack, | number, | coefficient, | conc., | factor, | conc., | | L _d | L _p | C _{source} | r _{crack} | Q_{soil} | D ^{crack} | A _{crack} | exp(Pef) | α | C _{building} | URF | RfC | | (cm) | (cm) | (μg/m ³) | (cm) | (cm ³ /s) | (cm ² /s) | (cm ²) | (unitless) | (unitless) | (μg/m ³) | $(\mu g/m^3)^{-1}$ | (mg/m ³) | | (311) | () | (1.5) | () | (= 1,5) | ζ=,σ/ | (/ | (2 | (2 | (1.5) | (F.O) | (5) | | 2915.96 | 15 | 1.81E+02 | 1.25 | 8.33E+01 | 1.68E-02 | 5.00E+03 | 2.02E+04 | 1.41E-04 | 2.55E-02 | 5.3E-06 | 3.0E-01 | 4/18/2006 8:47 PM #### RESULTS SHEET Chloroform for Well MW-BW-53-A Sampled September 9, 2004 # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: # INCREMENTAL RISK CALCULATIONS: | conc., conc., groundwater solubility, groundwater | risk from
vapor
intrusion to
indoor air,
carcinogen
(unitless) | quotient
from vapor
intrusion to
indoor air,
noncarcinogen
(unitless) | |---|---|--| | NA NA NA 7.92E+06 NA | 5.5E-08 | 8.1E-05 | MESSAGE SUMMARY BELOW: #### DATA ENTRY SHEET Carbon Tetrachloride for Well MW-BW-53-A Sampled September 15, 2005 GW-SCREEN CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) DTSC Version 3.0; 04/03 **Vapor Intrusion Guidance** YES Interim Final 12/04 Reset to OR (last modified 1/21/05) Defaults CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES **ENTER ENTER** Initial groundwater Chemical CAS No. conc., (numbers only, C_{W} no dashes) (μg/L) Chemical 7.60E+00 56235 Carbon tetrachloride **ENTER ENTER ENTER ENTER** MORE Depth Ψ below grade Average to bottom Depth soil/ of enclosed below grade SCS groundwater to water table, space floor, soil type temperature, directly above T_{S} L_F L_{WT} (°C) water table (cm) (cm) 2930.96 15 S 18 ENTER Average vapor flow rate into bldg. (Leave blank to calculate) \mathbf{Q}_{soil} (L/m) 5 MORE | ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability) | OR | ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²) | ENTER Vadose zone SCS soil type Lookup Soil Parameters | ENTER Vadose zone soil dry bulk density, $\rho_b^{\ \ \nu}$ (g/cm³) | ENTER Vadose zone soil total porosity, n ^V (unitless) | ENTER Vadose zone soil water-filled porosity, $\theta_w^{\ V}$ (cm^3/cm^3) | |--|----|--|--|---|--|--| | S | | | S | 1.66 | 0.375 | 0.054 | MORE | ENTER
Target | ENTER
Target hazard | ENTER
Averaging | ENTER
Averaging | ENTER | ENTER | |-----------------|------------------------|--------------------|--------------------|-----------|-----------| | risk for | quotient for | time for | time for | Exposure | Exposure | | carcinogens, | noncarcinogens, | carcinogens, | noncarcinogens, | duration, | frequency | | TR | THQ | AT _C | AT _{NC} | ED | EF | | (unitless) | (unitless) | (yrs) | (yrs) | (yrs) | (days/yr) | | 1.0E-06 | 1 | 70 | 30 | 30 | 350 | Used to calculate risk-based groundwater concentration. #### Carbon Tetrachloride for Well MW-BW-53-A Sampled September 15, 2005 ABC | ABC | | | | | | -, | | | | | |----------------------|-----------------------|---|--|---|-----------------------------|-----------------------|--|---|-------------------------|----------------------| | Diffusivity in air, | Diffusivity in water, | Henry's
law constant
at reference
temperature, | Henry's
law constant
reference
temperature, | Enthalpy of vaporization at the normal boiling point, | Normal
boiling
point, | Critical temperature, | Organic
carbon
partition
coefficient, | Pure
component
water
solubility, | Unit
risk
factor, | Reference conc., | | Da | D_{w} | . H | T _R | $\Delta H_{v,b}$ | T _B | T _C | K _{oc} | S | URF | RfC | | (cm ² /s) | (cm ² /s) | (atm-m ³ /mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | $(\mu g/m^3)^{-1}$ | (mg/m ³) | | | | | | | | | | | | | | 7.80E-02 | 8.80E-06 | 3.03E-02 | 25 | 7,127 | 349.90 | 556.60 | 1.74E+02 | 7.93E+02 |
4.2E-05 | 4.0E-02 | #### INTERMEDIATE CALCULATIONS SHEET Carbon Tetrachloride for Well MW-BW-53-A Sampled September 15, 2005 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone
effective
total fluid
saturation,
S _{te}
(cm³/cm³) | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone soil relative air permeability, k_{rg} (cm ²) | Vadose zone soil effective vapor permeability, k _v (cm ²) | Thickness of capillary zone, L _{cz} (cm) | Total porosity in capillary zone, n _{cz} (cm ³ /cm ³) | Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³) | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm ³ /cm ³) | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | | |---|--|--|---|---|--|---|---|---|---|--|----------------------| | 2915.96 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 17.05 | 0.375 | 0.122 | 0.253 | 4,000 | l | | Bldg.
ventilation
rate,
Q _{building}
(cm³/s) | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack depth below grade, Z _{crack} (cm) | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m³/mol) | Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
μ _{TS}
(g/cm-s) | Vadose zone effective diffusion coefficient, D ^{eff} _V (cm ² /s) | Capillary
zone
effective
diffusion
coefficient,
D ^{eff} _{cz}
(cm ² /s) | Total overall effective diffusion coefficient, Deff_T (cm²/s) | | | 3.39E+04 | 1.00E+06 | 5.00E-03 | 15 | 7,778 | 2.21E-02 | 9.26E-01 | 1.78E-04 | 1.26E-02 | 5.00E-04 | 1.10E-02 | | | Diffusion path | Convection path | Source
vapor | Crack | Average
vapor
flow rate | Crack
effective
diffusion | Area of | Exponent of equivalent foundation Peclet | Infinite
source
indoor
attenuation | Infinite
source
bldg. | Unit
risk | Reference | | length, | length, | conc., | radius, | into bldg., | coefficient, | crack, | number, | coefficient, | conc., | factor, | conc., | | L _d | | C _{source} | r _{crack} | Q _{soil} | D ^{crack} | A _{crack} | exp(Pe ^f) | α | C _{building} | URF | RfC | | _ | L _p | (μg/m ³) | | (cm ³ /s) | (cm ² /s) | (cm ²) | | (unitless) | O _{building} (μg/m ³) | (μg/m ³) ⁻¹ | - | | (cm) | (cm) | (μg/111) | (cm) | (СП /5) | (СПТ /5) | (CIII) | (unitless) | (unitiess) | (μg/111-) | (μg/III) | (mg/m ³) | | 2915.96 | 15 | 7.04E+03 | 1.25 | 8.33E+01 | 1.26E-02 | 5.00E+03 | 5.50E+05 | 1.07E-04 | 7.52E-01 | 4.2E-05 | 4.0E-02 | #### RESULTS SHEET Carbon Tetrachloride for Well MW-BW-53-A Sampled September 15, 2005 # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: # INCREMENTAL RISK CALCULATIONS: | Indoor
exposure
groundwater
conc.,
carcinogen
(µg/L) | Indoor
exposure
groundwater
conc.,
noncarcinogen
(µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure
component
water
solubility,
S
(μg/L) | Final indoor exposure groundwater conc., (µg/L) |
Incremental
risk from
vapor
intrusion to
indoor air,
carcinogen
(unitless) | Hazard
quotient
from vapor
intrusion to
indoor air,
noncarcinogen
(unitless) | |---|--|--|--|---|--|--| | NA | NA | NA | 7.93E+05 | NA | 1.3E-05 | 1.8E-02 | | | | | | | | | MESSAGE SUMMARY BELOW: #### DATA ENTRY SHEET Trichloroethene for Well MW-BW-53-A Sampled September 15, 2005 Chemical GW-SCREEN Version 3.0; 04/03 Reset to Defaults CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) OR YES L_{WT} (cm) 2930.96 DTSC **Vapor Intrusion Guidance** Interim Final 12/04 (last modified 1/21/05) CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES **ENTER ENTER** Initial groundwater Chemical CAS No. conc., (numbers only, C_{W} no dashes) (μg/L) L_F (cm) 15 1.90E+00 79016 Trichloroethylene **ENTER ENTER ENTER ENTER** Depth below grade Average to bottom Depth soil/ of enclosed below grade SCS groundwater to water table, temperature, space floor, soil type directly above water table S ENTER Average vapor flow rate into bldg. (Leave blank to calculate) \mathbf{Q}_{soil} (L/m) 5 MORE MORE Ψ | ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability) | OR | ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²) | ENTER Vadose zone SCS soil type Lookup Soil Parameters | ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³) | ENTER Vadose zone soil total porosity, n ^V (unitless) | ENTER Vadose zone soil water-filled porosity, $\theta_{w}^{\ \ \ \ \ \ \ \ }$ (cm^{3}/cm^{3}) | |--|----|--|--|---|--|---| | S | | | S | 1.66 | 0.375 | 0.054 | T_S (°C) 18 MORE ¥ DTSC / HERD Last Update: 11/1/03 | ENTER Target risk for carcinogens, TR (unitless) | ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | ENTER Averaging time for carcinogens, AT _C (yrs) | ENTER Averaging time for noncarcinogens, AT _{NC} (yrs) | ENTER Exposure duration, ED (yrs) | ENTER Exposure frequency, EF (days/yr) | |--|---|---|---|-------------------------------------|--| | 1.0E-06 | 1 | 70 | 30 | 30 | 350 | Used to calculate risk-based groundwater concentration. #### Trichloroethene for Well MW-BW-53-A Sampled September 15, 2005 T_C ABC Diffusivity in air, D_a Diffusivity in water, D_{w} Н T_R | | | - Cap.o. | a oop.o | 000, 2000 | | | | | |--------------|--------------|-----------------|---------|--------------|--------------|-------------|---------|-----------| | Henry's | Henry's | Enthalpy of | Marmal | | Organic | Pure | l lait | | | law constant | law constant | vaporization at | Normal | | carbon | component | Unit | | | at reference | reference | the normal | boiling | Critical | partition | water | risk | Reference | | temperature, | temperature, | boiling point, | point, | temperature, | coefficient, | solubility, | factor, | conc., | K_{oc} S URF RfC | (cm ² /s) | (cm ² /s) | (atm-m ³ /mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | $(\mu g/m^3)^{-1}$ | (mg/m ³) | |----------------------|----------------------|---------------------------|------|-----------|--------|--------|----------------------|----------|--------------------|----------------------| | | | | | | | | | | | | | 7 90F-02 | 0.10F-06 | 1.03F-02 | 25 | 7 505 | 360.36 | 544.20 | 1.66F±02 | 1.47F±03 | 2.0F-06 | 6.0F-01 | T_B $\Delta H_{v,b}$ #### INTERMEDIATE CALCULATIONS SHEET #### Trichloroethene for Well MW-BW-53-A Sampled September 15, 2005 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone effective total fluid saturation, S _{te} (cm³/cm³) | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone
soil
relative air
permeability,
k _{rg}
(cm²) | Vadose zone
soil
effective vapor
permeability,
k _v
(cm ²) | Thickness of capillary zone, L _{cz} (cm) | Total porosity in capillary zone, n _{cz} (cm ³ /cm ³) | Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³) | Water-filled porosity in capillary zone, $\theta_{w,cz} = \frac{(cm^3/cm^3)}{cm^2}$ | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | | |---|--
---|---|---|---|---|---|--|---|--|----------------------| | 2915.96 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 17.05 | 0.375 | 0.122 | 0.253 | 4,000 | | | Bldg.
ventilation
rate,
Q _{building}
(cm³/s) | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack
depth
below
grade,
Z _{crack}
(cm) | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol) | Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
μ _{TS}
(g/cm-s) | Vadose zone
effective
diffusion
coefficient,
D ^{eff} _V
(cm ² /s) | Capillary zone effective diffusion coefficient, Deff cz (cm²/s) | Total overall effective diffusion coefficient, Deff (cm²/s) | | | 3.39E+04 | 1.00E+06 | 5.00E-03 | 15 | 8,458 | 7.29E-03 | 3.05E-01 | 1.78E-04 | 1.28E-02 | 5.08E-04 | 1.12E-02 | | | Diffusion
path
length, | Convection path length, | Source
vapor
conc., | Crack
radius, | Average
vapor
flow rate
into bldg., | Crack
effective
diffusion
coefficient, | Area of crack, | Exponent of equivalent foundation Peclet number, | Infinite
source
indoor
attenuation
coefficient, | Infinite
source
bldg.
conc., | Unit
risk
factor, | Reference conc., | | L_d | L_p | C _{source} | r _{crack} | Q_{soil} | D ^{crack} | A _{crack} | exp(Pe ^f) | α | C_{building} | URF | RfC | | (cm) | (cm) | (μg/m³) | (cm) | (cm ³ /s) | (cm ² /s) | (cm ²) | (unitless) | (unitless) | (μg/m ³) | (μg/m³) ⁻¹ | (mg/m ³) | | 2915.96 | 15 | 5.80E+02 | 1.25 | 8.33E+01 | 1.28E-02 | 5.00E+03 | 4.65E+05 | 1.08E-04 | 6.28E-02 | 2.0E-06 | 6.0E-01 | #### RESULTS SHEET Trichloroethene for Well MW-BW-53-A Sampled September 15, 2005 # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: # INCREMENTAL RISK CALCULATIONS: | | Indoor
exposure
groundwater
conc.,
carcinogen
(µg/L) | Indoor
exposure
groundwater
conc.,
noncarcinogen
(µg/L) | Risk-based
indoor
exposure
groundwater
conc.,
(µg/L) | Pure
component
water
solubility,
S
(μg/L) | Final indoor exposure groundwater conc., (µg/L) | | Incremental
risk from
vapor
intrusion to
indoor air,
carcinogen
(unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) | |--------------------------------------|---|--|---|--|---|-----|--|--| | NA NA NA 1.47E+06 NA 5.2E-08 1.0E-04 | NA | NA | NA | 1.47E+06 | NA |] [| 5.2E-08 | 1.0E-04 | MESSAGE SUMMARY BELOW: #### DATA ENTRY SHEET Chloroform for Well MW-BW-53-A Sampled September 15, 2005 Chemical GW-SCREEN Version 3.0; 04/03 CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) DTSC **Vapor Intrusion Guidance** Interim Final 12/04 Reset to Defaults OR YES 2930.96 (last modified 1/21/05) CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) YES **ENTER ENTER** Initial groundwater Chemical CAS No. conc., (numbers only, C_{W} no dashes) (μg/L) 15 7.30E-01 67663 Chloroform **ENTER ENTER ENTER ENTER** Depth below grade Average to bottom Depth soil/ of enclosed below grade SCS groundwater to water table, temperature, space floor, soil type directly above T_{S} L_F L_{WT} (°C) water table (cm) (cm) S ENTER Average vapor flow rate into bldg. (Leave blank to calculate) \mathbf{Q}_{soil} (L/m) 5 MORE MORE Ψ | ENTER Vadose zone SCS Soil type (used to estimate soil vapor permeability) | OR | ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²) | ENTER Vadose zone SCS soil type Lookup Soil Parameters | ENTER Vadose zone soil dry bulk density, ρ _b ^V (g/cm ³) | ENTER Vadose zone soil total porosity, n ^V (unitless) | ENTER Vadose zone soil water-filled porosity, $\theta_w^{\ V}$ (cm^3/cm^3) | |--|----|--|--|---|--|---| | S | | | S | 1.66 | 0.375 | 0.054 | 18 MORE | ENTER Target risk for carcinogens, TR (unitless) | ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | ENTER Averaging time for carcinogens, AT _C (yrs) | ENTER Averaging time for noncarcinogens, AT _{NC} (yrs) | ENTER Exposure duration, ED (yrs) | ENTER Exposure frequency, EF (days/yr) | |--|---|---|---|-------------------------------------|--| | 1.0E-06 | 1 | 70 | 30 | 30 | 350 | Used to calculate risk-based groundwater concentration. 4/18/2006 8:46 PM #### Chloroform for Well MW-BW-53-A Sampled September 15, 2005 ABC | ABC | | | | | | • | | | | | |----------------------|----------------------|---------------------------|--------------|------------------|---------|--------------|----------------------|-------------|--------------------|----------------------| | | | Henry's | Henry's | Enthalpy of | | | Organic | Pure | | | | | | law constant | law constant | vaporization at | Normal | | carbon | component | Unit | | | Diffusivity | Diffusivity | at reference | reference | the normal | boiling | Critical | partition | water | risk | Reference | | in air, | in water, | temperature, | temperature, | boiling point, | point, | temperature, | coefficient, | solubility, | factor, | conc., | | D_a | D_{w} | Н | T_R | $\Delta H_{v,b}$ | T_B | T_C | K_{oc} | S | URF | RfC | | (cm ² /s) | (cm ² /s) | (atm-m ³ /mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | $(\mu g/m^3)^{-1}$ | (mg/m ³) | | | | | | | | | | | | | | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 6,988 | 334.32 | 536.40 | 3.98E+01 | 7.92E+03 | 5.3E-06 | 3.0E-01 | # INTERMEDIATE CALCULATIONS SHEET #### Chloroform for Well MW-BW-53-A Sampled September 15, 2005 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone effective total fluid saturation, S_{te} (cm^3/cm^3) | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone soil relative air permeability, k_{rg} (cm^2) | Vadose zone
soil
effective vapor
permeability,
k _v
(cm²) | Thickness of capillary zone, L _{cz} (cm) | Total porosity in capillary zone, n _{cz} (cm ³ /cm ³) | Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³) | Water-filled porosity in capillary zone, $\theta_{w,cz} = (cm^3/cm^3)$ | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | ı | |---|--|--|---|---|--|---|---|---|---|--|----------------------| | 2915.96 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 17.05 | 0.375 | 0.122 | 0.253 | 4,000 | | | Bldg.
ventilation
rate,
Q _{building}
(cm ³ /s) | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack
depth
below
grade,
Z _{crack}
(cm) | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature, H
_{TS} (atm-m ³ /mol) | Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
μ _{TS}
(g/cm-s) | Vadose zone effective diffusion coefficient, D ^{eff} _V (cm ² /s) | Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s) | Total overall effective diffusion coefficient, Deff_T (cm²/s) | | | 3.39E+04 | 1.00E+06 | 5.00E-03 | 15 | 7,471 | 2.70E-03 | 1.13E-01 | 1.78E-04 | 1.68E-02 | 6.73E-04 | 1.47E-02 | | | $\begin{array}{c} \text{Diffusion} \\ \text{path} \\ \text{length}, \\ \text{L}_{\text{d}} \end{array}$ | Convection path length, | Source vapor conc., | Crack
radius,
r _{crack} | Average vapor flow rate into bldg., Q _{soil} | Crack
effective
diffusion
coefficient,
D ^{crack} | Area of
crack,
A _{crack} | Exponent of
equivalent
foundation
Peclet
number,
exp(Pe ^f) | Infinite source indoor attenuation coefficient, | Infinite
source
bldg.
conc.,
C _{building} | Unit
risk
factor,
URF | Reference conc., | | (cm) | (cm) | (μg/m³) | (cm) | (cm ³ /s) | (cm ² /s) | (cm ²) | (unitless) | (unitless) | (μg/m³) | (μg/m³) ⁻¹ | (mg/m ³) | | 2915.96 | 15 | 8.26E+01 | 1.25 | 8.33E+01 | 1.68E-02 | 5.00E+03 | 2.02E+04 | 1.41E-04 | 1.16E-02 | 5.3E-06 | 3.0E-01 | # RESULTS SHEET Chloroform for Well MW-BW-53-A Sampled September 15, 2005 # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: # INCREMENTAL RISK CALCULATIONS: | Indoor
exposure
groundwater
conc.,
carcinogen
(µg/L) | Indoor
exposure
groundwater
conc.,
noncarcinogen
(µg/L) | Risk-based
indoor
exposure
groundwater
conc.,
(µg/L) | Pure
component
water
solubility,
S
(μg/L) | Final indoor exposure groundwater conc., (µg/L) | Incremental risk from vapor intrusion to indoor air, carcinogen (unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) | |---|--|---|--|---|--|--| | NA | NA | NA | 7.92E+06 | NA | 2.5E-08 | 3.7E-05 | MESSAGE SUMMARY BELOW: DATA ENTRY SHEET Carbon Tetrachloride for Well MW-BW-49-A Impled September 15, 200 | | | | Sampled September | | | |-------------------|---------------------|--------------------------|-------------------|---------------------------------|---| | GW-SCREEN | CALCULATE RISK- | BASED GROUNDV | VATER CONCENT | RATION (enter "X" in "YES" box) | DTSC | | Reset to Defaults | CALCULATE INCRE | | | OUNDWATER CONCENTRATION | Vapor Intrusion Guidano
Interim Final 12/04
(last modified 1/21/05) | | | | YES | X | | | | | ENTER | ENTER
Initial | | | | | | Chemical
CAS No. | groundwater | | | | | | (numbers only, | conc.,
C _w | | | | | | no dashes) | (μg/L) | (| Chemical | | | | 56235 | 4.00E+00 | Carbo | n tetrachloride | | | MORE | ENTER
Depth | ENTER | ENTER | ENTER | | | ₩ | below grade | | | Average | ENTER | | | to bottom | Depth | | soil/ | Average vapor | | | of enclosed | below grade | SCS | groundwater | flow rate into bldg. | | | space floor, | to water table, | soil type | temperature, | (Leave blank to calculate) | | | L _F | L _{WT} | directly above | T _S | Q _{soil} | | | (cm) | (cm) | water table | (°C) | (L/m) | | | 15 | 1066.8 | S | 18 | 5 | | | | | | | | MORE **↓** | ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability) | OR | ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²) | ENTER Vadose zone SCS Soil type Lookup Soil Parameters | ENTER Vadose zone soil dry bulk density, | ENTER Vadose zone soil total porosity, n ^V (unitless) | ENTER Vadose zone soil water-filled porosity, θ_w^V (cm^3/cm^3) | |--|----|--|--|---|--|---| | | | | | | | | | S | | | S | 1.66 | 0.375 | 0.054 | MORE Ψ **ENTER ENTER ENTER ENTER ENTER ENTER** Target Target hazard Averaging Averaging risk for quotient for time for time for Exposure Exposure carcinogens, noncarcinogens, carcinogens, noncarcinogens, duration, frequency, TR THQ ED EF AT_{C} AT_{NC} (unitless) (unitless) (yrs) (yrs) (yrs) (days/yr) 1.0E-06 70 30 30 350 Used to calculate risk-based groundwater concentration. #### Carbon Tetrachloride for Well MW-BW-49-A Sampled September 15, 2004 ARC | ABC | | | | Campio | a Coptoiii | JOI 10, 200 I | | | | | |----------------------|-----------------------|---------------------------|-------------------------|--------------------------------|----------------|-----------------------|------------------------|-------------------|--------------------|----------------------| | | | Henry's
law constant | Henry's
law constant | Enthalpy of
vaporization at | Normal | | Organic carbon | Pure component | Unit | | | Diffusivity in air, | Diffusivity in water. | at reference temperature, | reference temperature. | the normal boiling point, | boiling point, | Critical temperature, | partition coefficient. | water solubility, | risk
factor, | Reference conc., | | Da | D_w | Н | T _R | $\Delta H_{v,b}$ | T _B | T _C | K _{oc} | S | URF | RfC | | (cm ² /s) | (cm ² /s) | (atm-m ³ /mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | $(\mu g/m^3)^{-1}$ | (mg/m ³) | | - | | | | | | | | | | | | 7.80E-02 | 8.80E-06 | 3.03E-02 | 25 | 7,127 | 349.90 | 556.60 | 1.74E+02 | 7.93E+02 | 4.2E-05 | 4.0E-02 | #### INTERMEDIATE CALCULATIONS SHEET Carbon Tetrachloride for Well MW-BW-49-A Sampled September 15, 2004 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone effective total fluid saturation, S _{te} (cm³/cm³) | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone soil relative air permeability, k_{rg} (cm ²) | Vadose zone
soil
effective vapor
permeability,
k _v
(cm²) | Thickness of capillary zone, L _{cz} (cm) | Total porosity in capillary zone, n _{cz} (cm ³ /cm ³) | Air-filled porosity in capillary zone, θ _{a,cz} (cm³/cm³) | Water-filled porosity in capillary zone, $\theta_{w,cz} \\ (cm^3/cm^3)$ | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | | |--|--|--|---|--|--|---|---|--|---|--|--| | 1051.8 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 17.05 | 0.375 | 0.122 | 0.253 | 4,000 | | | Bldg.
ventilation
rate,
Q _{building}
(cm ³ /s) | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack depth below grade, Z _{crack} (cm) | Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol) | Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol) | Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
μ _{TS}
(g/cm-s) | Vadose zone
effective
diffusion
coefficient,
D ^{eff} _V
(cm ² /s) | Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s) | Total overall effective diffusion coefficient, Deff_T (cm²/s) | | | 3.39E+04 | 1.00E+06 | 5.00E-03 | 15 | 7,778 | 2.21E-02 | 9.26E-01 | 1.78E-04 | 1.26E-02 | 5.00E-04 | 9.06E-03 | | | Diffusion
path
length,
L _d
(cm) | Convection path length, Lp (cm) | Source
vapor
conc.,
C _{source}
(μg/m ³) | Crack
radius,
r _{crack}
(cm) | Average vapor flow rate into bldg., Q _{soil} (cm ³ /s) | Crack effective diffusion coefficient, D ^{crack} (cm ² /s) | Area of crack, A _{crack} (cm ²) | Exponent of equivalent foundation Peclet number, exp(Pef) (unitless) | Infinite source indoor attenuation coefficient, α (unitless) | Infinite
source
bldg.
conc.,
C _{building}
(μg/m ³) | Unit
risk
factor,
URF
(μg/m³) ⁻¹ | Reference
conc.,
RfC
(mg/m ³) | | 1051.8 | 15 | 3.70E+03 | 1.25 | 8.33E+01 | 1.26E-02 | 5.00E+03 | 5.50E+05 | 2.30E-04 | 8.53E-01 | 4.2E-05 | 4.0E-02 | #### RESULTS SHEET Carbon Tetrachloride for Well MW-BW-49-A Sampled September 15, 2004 # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: # INCREMENTAL RISK CALCULATIONS: |
Indoor
exposure
groundwater
conc.,
carcinogen
(µg/L) | Indoor
exposure
groundwater
conc.,
noncarcinogen
(µg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure
component
water
solubility,
S
(μg/L) | Final indoor exposure groundwater conc., (µg/L) |
Incremental
risk from
vapor
intrusion to
indoor air,
carcinogen
(unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) | |---|--|--|--|---|--|--| | NA | NA | NA | 7.93E+05 | NA | 1.5E-05 | 2.0E-02 | | | | | | | | | MESSAGE SUMMARY BELOW: # DATA ENTRY SHEET Chloroform for Well MW-BW-49-A Sampled September 15, 2004 **GW-SCREEN** Version 3.0; 04/03 CALCULATE RISK-BASED GROUNDWATER CONCENTRATION (enter "X" in "YES" box) DTSC Vapor Intrusion Guidance Interim Final 12/04 Reset to Defaults OR YES CALCULATE INCREMENTAL RISKS FROM ACTUAL GROUNDWATER CONCENTRATION (enter "X" in "YES" box and initial groundwater conc. below) Chemical (last modified 1/21/05) YES | ENTER | ENTER | |----------------|-------------| | | Initial | | Chemical | groundwater | | CAS No. | conc., | | (numbers only, | C_W | | no dashes) | (ua/L) | | 67663 | 2.70E-01 | (| Chloroform | |---|---|----------------------------|---| | ENTER
Depth | ENTER | ENTER | ENTER | | below grade
to bottom
of enclosed
space floor, | Depth
below grade
to water table, | SCS
soil type | Average
soil/
groundwater
temperature, | | L _F (cm) | L _{WT} | directly above water table | T _S | | , , | | | ` ' | | 15 | 1066.8 | S | 18 | **ENTER** Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m) 5 MORE MORE 4 | ENTER Vadose zone SCS soil type (used to estimate soil vapor permeability) | OR | ENTER User-defined vandose zone soil vapor permeability, k _v (cm ²) | ENTER Vadose zone SCS soil type Lookup Soil Parameters | ENTER Vadose zone soil dry bulk density, ρ_b^V (g/cm³) | ENTER Vadose zone soil total porosity, n ^V (unitless) | ENTER Vadose zone soil water-filled porosity, θ_{w}^{V} (cm^{3}/cm^{3}) | |--|----|--|--|---|--|---| | S | | | S | 1.66 | 0.375 | 0.054 | MORE | ENTER Target risk for carcinogens, TR (unitless) | ENTER Target hazard quotient for noncarcinogens, THQ (unitless) | ENTER Averaging time for carcinogens, AT _C (yrs) | ENTER Averaging time for noncarcinogens, AT _{NC} (yrs) | ENTER Exposure duration, ED (yrs) | ENTER Exposure frequency, EF (days/yr) | |--|---|---|---|-------------------------------------|--| | 1.0E-06 | 1 | 70 | 30 | 30 | 350 | Used to calculate risk-based groundwater concentration. # Chloroform for Well MW-BW-49-A ABC # Sampled September 15, 2004 | 7120 | | Hannia | Hannila | Entholmy of | | | Orașia | Dura | | | |----------------------|-----------------------|---|--|--|-----------------------|-----------------------|--|---|-------------------------|----------------------| | Diffusivity in air, | Diffusivity in water, | Henry's
law constant
at reference
temperature, | Henry's
law constant
reference
temperature, | Enthalpy of
vaporization at
the normal
boiling point, | Normal boiling point, | Critical temperature, | Organic
carbon
partition
coefficient, | Pure
component
water
solubility, | Unit
risk
factor, | Reference conc., | | D_a | D_{w} | Н | T_R | $\Delta H_{v,b}$ | T_B | T_C | K _{oc} | S | URF | RfC | | (cm ² /s) | (cm ² /s) | (atm-m ³ /mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | $(\mu g/m^3)^{-1}$ | (mg/m ³) | | | | | | | | | | | | | | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 6,988 | 334.32 | 536.40 | 3.98E+01 | 7.92E+03 | 5.3E-06 | 3.0E-01 | # INTERMEDIATE CALCULATIONS SHEET #### Chloroform for Well MW-BW-49-A Sampled September 15, 2004 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone
effective
total fluid
saturation,
S _{te}
(cm³/cm³) | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone soil relative air permeability, k_{rg} (cm ²) | Vadose zone soil effective vapor permeability, k _v (cm²) | Thickness of capillary zone, L _{cz} (cm) | Total porosity in capillary zone, n _{cz} (cm ³ /cm ³) | Air-filled porosity in capillary zone, $\theta_{a,cz}$ (cm ³ /cm ³) | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm^3/cm^3) | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | - | |---|--|--|---|---|---|---|---|--|--|--|----------------------| | 1051.8 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 17.05 | 0.375 | 0.122 | 0.253 | 4,000 | j | | Bldg.
ventilation
rate,
Q _{building}
(cm³/s) | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack depth below grade, Z _{crack} (cm) | Enthalpy of vaporization at ave. groundwater temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m³/mol) | Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
µ _{TS}
(g/cm-s) | Vadose zone effective diffusion coefficient, Deff (cm²/s) | Capillary zone effective diffusion coefficient, Deff cz (cm²/s) | Total overall effective diffusion coefficient, Deff_ (cm²/s) | | | 3.39E+04 | 1.00E+06 | 5.00E-03 | 15 | 7,471 | 2.70E-03 | 1.13E-01 | 1.78E-04 | 1.68E-02 | 6.73E-04 | 1.21E-02 | 1 | | Diffusion path | Convection path | Source
vapor | Crack | Average
vapor
flow rate | Crack
effective
diffusion | Area of | Exponent of equivalent foundation Peclet | Infinite
source
indoor
attenuation | Infinite
source
bldg. | Unit
risk | Reference | | length, | length, | conc., | radius, | into bldg., | coefficient, | crack, | number, | coefficient, | conc., | factor, | conc., | | L _d | L _p | C _{source} | r _{crack} | Q _{soil} | D ^{crack} | A _{crack} | exp(Pe ^f) | α | C _{building} | URF | RfC | | (cm) | (cm) | (μg/m ³) | (cm) | (cm ³ /s) | (cm ² /s) | (cm ²) | (unitless) | (unitless) | (μg/m ³) | (μg/m³) ⁻¹ | (mg/m ³) | | (CIII) | (CIII) | (μg/111) | (CIII) | (6111 /3) | (6111 73) | (OIII) | (uniness) | (uriniess) | (μg/111) | (μg/111) | (mg/m) | | 1051.8 | 15 | 3.06E+01 | 1.25 | 8.33E+01 | 1.68E-02 | 5.00E+03 | 2.02E+04 | 2.98E-04 | 9.12E-03 | 5.3E-06 | 3.0E-01 | # RESULTS SHEET Chloroform for Well MW-BW-49-A Sampled September 15, 2004 # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: #### INCREMENTAL RISK CALCULATIONS: | Indoor
exposure
groundwater
conc.,
carcinogen
(µg/L) | Indoor
exposure
groundwater
conc.,
noncarcinogen
(μg/L) | Risk-based indoor exposure groundwater conc., (µg/L) | Pure
component
water
solubility,
S
(μg/L) | Final indoor exposure groundwater conc., (µg/L) |
Incremental
risk from
vapor
intrusion to
indoor air,
carcinogen
(unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) | |---|--|--|--|---|--
--| | | | | | | | | | NA | NA | NA | 7.92E+06 | NA | 2.0E-08 | 2.9E-05 | MESSAGE SUMMARY BELOW: END 1 of 1 DATA ENTRY SHEET Carbon Tetrachloride for Well MW-BW-49-A Impled September 20, 200 | | | ; | Sampled Septemb | er 20, 2005 | | |-------------------|--|---|-----------------|-----------------------------|---| | GW-SCREEN | CALCULATE RISK- | BASED GROUNDW | ATER CONCENT | RATION (enter "X" in "YES" | box) DTSC | | Reset to Defaults | CALCULATE INCRE | Vapor Intrusion Guidance
Interim Final 12/04
(last modified 1/21/05)
ATION | | | | | | | YES | Х | | | | | ENTER Chemical CAS No. (numbers only, | ENTER Initial groundwater conc., C _w | | | | | | no dashes) | (μg/L) | | Chemical | | | | 56235 | 2.50E+00 | Carbo | on tetrachloride | | | MORE
₩ | ENTER Depth below grade | ENTER | ENTER | ENTER Average | ENTER | | | to bottom | Depth | SCS | soil/ | Average vapor | | | of enclosed
space floor, | below grade
to water table, | soil type | groundwater
temperature, | flow rate into bldg. (Leave blank to calculate) | | | L _F | L _{WT} | directly above | T _S | Q _{soil} | | | (cm) | (cm) | water table | (°C) | (L/m) | | | 15 | 1066.8 | S | 18 | 5 | MORE **↓** | ENTER Vadose zone SCS Soil type (used to estimate soil vapor | OR | ENTER User-defined vandose zone soil vapor permeability, | ENTER Vadose zone SCS soil type Lookup Soil Parameters | ENTER Vadose zone soil dry bulk density, ρ _b V | ENTER Vadose zone soil total porosity, nV | ENTER Vadose zone soil water-filled porosity, θ_w^V | |--|----|--|--|---|---|---| | permeability) | | (cm ²) | | (g/cm ³) | (unitless) | (cm ³ /cm ³) | | | | | | | | | | S | | | S | 1.66 | 0.375 | 0.054 | MORE ¥ **ENTER ENTER ENTER ENTER ENTER ENTER** Target Target hazard Averaging Averaging risk for quotient for time for time for Exposure Exposure frequency, carcinogens, noncarcinogens, carcinogens, noncarcinogens, duration, TR THQ ED AT_{C} AT_{NC} (unitless) (unitless) (yrs) (yrs) (yrs) (days/yr) 1.0E-06 70 30 30 350 Used to calculate risk-based groundwater concentration. #### Carbon Tetrachloride for Well MW-BW-49-A Sampled September 20, 2005 | ABC | | | | Sample | d Septemb | per 20, 2005 | | | | | |---------------------------|-----------------------------|---|--------------------------------------|--|--------------------------|--------------------------------|---------------------------------|----------------------------|------------------------------------|----------------------| | Diffusivity | Diffusivity | Henry's
law constant
at reference | Henry's
law constant
reference | Enthalpy of vaporization at the normal | Normal boiling | Critical | Organic
carbon
partition | Pure
component
water | Unit
risk | Reference | | in air,
D _a | in water,
D _w | temperature,
H | temperature,
T _R | boiling point,
∆H _{v.b} | point,
T _B | temperature,
T _C | coefficient,
K _{oc} | solubility,
S | factor,
URF | conc.,
RfC | | (cm ² /s) | (cm ² /s) | (atm-m ³ /mol) | (°C) | (cal/mol) | (°K) | (°K) | (cm ³ /g) | (mg/L) | (μg/m ³) ⁻¹ | (mg/m ³) | | | | | | | | | | | | - | | 7.80E-02 | 8.80E-06 | 3.03E-02 | 25 | 7,127 | 349.90 | 556.60 | 1.74E+02 | 7.93E+02 | 4.2E-05 | 4.0E-02 | # INTERMEDIATE CALCULATIONS SHEET Carbon Tetrachloride for Well MW-BW-49-A Sampled September 20, 2005 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone effective total fluid saturation, S_{te} (cm^3/cm^3) | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone
soil
relative air
permeability,
k _{rg}
(cm²) | Vadose zone
soil
effective vapor
permeability,
k _v
(cm²) | Thickness of capillary zone, L _{cz} (cm) | Total porosity in capillary zone, n _{cz} (cm ³ /cm ³) | Air-filled porosity in capillary zone, $\theta_{a,cz} \ (\text{cm}^3/\text{cm}^3)$ | Water-filled porosity in capillary zone, $\theta_{w,cz}$ (cm^3/cm^3) | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | | |--|--|--|---|--|--|---|---|--|---|--|---------------------------------------| | 1051.8 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 17.05 | 0.375 | 0.122 | 0.253 | 4,000 | | | Bldg.
ventilation
rate,
Q _{building}
(cm ³ /s) | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack
depth
below
grade,
Z _{crack}
(cm) | Enthalpy of vaporization at ave. groundwater temperature, ΔH _{v,TS} (cal/mol) | Henry's law constant at ave. groundwater temperature, H _{TS} (atm-m ³ /mol) | Henry's law constant at ave. groundwater temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
μ _{TS}
(g/cm-s) | Vadose zone
effective
diffusion
coefficient,
D ^{eff} _V
(cm ² /s) | Capillary zone effective diffusion coefficient, D ^{eff} _{cz} (cm ² /s) | Total overall effective diffusion coefficient, D ^{eff} T (cm ² /s) | | | 3.39E+04 | 1.00E+06 | 5.00E-03 | 15 | 7,778 | 2.21E-02 | 9.26E-01 | 1.78E-04 | 1.26E-02 | 5.00E-04 | 9.06E-03 | | | Diffusion path length, L _d (cm) | Convection path length, Lp (cm) | Source vapor conc., C _{source} (µg/m³) | Crack
radius,
r _{crack}
(cm) | Average vapor flow rate into bldg., Q _{soil} (cm ³ /s) | Crack effective diffusion coefficient, D ^{crack} (cm ² /s) | Area of crack, A _{crack} (cm ²) | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless) | Infinite source indoor attenuation coefficient, α (unitless) | Infinite source bldg. conc., C _{building} (µg/m³) | Unit
risk
factor,
URF
(μg/m³) ⁻¹ | Reference
conc.,
RfC
(mg/m³) | | 1051.8 | 15 | 2.31E+03 | 1.25 | 8.33E+01 | 1.26E-02 | 5.00E+03 | 5.50E+05 | 2.30E-04 | 5.33E-01 | 4.2E-05 | 4.0E-02 | #### RESULTS SHEET Carbon Tetrachloride for Well MW-BW-49-A Sampled September 20, 2005 # RISK-BASED GROUNDWATER CONCENTRATION CALCULATIONS: # INCREMENTAL RISK CALCULATIONS: | Indoor
exposure
groundwater
conc.,
carcinogen
(µg/L) | Indoor
exposure
groundwater
conc.,
noncarcinogen
(µg/L) | Risk-based
indoor
exposure
groundwater
conc.,
(µg/L) | Pure
component
water
solubility,
S
(μg/L) | Final indoor exposure groundwater conc., (µg/L) |
Incremental
risk from
vapor
intrusion to
indoor air,
carcinogen
(unitless) | Hazard quotient from vapor intrusion to indoor air, noncarcinogen (unitless) | |---|--|---|--|---|--|--| | NA | NA | NA | 7.93E+05 | NA | 9.2E-06 | 1.3E-02 | MESSAGE SUMMARY BELOW: SG-SCREEN PA Version 2.0; 04/ > Reset to Defaults #### DTSC Vapor Intrusion Guidance Interim Final 12/04 | | Soil | Gas Concentration | Interim Final 12/04 | | |----------------|---------|-------------------|---------------------|-------------------------| | ENTER | ENTER | | ENTER | (last modified 1/21/05) | | | Soil | | Soil | | | Chemical | gas | OR | gas | | | CAS No. | conc., | | conc., | | | (numbers only, | C_g | | C_g | | | no dashes) | (μg/m³) | - | (ppmv) | Chemical | | | | 1 | | | | 56235 | | | 5.40E-04 | Carbon tetrachloride | | MODE | ı | |------|---| | MORE | ı | | | ı | | • | ı | | • | ı | | ENTER
Depth | ENTER | ENTER | ENTER | | ENTER | |--|---|---|--|----|---| | below grade to bottom of enclosed space floor, L _F (15 or 200 cm) | Soil gas
sampling
depth
below grade,
L _s
(cm) | Average
soil
temperature,
T _S
(°C)
| Vadose zone SCS soil type (used to estimate soil vapor permeability) | OR | User-defined
vadose zone
soil vapor
permeability,
k _v
(cm²) | | 15 | 182.88 | 18 | S | | | | MORE | | |----------|--| | → | | | ENTER | ENTER | ENTER | ENTER | | |--------------|----------------------|----------------|-------------------------------------|--| | Vandose zone | Vadose zone | Vadose zone | Vadose zone | | | SCS | soil dry | soil total | soil water-filled | | | soil type | bulk density, | porosity, | porosity, | | | Lookup Soil | ρ_b^A | n [∨] | $\theta_{\mathbf{w}}^{\ \ V}$ | | | Parameters | (g/cm ³) | (unitless) | (cm ³ /cm ³) | | | | | | | | | S | 1.66 | 0.375 | 0.054 | | #### **ENTER** Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m) | ENTER | ENTER | ENTER | ENTER | |--------------------|--------------------|-----------|------------| | Averaging time for | Averaging time for | Exposure | Exposure | | carcinogens, | noncarcinogens, | duration, | frequency, | | AT _C | AT _{NC} | ED | EF | | (yrs) | (yrs) | (yrs) | (days/yr) | | | | | | | 70 | 30 | 30 | 350 | #### Carbon Tetrachloride for CTP-SGP-35 Sampled June 18, 2004 | Diffusivity
in air,
D _a
(cm ² /s) | Diffusivity
in water,
D _w
(cm ² /s) | Henry's
law constant
at reference
temperature,
H
(atm-m ³ /mol) | Henry's law constant reference temperature, T _R (°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal
boiling
point,
T _B
(°K) | Critical
temperature,
T _C
(°K) | Unit
risk
factor,
URF
(µg/m³) ⁻¹ | Reference
conc.,
RfC
(mg/m³) | Molecular
weight,
MW
(g/mol) | |--|--|---|---|--|---|--|---|---------------------------------------|---------------------------------------| | 7.80E-02 | 8.80E-06 | 3.03E-02 | 25 | 7,127 | 349.90 | 556.60 | 4.2E-05 | 4.0E-02 | 153.82 | # INTERMEDIATE CALCULATIONS SHEET Carbon Tetrachloride for CTP-SGP-35 Sampled June 18, 2004 | Source-building separation, L_T (cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone effective total fluid saturation, S_{te} (cm^3/cm^3) | Vadose zone soil intrinsic permeability, k _i (cm ²) | Vadose zone soil relative air permeability, k_{rg} (cm^2) | Vadose zone
soil
effective vapor
permeability,
k _v
(cm ²) | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | Soil
gas
conc.
(µg/m³) | Bldg.
ventilation
rate,
Q _{building}
(cm ³ /s) | |---|--|--|--|---|---|---|---|--| | 167.88 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 4,000 | 3.48E+00 | 3.39E+04 | | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack depth below grade, Z _{crack} (cm) | Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. soil temperature, H _{TS} (atm-m ³ /mol) | Henry's law constant at ave. soil temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
μ _{TS}
(g/cm-s) | Vadose
zone
effective
diffusion
coefficient,
D ^{eff} _v
(cm ² /s) | Diffusion
path
length,
L _d
(cm) | | 1.00E+06 | 5.00E-03 | 15 | 7,778 | 2.21E-02 | 9.26E-01 | 1.78E-04 | 1.26E-02 | 167.88 | | Convection path length, Lp (cm) | Source
vapor
conc.,
C _{source}
(µg/m ³) | Crack
radius,
r _{crack}
(cm) | Average vapor flow rate into bldg., Q _{soil} (cm³/s) | Crack
effective
diffusion
coefficient,
D ^{crack}
(cm ² /s) | Area of crack, A _{crack} (cm ²) | Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless) | Infinite source indoor attenuation coefficient, α (unitless) | Infinite source bldg. conc., C _{building} (µg/m³) | | 15 | 3.48E+00 | 1.25 | 8.33E+01 | 1.26E-02 | 5.00E+03 | 5.50E+05 | 1.17E-03 | 4.05E-03 | | Unit | | |------------------------------------|----------------------| | risk | Reference | | factor, | conc., | | URF | RfC | | (μg/m ³) ⁻¹ | (mg/m ³) | | | | | 4.2E-05 | 4.0E-02 | | <u> </u> | • | RESULTS SHEET Carbon Tetrachloride for CTP-SGP-35 Sampled June 18, 2004 # INCREMENTAL RISK CALCULATIONS: | Incremental | Hazard | |--------------|---------------| | risk from | quotient | | vapor | from vapor | | intrusion to | intrusion to | | indoor air, | indoor air, | | carcinogen | noncarcinogen | | (unitless) | (unitless) | | | <u> </u> | | 7.0E-08 | 9.7E-05 | MESSAGE SUMMARY BELOW: #### DATA ENTRY SHEET Chloroform for CTP-SGP-35 Sampled June 18, 2004 SG-SCREEN PA Version 2.0; 04/ > Reset to Defaults ### DTSC Vapor Intrusion Guidance Interim Final 12/04 | | Soil | Gas Concentration | n Data | Interim Final 12/04 | |----------------|---------|-------------------|----------|-------------------------| | ENTER | ENTER | | ENTER | (last modified 1/21/05) | | | Soil | | Soil | | | Chemical | gas | OR | gas | | | CAS No. | conc., | | conc., | | | (numbers only, | C_g | | C_g | | | no dashes) | (μg/m³) | _ | (ppmv) | Chemical | | 67663 | | 7 | 8.00E-05 | Chloroform | | MORE | ı | |------|---| | • | l | | ENTER
Depth | ENTER | ENTER | ENTER | | ENTER | |---|---|---|--|----|--| | below grade
to bottom
of enclosed
space floor,
L _F
(15 or 200 cm) | Soil gas
sampling
depth
below grade,
L _s
(cm) | Average
soil
temperature,
T _S
(°C) | Vadose zone SCS soil type (used to estimate soil vapor permeability) | OR | User-defined vadose zone soil vapor permeability, k_v (cm^2) | | | | | | | 1 | | 15 | 182.88 | 18 | S | | | | MORE
↓ | | |------------------|--| | ¥ | | | ENTER | ENTER | ENTER | ENTER | |--------------|----------------------|-------------|-------------------------------------| | Vandose zone | Vadose zone | Vadose zone | Vadose zone | | SCS | soil dry | soil total | soil water-filled | | soil type | bulk density, | porosity, | porosity, | | Lookup Soil | $\rho_b^{\ A}$ | n^V | $\theta_{\mathbf{w}}^{\ \ V}$ | | Parameters | (g/cm ³) | (unitless) | (cm ³ /cm ³) | | | | | | | S | 1.66 | 0.375 | 0.054 | #### **ENTER** Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m) | ENTER | ENTER | ENTER | ENTER | |---------------------------------|------------------------------------|--------------------|---------------------| | Averaging time for carcinogens, | Averaging time for noncarcinogens, | Exposure duration, | Exposure frequency, | | AT _C | AT _{NC} | ED | EF | | (yrs) | (yrs) | (yrs) | (days/yr) | | | | | | | 70 | 30 | 30 | 350 | # Chloroform for CTP-SGP-35 | Sampled June 18, 200 | 4 | |----------------------|---| |----------------------|---| | Diffusivity
in air,
D _a
(cm ² /s) | Diffusivity
in water,
D _w
(cm ² /s) | Henry's
law constant
at reference
temperature,
H
(atm-m ³ /mol) | Henry's law constant reference temperature, T _R (°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal
boiling
point,
T _B
(°K) | Critical
temperature,
T _C
(°K) | Unit
risk
factor,
URF
(µg/m³) ⁻¹ | Reference
conc.,
RfC
(mg/m³) | Molecular
weight,
MW
(g/mol) | |--|--|---|---|--|---|--|---|---------------------------------------|---------------------------------------| | 1.04E-01 | 1.00E-05 | 3.66E-03 | 25 | 6,988 | 334.32 | 536.40 | 5.3E-06 | 3.0E-01 | 119.38 | #### INTERMEDIATE CALCULATIONS SHEET Chloroform for CTP-SGP-35 Sampled June 18, 2004 | Source-building separation, L_T (cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone effective total fluid saturation, $S_{te} = (cm^3/cm^3)$ | Vadose
zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone soil relative air permeability, k_{rg} (cm^2) | Vadose zone
soil
effective vapor
permeability,
k _v
(cm ²) | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | Soil
gas
conc.
(µg/m³) | Bldg.
ventilation
rate,
Q _{building}
(cm ³ /s) | |---|--|--|---|---|---|---|---|--| | 167.88 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 4,000 | 4.00E-01 | 3.39E+04 | | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack
depth
below
grade,
Z _{crack}
(cm) | Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law constant at ave. soil temperature, H _{TS} (atm-m³/mol) | Henry's law constant at ave. soil temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
μτs
(g/cm-s) | Vadose
zone
effective
diffusion
coefficient,
D ^{eff} _V
(cm ² /s) | Diffusion
path
length,
L _d
(cm) | | 1.00E+06 | 5.00E-03 | 15 | 7,471 | 2.70E-03 | 1.13E-01 | 1.78E-04 | 1.68E-02 | 167.88 | | Convection path length, Lp (cm) | Source
vapor
conc.,
C _{source}
(μg/m ³) | Crack
radius,
r _{crack}
(cm) | Average vapor flow rate into bldg., Q _{soil} (cm ³ /s) | Crack
effective
diffusion
coefficient,
D ^{crack}
(cm ² /s) | Area of crack, A _{crack} (cm ²) | Exponent of equivalent foundation Peclet number, exp(Pe') (unitless) | Infinite source indoor attenuation coefficient, α (unitless) | Infinite source bldg. conc., $C_{building}$ ($\mu g/m^3$) | | 15 | 4.00E-01 | 1.25 | 8.33E+01 | 1.68E-02 | 5.00E+03 | 2.02E+04 | 1.34E-03 | 5.37E-04 | | Unit | | |------------------------------------|----------------------| | risk | Reference | | factor, | conc., | | URF | RfC | | (μg/m ³) ⁻¹ | (mg/m ³) | | | | | 5.3E-06 | 3.0E-01 | | | | RESULTS SHEET Chloroform for CTP-SGP-35 Sampled June 18, 2004 # INCREMENTAL RISK CALCULATIONS: | Incremental | Hazard | |--------------|---------------| | risk from | quotient | | vapor | from vapor | | intrusion to | intrusion to | | indoor air, | indoor air, | | carcinogen | noncarcinogen | | (unitless) | (unitless) | | | | | 1.2E-09 | 1.7E-06 | MESSAGE SUMMARY BELOW: #### DATA ENTRY SHEET Tetrachloroethene for CTP-SGP-35 Sampled June 18, 2004 SG-SCREEN PA Version 2.0; 04/ > Reset to Defaults #### DTSC **Vapor Intrusion Guidance** Interim Final 12/04 | | Soi | I Gas Concentration | n Data | Interim Final 12/04 | |----------------|---------|---------------------|----------|-------------------------| | ENTER | ENTER | | ENTER | (last modified 1/21/05) | | | Soil | | Soil | | | Chemical | gas | OR | gas | | | CAS No. | conc., | | conc., | | | (numbers only, | C_g | | C_g | | | no dashes) | (μg/m³) | _ | (ppmv) | Chemical | | | | _ | | | | 127184 | | | 1.20E-04 | Tetrachloroethylene | MORE | ENTER
Depth | ENTER | ENTER | ENTER | | ENTER | |--|---|---|--|----|--| | below grade to bottom of enclosed space floor, L _F (15 or 200 cm) | Soil gas
sampling
depth
below grade,
L _s
(cm) | Average
soil
temperature,
T _S
(°C) | Vadose zone SCS soil type (used to estimate soil vapor permeability) | OR | User-defined vadose zone soil vapor permeability, k _v (cm²) | | 15 | 182.88 | 18 | S | | | | MORE | | |----------|--| | → | | | | ENIER | ENTER | ENTER | ENIEK | |---|--------------|----------------------|-------------|-------------------------------------| | | Vandose zone | Vadose zone | Vadose zone | Vadose zone | | | SCS | soil dry | soil total | soil water-filled | | | soil type | bulk density, | porosity, | porosity, | | | Lookup Soil | ρ_b^A | n^V | $\theta_w^{\ V}$ | | l | Parameters | (g/cm ³) | (unitless) | (cm ³ /cm ³) | | | | | | | | ſ | S | 1.66 | 0.375 | 0.054 | #### **ENTER** Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m) | ENTER | ENTER | ENTER | ENTER | |--------------|------------------|-----------|------------| | Averaging | Averaging | _ | _ | | time for | time for | Exposure | Exposure | | carcinogens, | noncarcinogens, | duration, | frequency, | | AT_C | AT _{NC} | ED | EF | | (yrs) | (yrs) | (yrs) | (days/yr) | | | | | | | 70 | 30 | 30 | 350 | # Tetrachloroethene for CTP-SGP-35 Sampled June 18, 2004 | Diffusivity
in air,
D _a
(cm ² /s) | Diffusivity in water, D _w (cm ² /s) | Henry's
law constant
at reference
temperature,
H
(atm-m ³ /mol) | Henry's law constant reference temperature, T _R (°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal
boiling
point,
T _B
(°K) | Critical
temperature,
T _C
(°K) | Unit
risk
factor,
URF
(µg/m³) ⁻¹ | Reference
conc.,
RfC
(mg/m³) | Molecular
weight,
MW
(g/mol) | |--|--|---|---|--|---|--|---|---------------------------------------|---------------------------------------| | 7.20E-02 | 8.20E-06 | 1.84E-02 | 25 | 8,288 | 394.40 | 620.20 | 5.9E-06 | 3.5E-02 | 165.83 | # INTERMEDIATE CALCULATIONS SHEET Tetrachloroethene for CTP-SGP-35 Sampled June 18, 2004 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, $\theta_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | Vadose zone effective total fluid saturation, Ste (cm³/cm³) | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone soil relative air permeability, k_{rg} (cm ²) | Vadose zone
soil
effective vapor
permeability,
k _v
(cm ²) | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | Soil
gas
conc.
(µg/m³) | Bldg.
ventilation
rate,
Q _{building}
(cm³/s) | |---|--|---|---|---|---|---|---|---| | 167.88 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 4,000 | 8.33E-01 | 3.39E+04 | | | | | | | | 7 | | | | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack
depth
below
grade,
Z _{crack}
(cm) | Enthalpy of vaporization at ave. soil temperature, $\Delta H_{v,TS}$ (cal/mol) | Henry's law
constant at
ave. soil
temperature,
H _{TS}
(atm-m ³ /mol) | Henry's law
constant at
ave. soil
temperature,
H' _{TS}
(unitless) | Vapor
viscosity at
ave. soil
temperature,
μ _{TS}
(g/cm-s) | Vadose
zone
effective
diffusion
coefficient,
D ^{eff} _V
(cm ² /s) | Diffusion
path
length,
L _d
(cm) | | 1.00E+06 | 5.00E-03 | 15 | 9,472 | 1.25E-02 | 5.23E-01 | 1.78E-04 | 1.16E-02 | 167.88 | | Convection path length, Lp (cm) | Source
vapor
conc.,
C _{source}
(µg/m³) | Crack
radius,
r _{crack}
(cm) | Average vapor flow rate into bldg., Q _{soil} (cm ³ /s) | Crack effective diffusion coefficient, D ^{crack} (cm ² /s) | Area of
crack,
A _{crack}
(cm ²) | Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless) | Infinite source indoor attenuation coefficient, α (unitless) | Infinite
source
bldg.
conc.,
C _{building}
(µg/m³) | | 15 | 8.33E-01 | 1.25 | 8.33E+01 | 1.16E-02 | 5.00E+03 | 1.65E+06 | 1.12E-03 | 9.30E-04 | | Unit | | |------------------------------------|----------------------| | risk | Reference | | factor, | conc., | | URF | RfC | | (μg/m ³) ⁻¹ | (mg/m ³) | | | | | 5.9E-06 | 3.5E-02 | | | | RESULTS SHEET Tetrachloroethene for CTP-SGP-35 Sampled June 18, 2004 # INCREMENTAL RISK
CALCULATIONS: | Incremental | Hazard | |--------------|---------------| | risk from | quotient | | vapor | from vapor | | intrusion to | intrusion to | | indoor air, | indoor air, | | carcinogen | noncarcinogen | | (unitless) | (unitless) | | | | | 2.3E-09 | 2.5E-05 | MESSAGE SUMMARY BELOW: #### DATA ENTRY SHEET Trichloroethene for CTP-SGP-35 Sampled June 18, 2004 # SG-SCREEN PA Version 2.0; 04/ Reset to Defaults ### DTSC **Vapor Intrusion Guidance** Interim Final 12/04 | Soil Gas Concentration Data | | | | Interim Final 12/04 | | | |-----------------------------|---------|----|----------|-------------------------|--|--| | ENTER | ENTER | | ENTER | (last modified 1/21/05) | | | | | Soil | | Soil | | | | | Chemical | gas | OR | gas | | | | | CAS No. | conc., | | conc., | | | | | (numbers only, | C_g | | C_g | | | | | no dashes) | (μg/m³) | _ | (ppmv) | Chemical | | | | | | _ | | | | | | 79016 | | | 1.50E-04 | Trichloroethylene | | | | ENTER
Depth | ENTER | ENTER | ENTER | | ENTER | |--|---|---|--|----|---| | below grade to bottom of enclosed space floor, L _F (15 or 200 cm) | Soil gas
sampling
depth
below grade,
L _s
(cm) | Average
soil
temperature,
T _S
(°C) | Vadose zone SCS soil type (used to estimate soil vapor permeability) | OR | User-defined
vadose zone
soil vapor
permeability,
k _v
(cm²) | | 15 | 182.88 | 18 | S | | | | MORE | | |----------|--| | → | | | ENTER | ENTER | ENTER | ENTER | |--------------|----------------------|----------------|-------------------------------------| | Vandose zone | Vadose zone | Vadose zone | Vadose zone | | SCS | soil dry | soil total | soil water-filled | | soil type | bulk density, | porosity, | porosity, | | Lookup Soil | ρ_b^A | n [∨] | $\theta_{\mathbf{w}}^{V}$ | | Parameters | (g/cm ³) | (unitless) | (cm ³ /cm ³) | | | | | | | S | 1.66 | 0.375 | 0.054 | #### **ENTER** Average vapor flow rate into bldg. (Leave blank to calculate) Q_{soil} (L/m) | ENTER | ENTER | ENTER | ENTER | | |--------------|------------------|-----------|------------|--| | Averaging | Averaging | _ | _ | | | time for | time for | Exposure | Exposure | | | carcinogens, | noncarcinogens, | duration, | frequency, | | | AT_C | AT _{NC} | ED | EF | | | (yrs) | (yrs) | (yrs) | (days/yr) | | | | | | | | | 70 | 30 | 30 | 350 | | #### Trichloroethene for CTP-SGP-35 Sampled June 18, 2004 | Diffusivity
in air,
D _a
(cm ² /s) | Diffusivity
in water,
D _w
(cm ² /s) | Henry's
law constant
at reference
temperature,
H
(atm-m ³ /mol) | Henry's
law constant
reference
temperature,
T _R
(°C) | Enthalpy of vaporization at the normal boiling point, $\Delta H_{v,b}$ (cal/mol) | Normal
boiling
point,
T _B
(°K) | Critical
temperature,
T _C
(°K) | Unit
risk
factor,
URF
(µg/m³) ⁻¹ | Reference
conc.,
RfC
(mg/m ³) | Molecular
weight,
MW
(g/mol) | |--|--|---|--|--|---|--|---|--|---------------------------------------| | 7.90E-02 | 9.10E-06 | 1.03E-02 | 25 | 7,505 | 360.36 | 544.20 | 2.0E-06 | 6.0E-01 | 131.39 | # INTERMEDIATE CALCULATIONS SHEET Trichloroethene # for CTP-SGP-35 Sampled June 18, 2004 | Source-
building
separation,
L _T
(cm) | Vadose zone soil air-filled porosity, θ _a ^V (cm ³ /cm ³) | Vadose zone effective total fluid saturation, $S_{te} \\ (cm^3/cm^3)$ | Vadose zone
soil
intrinsic
permeability,
k _i
(cm ²) | Vadose zone soil relative air permeability, k_{rg} (cm^2) | Vadose zone
soil
effective vapor
permeability,
k _v
(cm ²) | Floor-
wall
seam
perimeter,
X _{crack}
(cm) | Soil
gas
conc.
(µg/m³) | Bldg.
ventilation
rate,
Q _{building}
(cm ³ /s) | |---|---|---|---|---|---|---|--|--| | 167.88 | 0.321 | 0.003 | 1.01E-07 | 0.998 | 1.00E-07 | 4,000 | 8.25E-01 | 3.39E+04 | | | | | | | | , | | | | Area of
enclosed
space
below
grade,
A _B
(cm ²) | Crack-
to-total
area
ratio,
η
(unitless) | Crack
depth
below
grade,
Z _{crack}
(cm) | Enthalpy of
vaporization at
ave. soil
temperature,
$\Delta H_{v,TS}$
(cal/mol) | Henry's law
constant at
ave. soil
temperature,
H _{TS}
(atm-m ³ /mol) | Henry's law constant at ave. soil temperature, H' _{TS} (unitless) | Vapor
viscosity at
ave. soil
temperature,
μ _{TS}
(g/cm-s) | Vadose
zone
effective
diffusion
coefficient,
D ^{eff} _V
(cm²/s) | Diffusion
path
length,
L _d
(cm) | | 1.00E+06 | 5.00E-03 | 15 | 8,458 | 7.29E-03 | 3.05E-01 | 1.78E-04 | 1.28E-02 | 167.88 | | Convection path length, | Source vapor conc., C _{source} (µg/m³) | Crack
radius,
r _{crack}
(cm) | Average vapor flow rate into bldg., Q _{soil} (cm ³ /s) | Crack effective diffusion coefficient, D ^{crack} (cm ² /s) | Area of crack, A _{crack} (cm ²) | Exponent of equivalent foundation Peclet number, exp(Pe ^f) (unitless) | Infinite source indoor attenuation coefficient, α (unitless) | Infinite source bldg. conc., C _{building} (µg/m³) | | 15 | 8.25E-01 | 1.25 | 8.33E+01 | 1.28E-02 | 5.00E+03 | 4.65E+05 | 1.17E-03 | 9.68E-04 | | Unit | | |-----------------------|----------------------| | risk | Reference | | factor, | conc., | | URF | RfC | | (μg/m³) ⁻¹ | (mg/m ³) | | | | | 2.0E-06 | 6.0E-01 | | • | | RESULTS SHEET Trichloroethene for CTP-SGP-35 Sampled June 18, 2004 # INCREMENTAL RISK CALCULATIONS: | Incremental | Hazard | |--------------|---------------| | risk from | quotient | | vapor | from vapor | | intrusion to | intrusion to | | indoor air, | indoor air, | | carcinogen | noncarcinogen | | (unitless) | (unitless) | | | | | 8.0E-10 | 1.5E-06 | MESSAGE SUMMARY BELOW: